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Abstract. Implicit structural modeling using sparse and un-
evenly distributed data is essential for various scientific and
societal purposes, ranging from natural source exploration
to geological hazard forecasts. Most advanced implicit ap-
proaches formulate structural modeling as least squares mini-
mization or spatial interpolation, using various mathematical
methods to solve for a scalar field that optimally fits all the
inputs under an assumption of smooth regularization. How-
ever, these approaches may not reasonably represent com-
plex geometries and relationships of structures and may fail
to fit a global structural trend when the known data are too
sparse or unevenly distributed. Additionally, solving a large
system of mathematical equations with iterative optimiza-
tion solvers could be computationally expensive in 3-D. To
deal with these issues, we propose an efficient deep learn-
ing method using a convolution neural network to create a
full structural model from the sparse interpretations of strati-
graphic interfaces and faults. The network is beneficial for
the flexible incorporation of geological empirical knowledge
when trained by numerous synthetic models with realistic
structures that are automatically generated from a data simu-
lation workflow. It also presents an impressive characteristic
of integrating various types of geological constraints by op-
timally minimizing a hybrid loss function in training, thus
opening new opportunities for further improving the struc-
tural modeling performance. Moreover, the deep neural net-
work, after training, is highly efficient for the generation of
structural models in many geological applications. The ca-
pacity of our approach for modeling complexly deformed
structures is demonstrated by using both synthetic and field

datasets in which the produced models can be geologically
reasonable and structurally consistent with the inputs.

1 Introduction

A geological model structurally consistent with the subsur-
face is essential for understanding the subsurface spatial
organization and quantitatively simulating geological pro-
cesses for a wide variety of Earth science applications well
(Li et al., 2016; Wellmann and Caumon, 2018). Structural
modeling aims to accurately represent the geometry of geo-
logical structures with a numerical model by using various
mathematical methods. The traditional modeling approach
can be described as explicit or surface modeling (Caumon
et al., 2009). It reproduces the complex geometries and rela-
tionships of structures by digitizing the interpreted surface
elements and their arrangements, and the resultant model
typically incorporates a series of geological interfaces de-
rived by a triangulation algorithm. In addition to being time-
consuming, the modeling process is also related to each indi-
vidual geologist’s interpretations and might not be replicated
by others (Caumon et al., 2009; Chaodong et al., 2010).

Recently, more and more implicit structural modeling
methods have been proposed for constructing geological
models because of their efficient, updatable, and repro-
ducible characteristics (Calcagno et al., 2008; Caumon et al.,
2012; Hillier et al., 2014; Laurent et al., 2014; Collon et al.,
2015). The implicit method is distinguished from the explicit
approach because it consists of interpolating field structural
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observations into a volumetric scalar function that is defined
on the entire region of interest to implicitly represent geo-
logical structures. In this function, the geological interfaces
are embedded as its iso-surfaces, while the structural discon-
tinuities are indicated by discontinuous value jumps of the
function. Thus, the scalar function is also called the implicit
model. The implicit method benefits from incorporating all
available geological information into the resultant model by
integrating the observed data and the empirical knowledge,
providing an effective alternative to reproduce the geome-
try of the subsurface from a global view (Calcagno et al.,
2008; Fossen, 2016). The input structural data of the implicit
method typically included various types of modeling objects,
such as spatial points, vectors, polylines, and surfaces, which
are interpreted from field observations. Empirical knowledge
can be manually inferred from the structural data by the ge-
ologists and geophysicists to define the possible geometri-
cal relationships among the geological interfaces and drive
the modeling behaviors of the implicit methods. The output
model requires representing geologically reasonable struc-
tures while honoring the input structural data. As it is hardly
possible to observe the ground truth of a subsurface, the ge-
ological structures are often heterogeneously sampled in a
limited number of highly developed mining and oil fields.
This brings about the necessity of adding prior geological
rules and assumptions to constrain the modeling process. For
example, the existing implicit interpolants typically impose
explicit smoothness criteria to simplify local variations for
computing a unique model.

The discrete smooth interpolation (DSI) is one class of
implicit methods that computes structural models by dis-
cretizing the scalar function on a volumetric mesh (Mallet,
1988, 1992, 1997, 2014; Souche et al., 2014; Renaudeau
et al., 2019). In DSI and its variant approaches, structural
modeling is performed by solving a least squares minimiza-
tion problem with smooth constraints to compute a scalar
field compatible with the inputs. This smooth constraint in-
corporates empirical geological knowledge into the model-
ing process with a fundamental assumption that the desired
model should be as smooth as possible. However, the mesh
elements prohibit from crossing structural discontinuities be-
cause the scalar function is always continuous on the mesh
elements, and the method cannot correctly estimate the gra-
dients of the scalar function near the faults or unconformi-
ties (Shewchuk, 2002). To deal with this problem, we need
to compute a constrained unstructured mesh by indepen-
dently modeling the discontinuous structures, such that the
approaches can work well in these cases. In addition to DSI,
the potential field method (PFM) is another class of implicit
approaches (Lajaunie et al., 1997; Jessell, 2001; McInerney
et al., 2007; Phillips et al., 2007). PFM typically formulates
structural modeling as a dual co-kriging interpolation (Chiles
et al., 2004; Calcagno et al., 2008) or as a radial basis func-
tion interpolation (Carr et al., 2001). In comparison to DSI,
although the models are evaluated on a volumetric mesh for a

visual purpose, PFM does not use any mesh grids when com-
puting the scalar function. Instead, structure interpolation is
fully dependent on the distribution of the observed structural
data, and the influence range of each data point is determined
by the chosen interpolants. However, PFM usually yields a
dense system to scale the influence of the interpolants over
the entire volume for obtaining a structurally valid solution,
which causes the computational cost to quickly increase with
the input data size, and soon it becomes prohibitive.

The existing approaches exhibit many promising charac-
teristics; however, reproducing the structures of highly de-
formed regions remains a challenging task regarding geo-
logical consistency because the modeling reliability depends
on the availability and quality of the observed data. Struc-
tural interpolation fully guided by mathematical equations
might not always produce a geologically valid model given
sparse or unevenly sampled data (sparse or clustered) in some
complex geological circumstances. Corresponding structural
models often have erroneous geometries that are incompati-
ble with geological knowledge and have spatial relationships
with relevant structures. This problem is mainly attributed to
the limited constraints that are permitted in structural inter-
polants in which all the data and knowledge are mathemati-
cally represented as a form of linear constraints to compute a
continuous scalar function as smoothly as possible. Although
this assumption is helpful to derive a unique model, impos-
ing such a smoothness criterion might compromise the in-
fluence of local structural variations and negatively impact
the modeling accuracy of highly variant structures (de Kemp
et al., 2017; Hillier et al., 2021). Because the modeling flex-
ibility is limited to the models that a specific interpolant can
generate, the implicit methods usually suffer from artifacts
or geometrical features that are physically impossible from
a geological modeling point of view. Therefore, it is signifi-
cant to improve implicit modeling by flexibly aggregating all
available geological information to ensure that we obtain a
structurally reasonable model (Grose et al., 2018, 2021).

In this study, we present a deep learning method using
a convolutional neural network (CNN) as an alternative to
conventional implicit structural modeling. Deep learning is a
type of data-driven and statistical approach that estimates an
implicit function that maps inputs to outputs from past expe-
riences or example data by minimizing given quality criteria
(Donmez, 2010). In contrast to traditional approaches, deep
learning is beneficial for making a prediction without solv-
ing a linear system of equations under prior mathematical
constraints at cost of expensive computation. Among current
learning-based methods, CNN is essential for its remarkable
power in analyzing geometrical features and capturing com-
plexly nonlinear mapping relations between inputs and out-
puts, given a sufficiently large training dataset. To find an
optimal tradeoff between accuracy and efficiency, there ex-
ist many convolutional modules available for constructing
the CNN architecture, such as depth-wise separable convo-
lution (Chollet, 2017; Howard et al., 2017), attention mecha-
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Figure 1. Our implicit modeling method produces a volumetric scalar function as an implicit representation of all the geological structures
from input structural data by using a convolutional neural network (CNN). Trained with numerous synthetic data, the network can be applied
to field structural data to efficiently predict a geologically reasonable model that matches the inputs well.

Figure 2. Our network has a U-shaped architecture that consists of encoder and decoder branches shown in panel (a). The encoder uses an
inverse residual block (b) supplemented by a lightweight channel-based attention (c) to deal with the input structural data at each of the five
different spatial scales. The decoder computes the hidden representations at the corresponding five resolution scales to form a sufficiently
deep CNN. Note that square brackets represent the dimensional expansion of the corresponding 2-D networks to 3-D ones.
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Figure 3. The normalized hidden feature representations computed in each spatial scale of the 3-D structural modeling networks.

nism (Iandola et al., 2016; Howard et al., 2019), and residual
learning structure (Sandler et al., 2018). It is not a surprise
that the CNN-related applications in geosciences have been
growing rapidly during the past years, including seismic in-
terpretation (Shi et al., 2019; Wu et al., 2019; Geng et al.,
2020; Bi et al., 2021), earthquake detection and location (Wu
et al., 2018; Perol et al., 2018), remote-sensing image classi-
fication (Chen et al., 2016; Maggiori et al., 2016), geochem-
ical map interpolation (Kirkwood et al., 2022), and so on.
It is worth noting that a novel learning-based method, using
graph neural networks (GNNs) (Hillier et al., 2021), has been
recently developed to integrate structural observations into
a graphic mesh encoding all relevant geometrical relations
for producing a structural scalar field. This method presents
a promising foundation for introducing interpolation con-
straints that current implicit mathematical methods cannot
permit when comparing the prediction and the structural ob-
servations, showing an impressive performance when dealing
with implicit and discrete data. However, the method can-
not exactly reproduce the modeling results under the same
inputs, as the network parameters are initialized randomly
in each run of the computation. By measuring structural er-
rors only on the scalar field constraints, it may fail to incor-
porate information associated with structural discontinuities
into graphic structures, such as representing the spatial rela-
tion of the modeling elements across faults. Another poten-
tial limitation results from a bottle-necking issue in the cur-
rent GNN’s architecture (Alon and Yahav, 2020), in which
further improvement of the modeling capacity is restrained
by network depth with a few layers. A network with a sim-
ple structure might not be sufficient to deal with relatively
complex geological structures.

As is shown in Fig. 1, we formulate implicit modeling as
an image inpainting problem with deep learning, in which a
full structural model is estimated from the sparse and hetero-
geneously sampled data, based on the past experiences and
knowledge learned from training dataset. This characteris-
tic permits a flexible introduction of empirical geometrical

relations and structural interpolation constraints by defining
an appropriate loss function to measure the differences be-
tween the structural models being compared. Our network,
also called DeepISMNet, can produce a scalar field as an im-
plicit representation of all the structures from various types
of geological data, including horizons and faults, to encode
the stratigraphic sequence and control the geological bound-
aries, respectively. We parameterize faulting and folding sim-
ulations to automatically create numerous structural models
with realistic and diverse structures by randomly choosing
parameters within reasonable ranges, which are considered
as the example data or labels. In training the network, we ran-
domly extract horizon and fault structures from these models
to further generate unevenly distributed data as inputs that the
network takes to predict a full geological model as output.
Also, we demonstrate that the normal vectors sampled near
geological interfaces can be used to constrain local struc-
tural orientations associated with the gradients of the pre-
dicted model. In training the CNN, we define a hybrid loss
function that combines the element-wise measurements on
the input horizon data and multi-scale structural similarity
over the local sliding windows to guarantee a geologically
compatible prediction. Once a structural model is obtained,
we can simply compute the horizon surfaces by using the
iso-surface extraction method while detecting the faults near
the local value jumps or discontinuities (Fig. 1). We find that
the trained CNN can efficiently create a geologically reason-
able and structurally consistent model in both synthetic and
field data applications, showing promising potential for fur-
ther leveraging deep learning to improve modeling capacity
in many geological applications. In addition, the solutions
can be reproducible, as it is not necessary to randomly ini-
tialize the parameters of the trained network at each model-
ing process.

We organize this paper as follows. In Sect. 2, we describe
the CNN architecture designed for implicit modeling and
its associated loss function definition. In Sect. 3, we intro-
duce the methodology used to automatically generate train-
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ing samples and simulate the partially missing horizons. Sec-
tions 4 and 5 include both synthetic and real-world case stud-
ies to verify the performance of our network in representing
complex geological structures. Section 6 presents the promis-
ing characteristics of our CNN approach and its current lim-
itations and possible improvements that we will focus on in
future research. Finally, we summarize the work in Sect. 7.

2 Methodology

In this section, we describe the CNN architecture and its as-
sociated loss function used in training the network to gener-
ate implicit structural models.

2.1 Network architecture

Our developed CNN architecture uses a U-shaped frame-
work modified, from UNet and its associated variants (Ron-
neberger et al., 2015; Zhou et al., 2018), in which we include
further improvements based on previous works to find an op-
timal tradeoff between accuracy and efficiency in geological
modeling. In many image recognition tasks where inputs and
outputs share the same spatial resolution, UNet is typically
regarded as a standard principle due to its excellent perfor-
mance (Lin et al., 2017; C. Yu et al., 2018). Its great represen-
tational power results from a linked encoder–decoder archi-
tecture, in which the features are first downsampled at mul-
tiple spatial resolutions in the encoder and then recombined
with their upsampled counterparts through skip connections
in the decoder. The localized components of the inputs are
typically extracted at an early stage of the CNN, while the
relatively high-level and global features are obtained when
the receptive fields are increasingly large in deep convolu-
tional layers. Thus, as the hidden representations with differ-
ent spatial resolutions have much distinctive geometrical in-
formation, systematically aggregating the hierarchical multi-
scale features with skip connections is attributed to a reliable
and stable structural field prediction. Furthermore, the low-
level features computed from the shallow layers better follow
the input structures than the deep high-level features because
the structural information might be gradually missing in re-
cursive feature compressions at the downsampled spatial res-
olutions. The use of skip connections also helps to enhance
the low-level features and produce a model structurally con-
sistent with the inputs.

We show the proposed 2-D and 3-D CNNs with the same
architecture in Fig. 2a, in which square brackets represent the
dimensional expansion of the corresponding 2-D networks
to 3-D ones. The encoder branch in our proposed network
consists of five successive inverse residual blocks dealing
with the input structural data at five different spatial scales
(from E0 to E4) related to 2, 4, 8, 16, and 32 downsampling
rates, respectively. When downsampling the hidden represen-
tations by using the max pool layer, the encoder simultane-

ously expands its channels at each spatial scale. As shown
in Fig. 2b, we adopt a linear bottleneck and inverted residual
architecture in each block to make an efficient convolutional
structure by leveraging the low-ranking nature of the inputs.
This structure is composed of a 1×1[×1] expansion convolu-
tional layer, a 3× 3[×3] depth-wise convolutional layer, and
another 1× 1[×1] projection convolutional layer, and each
convolution is followed by a batch normalization (BN) and a
rectified linear unit (ReLu). The two 1×1[×1] convolutional
layers at the ends of the depth-wise convolutional layer are
designed to expand the inputs to higher-dimensional feature
space (one and a half times of the channels) and project them
back to the output channels, such that the inverse residual
block forms a compact feature embedding that improves the
expressiveness of the nonlinear transformation at each chan-
nel. We did not try a larger expansion factor because of the
GPU memory limitation, but we would suggest choosing a
larger size if the GPU memory allows for it. With a residual
connection over the expansion and projection convolutional
layers, the block is formulated as a residual learning func-
tion to speed up the backpropagation of gradient responses.
Although the encoder layers aggregate abundant information
through recursive channel expansions, not all the features are
useful for modeling structures. There exist many structurally
irrelevant features with mostly zeros across channels because
of the sparse and heterogeneous characteristics of the inputs.
Treating all channel-wise features equally would waste un-
necessary computations that should focus on the informative
features, and thus, this negatively influences the representa-
tional power of the network. To enhance the CNN’s discrimi-
native learning ability, we insert a lightweight channel-based
attention module into the bottleneck structure of the inverse
residual block in the last three spatial scales of the encoder.
The attention block (Fig. 2c) consists of squeeze and ex-
citation modules in which the input features are first com-
pressed into lower-dimensional feature space in the squeeze
module and then transformed to the channel-wise attention
weights with the same channels as the inputs in the excita-
tion module. This module (Hu et al., 2018) encourages the
network to adaptively learn the relations across hundreds of
high-level features with relatively global structural informa-
tion and rescale their importance to stabilize the modeling
by emphasizing the informative features and suppressing the
irrelevant ones.

The decoder branch includes the five spatial scales (from
D4 toD0), consistent with the encoder, to form a sufficiently
deep network and large receptive field for structural inter-
polating. It is responsible for integrating the hidden repre-
sentations from the previous unmaxpooling layers and the
encoder skip connections, while compensating for the spa-
tial resolution mismatch between the concatenated features.
In each spatial scale, the upsampled decoded features are
concatenated with their downsampled counterparts from the
encoder branch and further sequentially refined in the two
convolutional layers. We use depth-wise separable convolu-
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tions (Howard et al., 2017) as an efficient replacement for
the traditional convolutions. The depth-wise separable con-
volutional layer factorizes the convolutional operation as two
separate layers, including a lightweight 3× 3[×3] convolu-
tional layer for filtering features within each channel and a
relatively heavy 1×1[×1] convolutional layer for combining
features across channels. By splitting the standard convolu-
tion as the two-step process, we can dramatically reduce the
computation complexity and the GPU memory to construct a
lightweight decoder network. In the output layer, we adopt a
simple linear transform that is implemented by a 1× 1[×1]
convolutional layer to cross all the decoded features to finally
produce a structural field.

Figure 3 visualizes the normalized hidden representations
at each resolution scale of our 3-D structural modeling net-
work that the inputs are passed through. As the amplitude
ranges of the hidden representations vary a great deal from
each other, we rescale them to obtain the normalized features
with values restrained from zero to one for visual purposes.
Our CNN is designed to progressively complete structural
features, layer by layer, through sequential nonlinear con-
volutional units that are conditioned on the previous convo-
lutions. As displayed in Fig. 3, the valid convolutional re-
sponses only exist near the input structures in the starting
layer of the network. To spread geological structures else-
where, every convolutional layer collects information from
the previous layer outputs within an increasingly expand-
ing receptive region by staking convolutions and recursively
downsampling the input hidden features. Therefore, at the
bottom layers of the network, the structural information in
the inputs can be used to constrain the modeling process over
the entire model from a global receptive region of view. This
characteristic allows the network to correctly understand the
relations of the spatially distant but contextually close fea-
tures. Although weighting on spatial proximity is typically
used in many traditional structural interpolation methods, the
nearby features are not necessarily more significant than dis-
tinct ones for making a geologically related prediction. For
example, when the stratigraphic layers are located opposite
to a large shear zone or other discontinuous structures, the
correlations of distinct data points computed from a global
review are essential to capture a more accurate structural pat-
tern.

2.1.1 Loss function

The network provides an attractive characteristic to integrate
various structural constraints by minimizing the correspond-
ing errors between the predicted and reference models. To
make geologically valid predictions, we combine element-
wise accuracy with multi-scale structural similarity to define
a hybrid loss function. We introduce the notations and for-
mal definitions used in this loss function. Let x be the refer-
ence structural model, and let m be its binary mask, where
the pixels or voxels on the input horizon data are set to 1,

and the rest are set to 0. The dimensional sizes of x and m
are consistent with the samples in our training dataset. For
each reference model x, the CNN fθ with trainable parame-
ters θ takes horizon data h= x�m and fault data f to create
a structural field ŷ= fθ (h, f) as output. We denote the pre-
dicted model that is replaced with the inputs on the horizon
data as y= ŷ� (1−m)+ x�m.

In many geologically related regression problems, mean
square error (MSE) and mean absolute error (MAE) are com-
monly used to measure, element-wise, the accuracy of the
solutions (Geng et al., 2020; Hillier et al., 2021). However,
MSE typically emphasizes the elements with larger errors but
is more tolerant of smaller ones, regardless of the underlying
spatial pattern of the data. In comparison with MSE, MAE is
more sensitive to the local structural variations, reducing the
artifacts caused by excessively penalizing large errors. We
adopt a masked MAE as a point-wise measurement in the
hybrid loss function, which is formulated as follows:

Lmae(p)=
1
N

∑
p∈p
|x(p)− ŷ(p)|, (1)

where N represents the total number of the points within a
square patch p. We crop the patches from the same spatial
location in the two structural models being compared.

Although MAE outperforms MSE in geological modeling
scenarios, the results are still not optimal. CNN trained by us-
ing MAE alone might not correctly capture the geometrical
features that are represented by the distribution of the neigh-
boring points, while blurring high-frequency and sharp struc-
tural discontinuities. Thus, the two models with similar MAE
might appear to have significantly distinct structures, which
negatively impacts the optimization of the CNN’s parame-
ters. To alleviate such smooth effectiveness, we use a hybrid
loss function by combining MAE with structural similarity
(SSIM; Wang et al., 2003, 2004; Zhao et al., 2016). By adap-
tively assigning higher weights to the structural boundaries
in which the structures present significant contrasts, SSIM
can better preserve the high-frequency geometrical features.
SSIM loss measuring the CNN prediction and the reference
model within the patch p can be represented as follows:

Lssim(p)= 1−

(
2µxµy+C1

µ2
x+µ

2
y+C1

)β(
2σxy+C2

σ 2
x + σ

2
y +C2

)γ
= 1− l(p)β · cs(p)γ , (2)

whereµx andµy represent the means of model x and y within
p, respectively. σx and σy are the variances, while σxy is the
covariance of the two patches being measured. The means,
variances, and covariance are computed by using an isotropic
Gaussian filter Gσg with a standard deviation σg and zero
mean. Approximately, µx and σx can be viewed as estimates
of the stratigraphic sequences and structural variations in a
local patch of model x, and σxy measures the tendency of
the patches in model x and y to vary together, which is an
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Figure 4. A total of four pairs of 3-D training data samples are shown. The first row shows 3-D synthetic implicit structural models used as
labels in training our 3-D network. The second and third rows, respectively, display the fault and sparse horizon points extracted from the
models (first row), which are used together as inputs to the CNN.

Figure 5. A total of four pairs of 2-D training data samples are shown. The first row displays 2-D synthetic implicit structural models used
as labels in training our 2-D CNN. The second and third rows, respectively, show the fault images and sparse horizon points extracted from
the label models (first row), which are used together as inputs to the CNN. It is worth noting that the points denoted by the same color in
each image in the third row correspond to the same horizon.

indication of structural similarity. β and γ define the relative
significance of the two terms l and cs, which are both set to
1, based on Wang et al. (2003). In addition, we use two small
constant factors C1 and C2 to avoid the numerically unstable
circumstance of dividing by zero.

The standard deviation σg of the Gaussian filter Gσg is a
hyper-parameter that is required to be defined before train-
ing. However, the choice of σg can impact the prediction ac-
curacy of the network trained by using SSIM. The network
trained by SSIM with a large standard deviation Gσg might
overly emphasize the local variations and generate spurious
features in the proximity of edges while blurring sharp struc-

tural boundaries for a small standard deviation Gσg (Zhao
et al., 2016). Instead of fine-tuning the parameter Gσg , we
use multi-scale structural similarity (MS-SSIM; Wang et al.,
2003, 2004) with a dyadic pyramid of S scale levels and for-
mulate it as follows:

Lms-ssim(p)= 1− lS(p)β ·
S∏
j=1

csj (p)γj , (3)

in which γj are parameters to define the relative importance
of each scale level in the variance-related scheme csj . MS-
SSIM computes a pyramid of patches p with S spatial scales
defined by various σg of the used Gaussian filter Gσg . We
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define five different scales of σg = {0.5,1,2,4,8} and set
each to half of the previous one by recursively downsam-
pling the full-resolution patch using the 2× 2 average pool
layer (S = 5). We adopt γj = {0.05,0.29,0.3,0.24,0.12} to
rescale the losses estimated from the five scale levels and
make sure the sum of them is equal to 1 to compute the MS-
SSIM loss.

MS-SSIM highlights structural variations, focusing on a
neighborhood of point p as large as the given Gaussian filter
Gσg , but might produce artifacts in the predictions because
its derivatives cannot be correctly estimated near the bound-
ary regions of the patch in the optimization. This can be al-
leviated by supplying an element-wise measurement that is
computed on a single point of the patches being compared
in the loss function. Additionally, MS-SSIM is not sensitive
to uniform biases, which might cause unexpected changes
in stratigraphic sequences or shifts of geological interfaces
in modeling results. In comparison, although MAE better
preserves stratigraphic sequences by minimizing the error
at each point equally within the patch, it might not produce
quite the same high-frequency contrast as MS-SSIM, regard-
less of local structures. To capture the best characteristics of
both loss functions, we thus propose to combine them as fol-
lows:

Lsum =
1
K

K∑
i=1
(λLmae(pi)+Lms-ssim(pi)), (4)

where λ is a weighting factor used to balance the relative
importance of different losses, and K represents the num-
ber of cropped patches. In training the CNN, we crop square
patches in a point-wise manner from the structural models
being measured and compute the loss within each patch,
based on Eq. (4), in which we empirically set the dimen-
sional size of each patch to 7 and the λ to 1.25. The total
loss Lsum is estimated by averaging the losses computed for
the K patches. All the parameters in the loss function are se-
lected based on many numerical experiments and kept fixed
throughout the study to avoid the need for tuning. Although
we cannot ensure the used parameter combination is the best
one, further parameter tuning is much more time-consuming
for training a deep CNN but hardly obtains further improve-
ments.

3 Data preparation

Our CNN architecture is beneficial for the flexible incor-
poration of empirical geological knowledge in a supervised
learning framework with numerous structural models that are
all automatically generated from an automatic data simula-
tion workflow. We randomly delete some segments from the
models to obtain the partially missing horizons similar to the
modeling objects collected from field observations. In train-
ing our network, the incomplete horizons, together with the

faults, are used as inputs to predict a structural field under the
supervision of the full model.

3.1 Automatic data generator

A challenge of applying the supervised learning method is
the preparation of a great deal of example data and especially
the corresponding geological labels for training the network.
In the structural modeling, the training dataset should in-
corporate structurally varying geological models as much as
possible to enable the CNN to learn representative knowl-
edge for achieving its reliable generalization in real-world
applications. However, it is hardly possible to manually label
all geological structures in a field survey because the ground
truth of the subsurface is inaccessible. To solve this problem,
we use an automatic workflow to simulate geological struc-
tural models with some typical folding and faulting features
that are controlled by a set of random parameters (Wu et al.,
2020). In this workflow, we first create a flat layered model
with horizontally constant and vertically monotonically in-
creasing values as an initial model, and then sequentially add
folding, dipping, and faulting structures to complicate the
features of this model. We simulate the folding and dipping
structures by vertically shearing the initial model through a
combination of linear and Gaussian-like shift fields, while
creating faulting structures by using volumetric vector fields
defined around the fault surfaces. By randomly choosing the
parameters within the reasonable ranges, we can simulate
numerous geological models with diverse and realistic fea-
tures not limited to a specific pattern. Based on the gener-
ated models with known structures, we simply obtain the
corresponding ground truth of the fault volume with ones
on faults and zeros elsewhere. These geological models can
be viewed as volumetric scalar functions because their iso-
surfaces represent the corresponding stratigraphic interfaces,
while the local value jumps indicate the structural disconti-
nuities. This is important for our next step of constructing
a training dataset to optimize our CNN for geological struc-
tural modeling. By using this workflow, we totally obtain 600
3-D structural models, shown in Fig. 4a, and each model con-
tains 256×256×128 grid points. These models are vertically
flipped up–down and horizontally left–right to build an aug-
mented dataset consisting of a total of 2400 pairs of models.
At the same time as vertically flipping models, we reverse
the sign of their values to ensure that they vertically increase
except across a reverse fault. As shown in Fig. 5a, we extract
four evenly spaced slices along crossline and inline from the
3-D structural models, respectively, to further build a training
dataset for the 2-D network. We use 90% of the datasets for
training and the rest for validating the trained network.

3.2 Masked structural data

The input structural data of our network consist of scattered
points that are gridded into a volumetric mesh with valid an-

Geosci. Model Dev., 15, 6841–6861, 2022 https://doi.org/10.5194/gmd-15-6841-2022



Z. Bi et al.: Implicit structural modeling with convolutional neural network 6849

Figure 6. Training (cyan) and validation (orange) curves of using our developed hybrid loss (a) and the adaptive adjustment of the learning
rate during the training (b). We run the trained CNN 20 times to compute the MSE (c) and MAE (d) for the 100 models randomly chosen
from the validation dataset in which the input structural data are regenerated in each computation. The black dot represents the average error,
while the blue and red lines indicate the error ranges of the MSE and MAE, respectively.

Figure 7. We apply the trained CNN to the five geological models (a) not included in the training dataset. We randomly generate horizon
and fault structural data (b) from the models as the inputs of our network. By visual comparison, the modeling results (c) are nearly identical
to the ground truth of the models (a), which can be supported by the great consistency between the scalar field iso-lines (dashed curves) and
the input horizons (solid curves) in panel (d).

notations on structures and zeros elsewhere. As displayed in
Figs. 4b and 5b, we label the points near the faults within
1 pixel to ones and zeros elsewhere to obtain the input fault
data. To obtain the input horizon data, we set the points near
the horizon surfaces within 1 pixel to the corresponding iso-
values of the structural model, which ensures that the points
on the same horizon have consistent annotations. Further-
more, we randomly remove some points from the horizon

data in each run of the data generation to simulate the un-
evenly sampled horizon interpretations.

As the geological interfaces are implicitly embedded in
the scalar field with the iso-values and can be obtained by
iso-surface extraction methods, we adopt jittered sampling
(Cook, 1986; Hennenfent and Herrmann, 2008) to randomly
choose iso-values and obtain the corresponding modeled
horizons. This sampling method benefits from remedying the
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deficiency of the regular sampling method that introduces a
specific pattern in the inputs, while preserving the beneficial
properties of randomness. Specifically, we first sort all the
iso-values into a uniformly spaced grid in descending order
and then randomly extract one within each grid unit to com-
pute the corresponding horizon. Thus, the horizons extracted
from the structural model can be spatially varying and not
spaced closely. To remove the points from the horizon data,
the simplest method is to randomly generate many square
patches and mask the scattered points within the patches. Al-
though this method is commonly used for many image in-
painting tasks (Yeh et al., 2017; J. Yu et al., 2018), it might
negatively impact the CNN in terms of being well general-
ized in real-world applications for which the inaccessible re-
gions are unlikely to be in the shape of squares. To solve
this issue, we randomize this process by randomly remov-
ing points from an individual horizon to prevent the network
from learning a specific pattern that all the horizon data are
partially missing in the same square regions. Similar to the
iso-value selection, we first sort the points on this horizon
into a uniformly spaced grid in descending order, based on
their vertical coordinates, and then randomly mask out the
points from one or more grid units. As displayed in Figs. 4c
and 5c, the generated partially missing data are similar to the
horizons manually interpreted by geologists and geophysi-
cists, which enables the CNN to learn more representative
features. Thus, we use this masking method for all the 2-D
and 3-D synthetic data experiments in this study.

4 Implementation

In this section, we present the geological structural models
derived from our CNN for both synthetic and field data ap-
plications to demonstrate its modeling performance.

4.1 Training and validation

Considering the that coordinate ranges of the field geological
datasets can be much different from each other, we rescale
every structural model to obtain the normalized one that
ranges from zero to one. This normalization is implemented
by first subtracting the minimum and then dividing its max-
imum and thus would not change its geological structures.
When normalizing the structural data, we assign the scattered
points on the same geological interface to the corresponding
iso-values of the normalized model. In training the network,
we formulate these normalized training samples in batches
and set the batch size to 4, based on our computational re-
sources. Within each epoch, the training data are all passed
throughout the network to compute the hybrid loss function.
We utilize the Adam optimization (Kingma and Ba, 2014)
with an adaptive learning step length to speed up the net-
work optimization. The initial learning rate is set to 0.01,
which reduces gradually when the criterion performance has

stopped further improving. We fold the learning rate by a
factor of 0.5 once the loss stagnates within 2 iterations. As
shown in Fig. 6a, the training and validation loss curves grad-
ually converge to low levels (less than 0.1) when the opti-
mization stops after 120 epochs, which demonstrates that the
CNN has learned representative geometries and relationships
of geological structures from the training dataset. The learn-
ing rate is adaptively adjusted, as displayed in Fig. 6b, during
the training.

Furthermore, we evaluate the modeling stability of our net-
work in terms of the perturbations of the input structures
created from the same geological model. In this experiment,
we randomly choose 100 synthetic models from the valida-
tion dataset and run the trained network 20 times to calcu-
late the MSE and MAE for each model. During each mod-
eling process, we randomly generate the scattered points of
the horizon to ensure that the input data are different from
each other, even for the same structural model. We show the
variations in MSE and MAE for each model in Fig. 6c and
d, respectively, where the MSE and MAE are represented by
black dots, while the error ranges are denoted by the blue
and red lines. We find that most MSEs and MAEs are less
than 0.5× 10−5 and 0.2× 10−3, which are not considered
to be very significant in geological modeling scenarios. This
demonstrates the proposed CNN architecture is beneficial for
implicit structural modeling.

4.2 Synthetic data examples

When the CNN is well trained, the modeling experiences and
knowledge learned from the synthetic dataset are implicitly
embedded in the network parameters. To verify its modeling
performance, we apply the trained CNN to the five synthetic
structural models not included in the training dataset. As is
shown in Fig. 7a, the models are of complex faulted layered
volumes, in which the folded interfaces are reformed by mul-
tiple high-angle normal faults. From the original structural
models, we generate the incomplete horizon and the fault
data (Fig. 7b) to be used as inputs of our network. By vi-
sual comparison in Fig. 7c, the modeling results with simi-
lar geometrical features to the inputs maintain the localized
variations in the folded interfaces despite no global structural
information being used to constrain the model. We further
overlap scattered horizon points on the iso-lines of the field
predictions in Fig. 7d, in which the great consistency be-
tween the given structures and the interpolated features again
supports our observation in Fig. 7c.

As tabulated in Table 1, the CNN’s modeling ability is
quantitatively measured by using various quality metrics, in-
cluding SSIM, MSE, MAE, explained variance score (EVS),
mean squared log error (MSLE), median absolute error
(MDAE), and R square score (R2S), on the entire validation
dataset. In addition, we also measure the accuracy of every
modeled interface related to the input horizon data by com-
puting horizon fitting accuracy (HFA). This metric measures
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Table 1. A quantitative comparison between our network and the widely used powerful networks using various quality metrics. For each
of the quality metrics, the best performance is highlighted in bold. The proposed network (DeepISMNet) is marked with an asterisk to
distinguish it from the others. Note: GFLOPs is the giga floating point operations per second.

Architecture Computational costs Modeling quality metrics

Network Backbone GFLOPs No. of params (MB) SSIM EVS MAE MSE×10−1 MSLE×10−1 R2S MDAE HFA

UNet – 32.715 34.526 0.989 0.990 0.019 0.009 0.005 0.972 0.017 1.078
AttUNet – 33.265 34.878 0.981 0.978 0.027 0.035 0.018 0.901 0.025 1.029
NestUNet – 76.406 39.091 0.839 0.773 0.129 0.250 0.126 0.288 0.115 3.025
DeepLabV3+ Xception 10.328 54.510 0.988 0.990 0.194 0.008 0.004 0.977 0.017 1.634
DeepLabV3+ DRNet54 23.293 40.672 0.989 0.991 0.019 0.008 0.004 0.978 0.018 1.228
DeepLabV3+ ResNet101 11.042 59.226 0.986 0.985 0.024 0.014 0.007 0.956 0.022 1.623
DeepLabV3+ MobileNetV2 4.364 7.555 0.985 0.982 0.027 0.017 0.008 0.949 0.025 1.843
RefineNet MobileNetV2 1.015 3.250 0.973 0.963 0.031 0.035 0.019 0.887 0.028 1.223
RefineNet MobileNetV3 0.937 2.600 0.977 0.981 0.030 0.022 0.011 0.937 0.028 1.735
DeepISMNet∗ – 4.711 4.300 0.993 0.996 0.016 0.004 0.002 0.988 0.015 0.331

Table 2. A quantitative analysis of our network trained with the distinct loss functions using multiple modeling quality metrics. For each of
the quality metrics, the best modeling result is highlighted in bold.

Loss function Modeling quality metrics

MAE MSE×10−1 EVS R2S MDAE SSIM HFA

L1-Loss 0.017 0.005 0.994 0.986 0.016 0.991 0.527
L2-Loss 0.017 0.005 0.995 0.987 0.016 0.989 1.321
SmoothL1 0.017 0.005 0.995 0.988 0.017 0.990 0.511
SSIM 0.017 0.006 0.992 0.978 0.018 0.989 0.643
MS-SSIM 0.017 0.005 0.994 0.986 0.016 0.991 0.630
MS-SSIM&L1 0.016 0.004 0.996 0.988 0.015 0.993 0.331
MS-SSIM&L2 0.016 0.004 0.995 0.987 0.015 0.990 1.040

an average distance between the horizon scattered points and
the corresponding iso-surfaces of the predicted model along
the vertical axis. Table 1 also shows a quantitative compar-
ison of the proposed method (DeepISMNet) and the other
powerful networks commonly used in similar scenarios. Our
method not only shows better performance on all the metrics
but also has a more lightweight architecture with fewer train-
able parameters and GFLOPs (giga floating-point operations
per second) in comparison to the others. Simplification of
the network architecture is mainly associated with the use of
inverse residual modules followed by depth-wise separable
convolutions in each spatial scale level throughout the net-
work, which enables our CNN to be applied to a large 3-D
field modeling task. To guarantee the representational abil-
ity of the simplified CNN, the channel-wise dependencies
have been explicitly learned by using an attention module
that can adaptively highlight more informative features while
suppressing irrelevant ones. Therefore, although the number
of hidden representations is less than the conventional CNN
architectures, such as UNet, our network still achieves sta-
ble structural interpolation and reliable generalization per-
formance.

5 Application

It might not be surprising that the CNN trained with a syn-
thetic dataset works well to produce a geologically valid and
consistent model by using the structural data generated from
the same workflow for creating the training dataset. In this
section, we further present modeling results of our trained
network applied on real-world data that are acquired at dif-
ferent geological surveys to demonstrate our proof of con-
cept. The modeling objects collected from field observations
or seismic data are required to convert into the uniformly
sampling grids to obtain the input structural data of our CNN.

5.1 Structural data preprocessing

In most cases, the structural data collected from field sur-
veys are discrete and not necessarily located on the sampling
grid of the model, such that we need a preprocessing step
that scatters the structural data into a volumetric mesh with
annotations. To scatter the structural data, we simply shift
the horizon and fault interpretations to their nearest sampling
grids in the model and obtain the associated scattered points.
In both the synthetic and the field data applications, the anno-
tation of fault scattered points is straightforward, by simply
assigning ones near the faults and zeros elsewhere. However,
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Figure 8. We use a synthetic model (a) to study how the varying horizon values impact the CNN’s modeling results. As shown in panels (b) to
(f), the experiments are used to verify that our network can produce almost identical structural models from the same faults and the horizons
with different annotations. These indicate that our approach is not sensitive to the changes in the labeled value on each horizon in the inputs,
which facilitates its application in field surveys.

although the points on horizons can be assigned to the corre-
sponding iso-values of the model in the synthetic data exper-
iments, this might not be feasible when modeling real-world
geology from structural interpretations. As the ground truth
of geological structures is typically inaccessible before mod-
eling, how to properly annotate the horizon data remains a
problem.

We implement a numerical experiment using the horizon
data labeled with different iso-values in a synthetic structural
model (Fig. 8a) to study how they impact the results. In this
experiment, the scattered points on two horizons are assigned
by the normalized iso-values that range from 0.3 to 0.8, with
distinct intervals of 0.2, 0.3, and 0.4. As shown in Fig. 8b to f,
the network takes the horizons with various iso-value annota-
tions and the same faults to model geological structures. By
visual comparison, the nearly identical predictions indicate
that the modeling accuracy is not sensitive to the changes
in horizon annotations within a reasonable range, which is
what we expect. It is worth noting that the sharp iso-value
jumps exist near the right borders of the sections in Fig. 8e
and f, although there are no data to support creating those
discontinuities. The undesired features are associated with
the commonly used zero-padding operation in each convolu-
tional layer of the CNN, which maintains the spatial resolu-
tion of the hidden representations but degrades the modeling
accuracy near the boundaries. To mitigate such boundary ef-
fects that potentially introduce instabilities, a straightforward
way is to predict a model in a larger space and cut off the
bounding regions from the prediction. Additionally, in com-
paring Fig. 8c to e, we also observe that a larger gap of the
horizon annotations causes a more significant displacement
of geological layers on the opposite of faults in the predicted
model. Based on this observation, we recommend labeling
the scattered points on each horizon with the average verti-

cal coordinate to correctly model the stratigraphic sequences
of geology. Note that the horizon annotations are required to
be consistently rescaled by the model size to stay compatible
with the normalized training samples.

5.2 Real-world 2-D case studies

We apply the trained CNN to 2-D field data to verify its mod-
eling performance using the structural data with geometrical
patterns distinct from the training data. The input structural
data are manually interpreted from the seismic images that
are acquired from the WESTCAM dataset. This dataset is
acquired in regions with closely spaced and complexly cross-
ing faults with large slips in which the seismic images are of
low resolution due to insufficient coverage and data stack-
ing. The ambiguous seismic reflections shown in Fig. 9a are
difficult to continuously track across entire seismic images,
which causes the partially missing horizon data, which are
displayed by different colors. The faults shown in Fig. 9b also
might not be fully detected from the seismic images in the
presence of data-incoherent noise and the stratigraphic fea-
tures that are similar to structural discontinuities. Moreover,
the structural contradictions and hard-to-reconcile features in
the structural data might negatively impact the modeling per-
formance of the conventional implicit methods. Thus, there
remains a challenging task to obtain a geologically reason-
able model that is structurally compatible with the inputs.

As shown in Fig. 9c, our method provides geologically
valid models, of which the structural discontinuities and the
stratigraphic interface variations honor the input fault and
horizon data. Figure 9d illustrates that the iso-lines (black
lines) extracted from the modeling results consistently match
the horizon interpretations (Fig. 9b), which again supports
our previous observation. In comparison with the scattered
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Figure 9. Application in a 2-D seismic field dataset. We display seismic images (a), input structural data (b) interpreted from the seismic
images, predicted structural models (c), and horizon fitting results (d), respectively.

point sets, a full structural model is more useful to understand
geological structures well and qualify the reservoir proper-
ties of continuity and morphology. Furthermore, the deep
learning method with high computational efficiency can even
produce a real-time prediction to correct interpretation errors
and improve the geological consistency of the model by tak-
ing all the structural interpretations into account.

The second 2-D field data experiment uses the dataset ac-
quired from a geological survey and mineral exploration of
the Araripe Basin in the region of the Borborema Province in
northeastern Brazil (Fabin et al., 2018). We collect the out-
crop observations, shown in Fig. 10a and f, from exposures
of quarries on the southwestern and northern borders of the
basin. There exist a series of moderate to high angle faults
caused by local subsidence due to the syn-depositional dis-
solution of the gypsum in a large exposure of deposits of the
Romualdo Formation. These syn-depositional faults control
the lateral thickness variations in the stratigraphic interfaces
that the field observations sample from outcrops. The field
observations are integrated into the uniform sampling grids
and used as inputs of our trained CNN to predict a full struc-
tural model. As displayed in Fig. 10b and g, the dataset incor-
porates four stratigraphic interfaces and three or four faults
exhibiting a structural pattern of syn-depositional deforma-
tion that is not included in our training dataset.

The modeling results presented in Fig. 10c and h are ob-
tained from the trained CNN, in which all the sharp edges
are structurally consistent with the faults shown in Fig. 10b
and g, respectively. The same structural models are displayed
in Fig. 10e and j using a discrete color map to indicate dis-
located stratigraphic layers on the opposites of the faults.

The iso-lines extracted from the modeling results that cor-
respond to the four distinct horizons are shown in Fig. 10d
and i, respectively. Both figures highlight the excellent fit-
ting characteristic of the trained CNN on the input structural
data. Therefore, although the CNN is trained with the auto-
matically simulated data, it still provides a promising perfor-
mance on the real-world dataset acquired at totally different
surveys with complex geological structures.

5.3 Real-world 3-D case studies

Using the automatically simulated dataset, we train a 3-D
modeling network with the same architecture as the 2-D
CNN above to correctly capture the geometrical character-
istics of 3-D geology. To validate its modeling ability, we
apply the trained CNN to 3-D field data and construct a
full structural model from unevenly sampled scattered points
obtained from seismic interpretation. The first seismic data
sampled in regions with complexly deformed structures have
relatively low resolution and signal-to-noise ratio. As shown
in Fig. 11a, some seismic reflections are noisy and difficult
to continuously track across the entire volume of interest.
The closely spaced and crossing faults further complicate the
geometries of structures, especially when there exists data-
incoherent noise and stratigraphic features that are similar
to structural discontinuities (highlighted by arrows). In ad-
dition, the scattered points heterogeneously sampled around
the geological interfaces (Fig. 11b) are sparse or clustered in
some localized regions because of the large variations in the
distances between the points.

The modeling results shown in Fig. 11c demonstrate that
the CNN architecture is beneficial for 3-D structural model-
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Figure 10. Application in an outcrop field dataset. We display two outcrop images (Fabin et al., 2018) in panels (a) and (f), input structural
data in panels (b) and (g) manually interpreted from the outcrop images within the dashed boxes, predicted structural models using continuous
color map in panels (c) and (h), a discrete color map in panels (e) and (j), and horizon fitting results in panels (d) and (i), respectively.

Figure 11. The first real-world data application. We display seismic volumes (a), input horizon and fault data (b) interpreted from the seismic
volumes, modeling results (c), modeled geological interfaces extracted from the predictions and overlaid with the faults (d), and one of the
recovered full horizon surfaces colored by vertical coordinates (e), respectively.
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Figure 12. The second real-world data application. We display seismic volumes (a) overlaid with structural data (b) that are interpreted from
the seismic volumes, input horizon and fault points (c), the modeling result (d) overlaid with faults (e), modeled interfaces extracted from the
prediction (f), and each of the recovered full horizon surfaces in panels (g) and (h), respectively. Note that we rotate the modeled interfaces
in panels (g) and (h) by 180◦ and use color with vertical coordinates for a better visual comparison.

ing by providing a geologically valid model. We extract the
full geological interfaces from the resulting scalar fields by
using the iso-surface extraction method and mask the surface
segments near the faults to highlight the structural gaps due
to faulting in Fig. 11d. Fig. 11e displays a single modeled
interface without masking and is colored by vertical coor-
dinates in which there exist sharp vertical jumps across the
faults. As displayed in Fig. 11d and e, the modeled structural
discontinuities and interfaces can be compatible with the in-
puts, and the predicted models even maintain the folding
structural variations (highlighted by arrows) without global
plunge information used to constrain modeling. By visual
comparison, the horizon points sampled in the same geologi-
cal layer are distributed around the corresponding iso-surface
of the predicted model, which again demonstrates a great fit-
ting characteristic of our network.

The second 3-D real-world case study is of a conformably
folded and layered model with numerous faults that are
curved and complexly intersected with each other. As shown
in Fig. 12a, the available horizon data are manually inter-
preted on the two stratigraphic interfaces, while the fault data
are derived by using the automatic fault detection method
from the seismic volume (Fig. 12b and c). In our CNN’s
prediction, shown in Fig. 12d, the geological layers repre-
sented by iso-values with the same color accurately follow
the tendency of seismic structural variations near the faults
(highlighted by arrows in Fig. 12a and d), even though we do
not input any seismic data in our CNN. We also display the
modeling result overlaid with the input fault data in Fig. 12e,
from which we can observe dislocations of geological lay-
ers on the opposite sides of the fault structures (highlighted

by arrows in Fig. 12e). In Fig. 12f, we extract the geologi-
cal interfaces that correspond to the input horizons using the
iso-surface extraction approach, while masking the surface
segments across the faults. To show more details, Fig. 12g
and h display each of the two modeled interfaces, which we
rotate by 180◦ and color with vertical coordinates for a bet-
ter visual comparison. A great consistency between the input
and recovered structures highlights the CNN’s fitting char-
acteristics on the given geological knowledge and structural
constraints.

6 Discussion

In this section, we discuss the modeling characteristic of our
method and its abilities for structural uncertainty analysis,
along with the current limitations. We also demonstrate a po-
tential improvement that we will focus on in future research
to incorporate extra structural constraints in the CNN-based
structural modeling.

6.1 Structural uncertainty characterization

When modeling complex geological structures, the reliabil-
ity of the implicit methods is heavily dependent on the qual-
ity and availability of the input structural data. However, the
heterogeneously distributed structural data pose an ill-posed
problem in that there exist multiple plausible structural mod-
els which fit the inputs equally. Therefore, a data uncertainty
analysis is necessarily critical when looking for an optimal
solution, especially for the noisy and hard-to-reconcile struc-
tural observations (Viard et al., 2011; Lindsay et al., 2012).
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Although the existing implicit methods can generate various
models by perturbing the inputs to characterize uncertainties,
they might not explore a broad range of possible geological
patterns and structural relationships in nature through a sin-
gle model suit for stochastic simulation (Jessell et al., 2022).
Working on the automation of modeling workflow, our CNN
is beneficial for a flexible interpretation of aleatory and epis-
temic uncertainties (Pirot et al., 2022) by generating diverse
modeling realizations instead of one best realization due to
its high computational efficiency.

We adopt various combinations of modeling objects with
the horizons and faults interpreted from the boreholes and
the outcrop observations shown in Fig. 13a to study the un-
certainties associated with the position variations of geolog-
ical structures. The model with the simplest structures con-
sists of multiple continuous and conformal geological lay-
ers shown in the first data example. The modeling situations
become more complex and various when considering addi-
tional geometrical objects such as faults or unconformities to
dislocate the continuous layers. Furthermore, we randomly
perturb the interpreted geological interfaces to yield the vari-
ations in layer thickness because the stratigraphic boundary
transition often might not be accurately observed from verti-
cal boreholes. As shown in Fig. 13b, the network takes a di-
verse set of combinations to model the possible structural ge-
ometries and relationships to demonstrate proof of concept.
All the modeling results shown in Fig. 13c are computed by
using a desktop PC with Intel Xeon 5120 CPU (2.20 GHz)
and a single NVIDIA Tesla V100 GPU. Although we take a
few hours to train the CNN, the average time for generating
each model is approximately 0.2 s when using a 128× 256
image size. Also, we display the horizon data overlaid with
the corresponding modeled interfaces in Fig. 13d, which ver-
ifies an excellent fitting characteristic of our approach on the
given structures.

6.2 Structural orientation constraint

Our CNN architecture permits the flexible incorporation of
varying types of geological information by defining an ap-
propriate loss function to measure the modeling error for ev-
ery structural constraint. The input data of our method are not
limited to horizons and faults and can include the structural
angular observations in modeling process. In this section, we
use the structural angular information that represents local
orientations of geological layers to permit geometrical rela-
tionships in the gradient of the scalar function to be consid-
ered. The loss function of the orientation constraint aims to
measure the angle errors between the directional derivatives
of the predicted model and the orientation observations using
cosine similarity. We adopt the second-order accurate central
differences method (Fornberg, 1988) using the Taylor series
approximation to estimate the local orientation at each inte-
rior point of the given structural model z. The cosine sim-
ilarity at every single point between the orientations of the

predicted model and the normal vector n can be represented
as follows:

f
pred
cs (p)=

n · ∇z(p)
‖n‖‖∇z(p)‖

. (5)

This is also used to compute the cosine similarity between
the orientations in the reference model f obs

cs (p) and the nor-
mal vector n. Therefore, the loss function that measures the
structural angle errors between the two models being com-
pared can be formulated as follows:

Lnormal(p)=
1
N

∑
p∈p
|f

pred
cs (p)− f obs

cs (p)|, (6)

in which N represents the total number of the points within a
patch p. Therefore, the total loss function is defined by com-
bining the various types of geological constraints as follows:

Lsum(p)=
1
K

K∑
i=1
(λLmae(pi)+Lms-ssim(pi)

+βLnormal(pi)), (7)

where β is used to balance the relative significance of the
orientation loss, and K represents the number of the patches
cropped from the model. β and λ are empirically set to 1.00
and 1.25, respectively, according to many prior numerical
tests. As displayed in Fig. 14a, the faults and the incomplete
horizons, together with the structural orientations sparsely
distributed on the horizons, are used as inputs to the net-
work to model geological structures. The modeling results
shown in Fig. 14b exhibit the remarkable performance of our
method when using various types of geological data inputs.
We extract uniformly spaced geological interfaces and their
local orientations from every modeling result and compare
them with the input horizons and normal vectors (red arrows)
in Fig. 14c, which presents a great consistency between the
predicted and input structures. The interpolated structures by
using the CNN maintain the large localized geometrical vari-
ations, even though there is no global geological informa-
tion to constrain the modeling process. In addition, the iso-
lines and normal vectors (blue arrows) extracted along the
stratigraphic interfaces of the predictions match the two dis-
tinct input horizons well (Fig. 14d), which again highlights
the CNN’s fitting characteristic on the given structural con-
straints.

6.3 Current limitations and improvements

The CNN trained by using the synthetic dataset presents ex-
cellent modeling capacities in real-world cause studies to
represent complicated geological structures that are distinct
from the simulated models. Instead of imposing any explicit
mathematical constraints in the conventional implicit meth-
ods, our CNN-based structural modeling is implemented by
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Figure 13. Geological uncertainty analysis. We display multiple sets of modeling elements interpreted from the vertical boreholes and the
outcrop observations (a), input horizon and fault data (b), modeling results (c), and iso-curves extracted from the predictions (d), respectively.

Figure 14. The faults and incomplete horizons, together with the structural orientations, are used as inputs (a) into the network to predict
structural models (b). The sets of regularly spaced iso-lines and local orientations are obtained from the modeling results (c) and compared
with the given normal vectors (red arrows). The modeled stratigraphic interfaces and their normal vectors match the two distinct input
horizons well (d).

the recursive spatial convolutions with trainable kernel pa-
rameters and the loss function related to various geologi-
cal constraints. The spatial convolutions in the CNN can be
viewed as the implicit interpolants used in the traditional ap-
proaches, and the only difference is that the parameterization
of their kernel functions is optimized through training. As
structural modeling is dependent on the analysis of the spatial

relations of the observed structures to interpolate new geo-
logically valid structures elsewhere, acquiring representative
example data is essential for training the CNN to achieve its
reliable generalization performance. Therefore, we adopt an
automatic workflow to generate numerous models with re-
alistic structures and simulate partially missing horizons in
building the training dataset. It is a significant reason why
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our network could be applied to the real-world datasets ac-
quired in different geological surveys with distinct structural
patterns.

Another improvement of our approach is attributed to the
use of a hybrid loss function based on element-wise accuracy
and structural similarity when updating the CNN’s param-
eters. To demonstrate the improved modeling performance,
we implement a quantitative analysis of our CNN trained
with the different loss functions using the multiple qual-
ity metrics. The averages of these metrics on the validation
dataset are tabulated in Table 2. The CNN trained with the
hybrid loss function of MS-SSIM and MAE (denoted by MS-
SSIM&L1) can outperform the others in Table 2 on all the
quality metrics, even including the quality metrics which we
use as cost function to train the network. This loss function
is attributed to a better reconstruction of fault-related features
in the resultant model by assigning high weights to regional
structural contrasts. Also, a reliable identification of faults is
useful to constrain the lateral occurrence of stratigraphic in-
terfaces across structural discontinuities.

Although working well to recover faulted and folded struc-
tures, the proposed method might not properly represent
other geological structures that are not considered in the
training dataset, such as unconformities and igneous intru-
sions. The trained network also might not correctly construct
low dip-angle thrust faults in predicted models because we
still do not include this type of fault in the used data gener-
ator. Despite the current limitations, the proposed CNN ar-
chitecture still shows promising potential for computing a
geological valid and structurally compatible model honoring
the observed structures. Considering that the used training
samples are still not sufficiently diverse to support modeling
complex and unseen geological settings, future works will
focus on expanding the training dataset to a broader range of
structural geometries and relationships associated with these
settings. For example, we can further augment simulation
workflow by adding more complex and various features in
the structural models or adopting a recently developed 3-D
geological modeling dataset (Jessell et al., 2022) in which
dikes, plugs, and unconformities are incorporated.

7 Conclusions

A CNN-based deep learning method has been used to repre-
sent geological structures over the entire volume of interest
from typically sparse and hard-to-reconcile structural inter-
pretations. The network is composed of encoder and decoder
branches and supplemented with a lightweight depth-wise
separable convolution and channel-wise attention to find an
optimal tradeoff between modeling accuracy and computa-
tional efficiency. The developed CNN architecture leverages
the low-ranking nature of the sparse and heterogeneously
sampled structural data to adaptively suppress uninforma-
tive features by using a linear bottleneck and inverted resid-

ual structure in each of the encoded convolutional layers.
Our approach is beneficial for the flexible incorporation of
empirical geological knowledge constraints in a supervised
learning framework using numerous and realistic structural
models that are generated from an automatic data simulation
workflow. This also provides an impressive characteristic to
flexibly integrate multiple types of structural constraints into
the modeling by using an appropriate loss function, exhibit-
ing a promising perspective for further improving geolog-
ical modeling. We verify the effectiveness of the proposed
approach by using the case studies acquired in distinct geo-
logical surveys, including synthetic examples created by the
same workflow for acquiring the training dataset, the ran-
domly created modeling objects without any ground truth of
geology, and the structural interpretations obtained from the
seismic images. In both synthetic data and real-world data
applications, we verify its modeling capacities in represent-
ing complex structures with a model geologically reasonable
and structurally compatible with the inputs.

Appendix A: Regression metric functions

To verify the modeling performance of our CNN, we quan-
titatively measure the differences between the ground truth
structural models and predictions by using various regres-
sion metrics including SSIM (structural similarity), MSE
(mean square error), MAE (mean absolute error), EVS (ex-
plained variance score), MSLE (mean square logarithm er-
ror), MDAE (median absolute error), and R2S (R square
score, also called the coefficient of determination) in the val-
idation dataset. MSLE measures the prediction performance
that corresponds to the expected value of the squared loga-
rithmic error, which is formulated as follows:

fMSLE(y, ŷ)=
1
N

N∑
i=1
(loge(1+ yi)− loge(1+ ŷi))2, (A1)

where y and ŷ are the structural models being measured, re-
spectively, andN represents the total number of points within
the model. MDAE is computed by using the median of all
absolute differences and thus can be robust to outliers, as fol-
lows:

fMDAE(y, ŷ)=
1
N

N∑
i=1

median(yi − ŷi). (A2)

EVS is used to measure the proportion of the variability in the
solutions of a machine learning method, and its score value
ranges from zero to one. Higher EVS typically indicates a
stronger strength of association between regression targets
and predictions and thus represents better network perfor-
mance. It can be formulated as follows:

fEVS(p)=
1
M

∑
p∈p

(
1−

variance(y− ŷ)
variance(y)

)
, (A3)
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where p represents the patch cropped from the same spatial
location from the structural models being measured, and M
is the number of the cropped patches. R2S offers a measure-
ment of how well the predictions of the network are based
on the proportion of total variations. R2S can be written as
follows:

fR2S(p)=
1
M

∑
p∈p

(
1−

∑N
i=1(y− ŷ)2∑N
i=1(y− y)2

)
, (A4)

in which N represents the total number of points within the
cropped patch p. R2S is similar to EVS, with the notable
improvement that it accounts for systematic offsets in the so-
lutions. In addition, EVS and R2S can be more robust and in-
formative than MAE and MSE in a regression analysis eval-
uation, as the former can be represented as percentage errors.

Code and data availability. The synthetic structural mod-
els, used for training and validating our network, have
been uploaded to Zenodo and are freely available at
https://doi.org/10.5281/zenodo.6480165 (Bi et al., 2022a).
The source codes for the neural network developed
in PyTorch have been uploaded to Zenodo and are at
https://doi.org/10.5281/zenodo.6684269 (Bi et al., 2022b).
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