Articles | Volume 14, issue 2
Geosci. Model Dev., 14, 843–857, 2021
https://doi.org/10.5194/gmd-14-843-2021
Geosci. Model Dev., 14, 843–857, 2021
https://doi.org/10.5194/gmd-14-843-2021

Development and technical paper 05 Feb 2021

Development and technical paper | 05 Feb 2021

Advanced parallel implementation of the coupled ocean–ice model FEMAO (version 2.0) with load balancing

Pavel Perezhogin et al.

Related subject area

Oceanography
The Meridionally Averaged Model of Eastern Boundary Upwelling Systems (MAMEBUSv1.0)
Jordyn E. Moscoso, Andrew L. Stewart, Daniele Bianchi, and James C. McWilliams
Geosci. Model Dev., 14, 763–794, https://doi.org/10.5194/gmd-14-763-2021,https://doi.org/10.5194/gmd-14-763-2021, 2021
Short summary
Model-driven optimization of coastal sea observatories through data assimilation in a finite element hydrodynamic model (SHYFEM v. 7_5_65)
Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev., 14, 645–659, https://doi.org/10.5194/gmd-14-645-2021,https://doi.org/10.5194/gmd-14-645-2021, 2021
Short summary
A simplified atmospheric boundary layer model for an improved representation of air–sea interactions in eddying oceanic models: implementation and first evaluation in NEMO (4.0)
Florian Lemarié, Guillaume Samson, Jean-Luc Redelsperger, Hervé Giordani, Théo Brivoal, and Gurvan Madec
Geosci. Model Dev., 14, 543–572, https://doi.org/10.5194/gmd-14-543-2021,https://doi.org/10.5194/gmd-14-543-2021, 2021
Short summary
Performance of offline passive tracer advection in the Regional Ocean Modeling System (ROMS; v3.6, revision 904)
Kristen M. Thyng, Daijiro Kobashi, Veronica Ruiz-Xomchuk, Lixin Qu, Xu Chen, and Robert D. Hetland
Geosci. Model Dev., 14, 391–407, https://doi.org/10.5194/gmd-14-391-2021,https://doi.org/10.5194/gmd-14-391-2021, 2021
Short summary
Implementation and assessment of a carbonate system model (Eco3M-CarbOx v1.1) in a highly dynamic Mediterranean coastal site (Bay of Marseille, France)
Katixa Lajaunie-Salla, Frédéric Diaz, Cathy Wimart-Rousseau, Thibaut Wagener, Dominique Lefèvre, Christophe Yohia, Irène Xueref-Remy, Brian Nathan, Alexandre Armengaud, and Christel Pinazo
Geosci. Model Dev., 14, 295–321, https://doi.org/10.5194/gmd-14-295-2021,https://doi.org/10.5194/gmd-14-295-2021, 2021
Short summary

Cited articles

Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis, Tech. rep., National Geophysical Data Center, https://doi.org/10.7289/V5C8276M, 2009. a
Bader, M.: Space-filling curves: an introduction with applications in scientific computing, vol. 9, Springer Science & Business Media, New York, 2012. a
Chaplygin, A. V., Dianskii, N. A., and Gusev, A. V.: Load balancing using Hilbert space-filling curves for parallel shallow water simulations, Vychislitel'nye Metody i Programmirovanie, 20, 75–87, 2019. a
Chernov, I.: Numerical Modelling of large-scale Dynamics of the White Sea, Univ. J. Geosci., 1, 150–153, 2013. a
Chernov, I. and Tolstikov, A.: The White Sea: Available Data and Numerical Models, Geosciences, 10, 463, https://doi.org/10.3390/geosciences10110463, 2020. a
Download
Short summary
We describe the parallel implementation of the FEMAO model for an ice-covered sea with 2D Hilbert-curve domain decomposition. Load balancing is crucial because performance depends on the local depth. We propose, compare, and discuss four approaches to load balancing. The parallel library allowed us to modify the original sequential algorithm as little as possible. The performance increases almost linearly (tested with up to 996 CPU cores) for the model of the shallow White Sea.