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Abstract. In this paper, we present a parallel version of the
finite-element model of the Arctic Ocean (FEMAO) config-
ured for the White Sea and based on MPI technology. This
model consists of two main parts: an ocean dynamics model
and a surface ice dynamics model. These parts are very dif-
ferent in terms of the number of computations because the
complexity of the ocean part depends on the bottom depth,
while that of the sea-ice component does not. In the first step,
we decided to locate both submodels on the same CPU cores
with a common horizontal partition of the computational do-
main. The model domain is divided into small blocks, which
are distributed over the CPU cores using Hilbert-curve bal-
ancing. Partitioning of the model domain is static (i.e., com-
puted during the initialization stage). There are three base-
line options: a single block per core, balancing of 2D com-
putations, and balancing of 3D computations. After showing
parallel acceleration for particular ocean and ice procedures,
we construct the common partition, which minimizes joint
imbalance in both submodels. Our novelty is using arrays
shared by all blocks that belong to a CPU core instead of al-
locating separate arrays for each block, as is usually done.
Computations on a CPU core are restricted by the masks
of non-land grid nodes and block–core correspondence. This
approach allows us to implement parallel computations into
the model that are as simple as when the usual decomposition
to squares is used, though with advances in load balancing.
We provide parallel acceleration of up to 996 cores for the
model with a resolution of 500×500×39 in the ocean com-
ponent and 43 sea-ice scalars, and we carry out a detailed
analysis of different partitions on the model runtime.

1 Introduction

The increasing performance and availability of multiproces-
sor computing devices make it possible to simulate com-
plex natural systems with high resolution, while taking into
account important phenomena and coupling comprehensive
models of various subsystems. In particular, more precise,
accurate, and full numerical descriptions of processes in seas
and oceans have become possible. There are now models of
seas that can simulate currents, dynamics of thermohaline
fields, sea ice, pelagic ecology, benthic processes, and so on;
see, for example, the review by Fox-Kemper et al. (2019).

The finite-element model of the Arctic Ocean (FEMAO;
Iakovlev, 1996, 2012) has been developed since the 1990s
and it has been adjusted to the White Sea (Chernov, 2013;
Chernov et al., 2018). The model domain is a part of the
cylinder over sphere (i.e., the Cartesian product of a region
on the Earth’s surface and a vertical segment). The coordi-
nates are orthogonal, with the axes directed to the east, to
the south, and downwards. The horizontal grid is structured
and rectangular because finite elements are defined on trian-
gles composing rectangles; see Iakovlev (1996). Points that
correspond to the land are excluded from the computations
using a mask of “wet” points. The z coordinate is used as the
vertical axis. Therefore, for each 2D grid node, there are a
number of actually used vertical layers. In the case of signif-
icantly variable depth, the number of levels also varies; see
Fig. 1. In contrast, sea-ice and sea-surface computations are
depth-independent. The presence of both 2D and 3D calcula-
tions complicates balancing of the computations for the full
model.
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Figure 1. The number of depth layers in the White Sea model; the
vertical grid step is 5 m up to 150 m deep and then 10 m up to 240 m.

The original code was written in Fortran 90/95, and it did
not allow for computation in parallel. Our goal is to develop a
parallel version of the model based on MPI technology with-
out the need to make significant changes in the program code
(i.e., to preserve loop structure and the mask of wet points but
benefit from load balancing). Consequently, we developed a
library that performs a partition of the 2D computational do-
main and organizes communication between the CPU cores.

In numerical ocean models, the baseline strategy is to de-
compose the domain into squares (Madec et al., 2008) or into
small blocks, with consequent distribution over the proces-
sor cores (Dennis, 2007, 2003; Chaplygin et al., 2019). Both
approaches preserve the original structure of the loops and
utilize the direct referencing of neighboring grid nodes on
rectangular grids. Decomposition into small blocks is more
attractive from the viewpoint of load balancing, especially
for z-coordinate models. Blocks can be distributed using the
METIS (Karypis and Kumar, 1998) software or simpler al-
gorithms, such as Hilbert curves (Dennis, 2007). Note that
some modern ocean models can also benefit from unstruc-
tured mesh usage, whereby there is no need for the mask of
wet points; see, for example, Koldunov et al. (2019a). In ad-
dition, some ocean models omit masking of wet points; see
Madec et al. (2008). This implies an increase in the number
of computations, but it benefits from fewer control-flow in-
terruptions and gives rise to better automatic vectorization of
loops.

In Sects. 2–4 we provide the model configuration and or-
ganization of the calculations in the non-parallel code on a
structured rectangular grid. In Sect. 5 we describe the par-
allelization approach, which preserves the original structure
of the loops. Domain decomposition is carried out in two

steps: first, the model domain is divided into small blocks
and then these blocks are distributed between CPU cores. For
all blocks belonging to a given core a “shared” array is intro-
duced, and a mask of computational points restricts calcu-
lations. Partitions could be of an arbitrary shape, but blocks
allow us to reach the following benefits: a simple balancing
algorithm (Hilbert curves) can be applied as the number of
blocks along a given direction is chosen to be a power of 2,
and boundary exchanges can be easily constructed for an ar-
bitrary halo width smaller than the block size. In Sect. 6 we
report parallel acceleration on different partitions for partic-
ular 2D and 3D subroutines and the whole model.

2 The White Sea

The White Sea is a relatively small (about 500km×500km)
and shallow (67 m is the mean depth, with a maximal depth
of no more than 340 m) semi-closed sea in the Arctic Ocean
basin, located in the northwestern part of Russia and included
in its territorial waters. Its area is 90 000 km2. The White Sea
plays an important role in the economy of the neighboring
regions (Filatov et al., 2005).

The White Sea consists of several parts, including four
bays and a narrow shallow strait called Gorlo that separates
one part of the sea from the other. The coastline of the sea
is quite complex, which means that the rectangle (almost a
square) of the Earth’s surface that contains the sea has only
about one-third of the water area.

The White Sea is a convenient model region to test the
numerical algorithms, software, and mathematical models
that are intended to be used for the Arctic Ocean. First, a
low spatial step and relatively high maximum velocities de-
mand, due to the Courant stability condition, a rather small
temporal step. This makes it difficult to develop efficient al-
gorithms, implement stable numerical schemes, and ensure
performance using the available computers. Second, because
this model is less dependent on the initial data, it makes the
test simulations easier because only the liquid boundary is
needed to set the initial and boundary data. Finally, the White
Sea’s relatively small inertia enables us to check the correct-
ness of the code with rather short simulations, which are able
to demonstrate important features of the currents.

3 The model and the software

A time step in the FEMAO model consists of several proce-
dures; see Algorithm 1. The model uses the physical process
splitting approach so that geophysical fields are changed
by each procedure that simulates one of the geophysical
processes.
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The matrix of the system of linear algebraic equations
(SLAE) is sparse, and it contains 19 nonzero diagonals that
correspond to adjacent mesh nodes within a finite element.
The matrix does not vary in time, and it is precomputed be-
fore the time step loop. The most time-consuming steps for
the sequential code version were 3D advection of scalars,
2D advection of sea-ice fields, and solving the SLAE for
the sea level. The simple characteristic Galerkin scheme
(Zienkiewicz and Taylor, 2000) is used for the 3D and 2D
advection terms.

The local 1D sea-ice thermodynamics are based on the
0-layer model (Semtner, 1976; Parkinson and Washington,
1979) with some modifications in lateral melting and sur-
face albedo (Yakovlev, 2009). There are 14 categories of
ice thickness (gradations); the mechanical redistribution and
the ice strength are identical to the CICE (Hunke et al.,
2013). The elastic–viscous plastic scheme (EVP; Danilov
et al., 2015) with a modification for the relaxation timescales
(Wang et al., 2016) is used for the sea-ice dynamics (see also
Appendix 3 in Koldunov et al., 2019b). Sea ice is described
by the distribution of its compactness (concentration) and ice
volume for each gradation. In addition, the snow-on-ice vol-
ume for each gradation is evaluated. Therefore, there are 43
2D sea-ice scalars: ice and snow volume for 14 gradations
and sea-ice compactness for 15 gradations (including water).
Because there are 39 vertical layers in an ocean component,
the set of all of the sea-ice data is comparable to a single 3D
scalar.

The tested version of the model has a spatial resolution of
0.036◦ E, 0.011◦ N, which is between 1.0 and 1.3 km along
parallels and 1.2 km along a meridian. The number of 2D grid
nodes is 500× 500, and only 33 % of them are wet (84 542).
The time step is 100 s. The vertical step is 5 m up to 150 m
deep and then 10 m up to 300 m. In fact, in the bathymetry
data (ETOPO; Amante and Eakins, 2009) the deepest point
of the sea is shallower than it really is, which reduces the
actual maximum depth to 240 m. Comparison of available
bathymetry data for the White Sea is given in Chernov and
Tolstikov (2020) in Table 1.

Table 1. The model with the 1block partition: nb× nb is the grid
of blocks, and LI 2D and LI 3D are load imbalances (Eq. 3) for
weights w2d and w3d, respectively. “LI iceadvect” and “LI ad-
vect3D” are LIs computed based on the runtime of corresponding
functions without exchanges, and d/24 h is the number of computed
days for 1 astronomical day.

CPU cores 1 32 78 149 306 595 993

nb× nb 12 72 122 172 262 382 502

LI 2D, % 0 93 62 53 37 28 17
LI
iceadvect,
%

0 80 57 50 40 30 19

LI 3D, % 0 341 317 380 313 278 274
LI
advect3D,
%

0 339 324 340 349 290 291

d/24 h 8 79 219 360 864 1763 2556

4 Organization of the calculations in non-parallel code

Computations in the ocean and sea-ice components are per-
formed using three-dimensional arrays, such as a(i,j,k) or
b(i,j,m), where i and j represent the horizontal grid indices,
k represents the depth layer, and m represents the ice grada-
tion. The differential operators are local: only neighboring
grid nodes – that is, a(i± 1,j ± 1,k) – are used.

Typical differential operators in the ocean component
are organized as shown in Algorithm 2, where Nx = 500,
Ny = 500, and K(i,j) represents the number of depth
layers. For land points, K(i,j)= 0 and K(i,j) ∈ [3,39],
with an approximate mean value of 12 for the remaining wet
points; see Fig. 1.
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Differential operators in the ice component are shown
in Algorithm 3, where M = 14 or 15 is the number of ice
gradations, and mask(i,j) is the logical mask of wet points.
The percentage of wet points is 33 %.

Note that arrays in Fortran are arranged in column major
order, so the first index i is linear in memory. The presented
arrangement of indices is common for ocean models (see, for
example, NEMO documentation; Madec et al., 2008). The
loop arrangement is utilized from the original code. Although
another arrangement may be more efficient, it does not affect
the parallelization approach given later on. In spite of the
fact that the inner loop does not have stride-1 access, we can
speculate that it allows for possible automatic vectorization
over the m index and corresponds to minimal control-flow
interruptions due to false mask(i,j) values.

5 Modifications of the non-parallel code

In this section we describe the partitioning algorithm of the
model domain into subdomains, each corresponding to a
CPU core, and subsequent modifications of the single-core
calculations, which require only minor changes to Algo-
rithms 2 and 3. Grid partition is performed in two steps: the
model domain is decomposed into small blocks, and then
these blocks are distributed over CPU cores in such a way
that computational load imbalance is minimized. We utilize
a common grid partition for both sea-ice and ocean submod-
els and provide theoretical estimates of the load imbalances
resulting from the application of different weight functions
in the balancing problem. The partition is calculated dur-
ing the model initialization stage, as our balancing algorithm
(Hilbert curves) is computationally inexpensive. Also, we
guarantee that the partition is the same each time the model
is run if the parameters of the partitioner were not modified.

Computational domain [1,Nx]× [1,Ny] is separated into
nb× nb blocks. If integer division is impossible, then
block sizes are nx(ib,jb)=Nx div nb and ny(ib,jb)=

Ny div nb, where ib,jb ∈ [1,nb] represents horizontal in-
dices of the blocks. The other points are distributed over
the first blocks: nx(ib,jb)+= 1, where ib ∈ [1,Nx mod nb]

and jb ∈ [1,nb]; and ny(ib,jb)+= 1, where ib ∈ [1,nb] and
jb ∈ [1,Ny mod nb]. The set of indices corresponding to

a block is denoted by �(ib,jb)= [is(ib,jb), ie(ib,jb)]×

[js(ib,jb),je(ib,jb)].
To formulate a balancing problem, we must assign weights

of computational work to each block and then distribute them
among Np available CPU cores in such a way that all cores
have the same amount of work to do, or we must come as
close to this as possible provided that the “quality” of the
partition is kept. Connectivity of subdomains (by subdomain
we refer to a set of blocks belonging to a CPU core) or the
minimum length of the boundary can be chosen as possible
criteria for the quality of a partition. The weight for a block is
the sum of weights corresponding to grid points in the range
�(ib,jb). The following weights are chosen for 2D and 3D
computations, respectively:

w2d(i,j)=mask(i,j), (1)
w3d(i,j)=K(i,j)/mean(K), (2)

where the “mean” operation is applied over wet points.

5.1 Trivial 1block partition

For a fixed nb, one can find the number of wet blocks (i.e.,
blocks with at least one non-land point). In this partition, the
number of coresNp is equal to the number of wet blocks, and
each CPU core gets exactly one block; see Fig. 2. By varying
nb, possible values of Np can be found.

5.2 Hilbert-curve partition

For nb being a power of 2, the Hilbert curve connecting all
the blocks can be constructed (Bader, 2012). This gives a
one-dimensional set of weights that is balanced using the
simplest algorithm. The sum of the block weights on the p
core is denoted by Wp. In spite of the fact that the Hilbert
curve possesses the locality property (i.e., close indices on
the curve correspond to close indices on the grid), it may not
provide a partition into connected subdomains if there are
a lot of land blocks. To overcome the problem of possible
loss of connectivity, we perform the following optimization
procedure; see Algorithm 4.

Function remove_not_connected_subdomains()
finds the connected subdomain with the maximum work for
each CPU core and sends other blocks to neighboring cores.
Function balance_all_ranks() tries to send border-
ing blocks for each core to neighboring cores to minimize
the maximum work on both cores: max(Wp,Wp′)→min,
where Wp and Wp′ are for the work on the current CPU
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Figure 2. Three types of partition. Different processor cores are separated by a black line. Hilbert partitions are based on a grid of nb×nb =
128×128 blocks. Colors can repeat. The black rectangle in the figure for the hilbert3d partition corresponds to a “shared” array allocated for
blocks belonging to a given CPU core.

core and on a neighboring core, respectively. The number
of iterations is user-defined, and we choose Niter = 15,
which is usually enough to reach convergence. Note that
optimization does not guarantee a global optimum, and
function remove_not_connected_subdomains()
may increase load imbalance. Thus, we choose the iteration
with the best balancing. The need for partitioning into
connected subdomains comes from the intention to increase
the percentage of wet points on CPU cores due to the data
structure used; see the following section for a definition of
the shared array.

The described algorithm performs partitioning into con-
nected subdomains with load imbalance, which is

LI= 100% ·
max(Wp)−mean(Wp)

mean(Wp)
, p ∈ [1,Np], (3)

representing no more than 10 % in most cases. This is an ac-
ceptable accuracy because partitioning itself is not the main
objective of the article.

We have implemented two baseline partitions: hilbert2d
(with weights w2d) and hilbert3d (with weights w3d); see
Fig. 2. As one can see, hilbert2d divides the computational
domain on quasi-uniform subdomains, while hilbert3d lo-
cates many CPU cores in high-depth regions and few cores
in shallow water. The minimum and maximum number of
blocks on a core can be found in Tables 2 and 3. When one
of these partitions is applied to the whole coupled ocean–
ice model, it balances one submodel and unbalances an-
other. Table 2 shows that balancing of 2D computations
(LI 2D→min) leads to an imbalance in 3D computations
(LI 3D≈ 200%), and Table 3 shows the opposite behavior
with LI 2D≈ 300%. These values are close to the estimates
given in Appendix A and defined by the ratio between the
minimum, maximum, and mean integer depth. The presented
LI values imply a slowdown of one of the submodels by 3 to
4 times because LI increases runtime (T ) compared to the
optimal one (Topt) in the following way:

T = (LI+ 1)Topt. (4)

A compromise for both submodels can be found by con-
sidering a combination of weights:

w2d3d = w2d+ γ0w3d, (5)

where γ0 ≈ 3 is a ratio of runtimes for ocean and ice submod-
els on one CPU core. A partition of this type is denoted by
hilbert2d3d. While this weight is optimal for “overlapping”
computations of two code sections with different complexity,
it is also the optimal weight for “non-overlapping” code sec-
tions (i.e., separated by blocking MPI exchanges). We show
this in Appendix B with corresponding estimates of LI for
2D (130 %) and 3D (34 %) computations.

5.3 Data structure and MPI exchanges

After partitioning has been performed, we get a set of blocks
for each CPU core p, Ip = {(ib,jb)}. Shared data arrays are
allocated for all blocks belonging to a CPU core with the
following range of indices (excluding halo):

i
p
s =min(is(Ip)), i

p
e =max(ie(Ip)), (6)

j
p
s =min(js(Ip)),j

p
e =max(je(Ip)), (7)

a(i
p
s : i

p
e ,j

p
s : j

p
e , :). (8)

An example of the shared array size is shown by the rect-
angle in Fig. 2 for a particular CPU core. We introduce a
mask of grid points belonging to a CPU core (maskp(i,j)).
Correspondence between blocks, the shared array, and the
mask is clarified in Fig. 3. Introducing this mask does not in-
crease the complexity of the algorithms because the mask of
the wet points already exists in the original code and is sim-
ply modified. Finally, only minor modifications of the origi-
nal loops are necessary:
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Table 2. Same as Table 1, but for the hilbert2d partition; min and max operations are applied over CPU cores. The column “estimate” shows
the theoretical LI values given in Appendix A.

CPU cores 1 32 78 149 306 595 993 estimate

nb× nb 12 642 1282 1282 1282 1282 1282

min blocks 1 41 62 34 17 8 5
max blocks 1 61 103 54 30 17 11
min % of wet points 33 20 23 28 27 22 19

LI 2D, % 0 9 8 7 4 12 28
0

LI iceadvect, % 0 11 19 12 10 19 27

LI 3D, % 0 147 195 205 213 222 255
225

LI advect3D, % 0 145 200 217 242 235 264

d/24 h 8 129 278 523 890 1826 2511

Table 3. Same as Table 2, but for the hilbert3d partition.

CPU cores 1 32 78 149 306 595 993 estimate

nb× nb 12 642 642 1282 1282 1282 1282

min blocks 1 14 5 11 5 2 1
max blocks 1 186 80 155 93 55 39
min % of wet points 33 25 22 22 22 26 25

LI 2D, % 0 237 288 268 312 311 313
300

LI iceadvect, % 0 238 297 298 373 337 328

LI 3D, % 0 5 7 3 12 15 29
0

LI advect3D, % 0 31 21 18 16 23 36

d/24 h 8 131 338 691 1216 2232 3143

Figure 3. Blocks belonging to a CPU core are in color, and borders
of the allocated array are indicated by a thick line; maskp(i,j)= 1
in colored blocks and 0 elsewhere.

1,Nx→ i
p
s , i

p
e , (9)

1,Ny→ j
p
s ,j

p
e , (10)

K(i,j)→K(i,j) ·maskp(i,j), (11)
mask(i,j)→mask(i,j) ·maskp(i,j). (12)

Usually (see Dennis, 2007, 2003), arrays are allocated for
each block separately. This has the following advantages.

– There is more efficient cache usage.

– If the number of blocks is large enough to get proper
balancing, then there is no need for maskp(i,j), thus
giving an advance in vectorization and so on.

It also introduces some drawbacks.

– There are overheads for copying block boundaries
(small blocks like 4× 4 are prohibited).

– Many modifications of the original code are necessary,
especially in service routines, I/O, and so on.
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Table 4. Same as Table 2, but for the hilbert2d3d partition; “estimate” is given in Appendix B.

CPU cores 1 32 78 149 306 595 993 estimate

nb× nb 12 642 642 1282 1282 1282 1282

min blocks 1 16 6 14 6 3 2
max blocks 1 112 53 104 64 38 23
min % of wet points 33 22 14 23 23 27 24

LI 2D, % 0 95 126 131 130 142 139
130

LI iceadvect, % 0 119 138 150 156 150 145

LI 3D, % 0 19 27 26 27 41 66
34

LI advect3D, % 0 24 34 32 29 48 72

d/24 h 8 180 403 811 1615 2718 3463

Figure 4. Speedup compared to one core for two functions: advect3D and iceadvect. Solid and dashed lines correspond to measure-
ments with and without MPI exchanges, respectively. Different partitions are shown in color (1block, hilbert2d, and hilbert3d).

Consequently, the main strength of our approach is the ability
to incorporate balancing while keeping the original program
code as simple as for the trivial 1block partition. We expect
that a shared array may be not optimal for near-land CPU
cores with ≈ 20% wet points because of non-efficient cache
usage. An example of such a core is shown by the rectangle
in Fig. 2. An experimental study of runtime dependence on
the percentage of wet points will be carried out.

Borders of blocks neighboring other CPU cores are sent
using MPI. The following optimizations are applied to re-
duce the exchange time.

– All block boundaries adjacent to a given CPU core are
copied to a single buffer array, which is sent in one
MPI_Send call.

– If possible, a diagonal halo exchange is included in
cross-exchanges with extra width.

– There is an option to send borders of two or more model
fields in one MPI_Send call.

– Borders in the sea component are sent up to K(i,j)
depth (i.e., only the actually used layers are transmit-
ted).

The first three points reduce the latency cost in many cores,
and the final point reduces bandwidth limitations.

5.4 Parallel solver of the SLAE

As we have already mentioned, the time-implicit equation
for the free surface is reduced to an SLAE with a sparse
19-diagonal matrix. This is solved by a parallel imple-
mentation of the BICGSTAB algorithm preconditioned by
block ILU(0) with overlapping blocks; see Saad (2003).
The ILU(0) preconditioner preserves the 19-diagonal matrix
structure, wherein matrix blocks are defined for each CPU
core and correspond to wet points plus a band of border
points of width 2. Because blocks are defined by the parti-
tion, the convergence rate depends on the number of CPU
cores. Nevertheless, we have found that in the range from 1
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Figure 5. Scatter plot: percentage of wet points on a core – advect3D runtime (without MPI exchanges for 1 model day). Each point
corresponds to one CPU core. Figures correspond to the hilbert3d partition with different numbers of CPU cores.

Figure 6. Scatter plot: number of computational points for 3D calculations on a core – advect3D runtime (without MPI exchanges for 1
model day). Each point corresponds to one CPU core. Solid lines show the average values along the x and y axes. Figures correspond to the
hilbert3d partition with different numbers of CPU cores.

to 996 CPU cores, it is sufficient to perform 6 to 10 iterations
in order to reach the relative residual ‖Ax−b‖/‖b‖ ≤ 10−6.

6 Numerical experiments

Our experiments were performed on the cluster at the Joint
Supercomputer Center of the Russian Academy of Sciences
(http://www.jscc.ru/, last access: 2 February 2021). Each
node includes two 16-core Intel Xeon E5-2697Av4 proces-
sors (Broadwell). The software code was compiled by the In-
tel Fortran Compiler ifort 14.0.1 with the optimization option
-O2. Low-core simulations were performed for 3 model days
(2592 time steps). The model on 993 CPU cores is launched
for 30 d, with subsequent rescaling of the results. During the
first day, we call an MPI_Barrier function to measure the
performance of particular procedures with and without ex-
changes. During the last 2 d, an MPI_Barrier is omitted
and overall performance is assessed. The number of cores
for tests is guided by the 1block partition method, which is
highly restricted in the allowable number of cores. We first

show how the most time-consuming functions corresponding
to ocean and ice submodels accelerate for three partitions:
1block, hilbert2d, and hilbert3d (see Fig. 2). We then study
the overall performance of the model using four partitions,
including hilbert2d3d with combined weights (Eq. 5).

The maximum grid size of blocks for our model is nb×

nb = 128× 128 because the MPI exchange width is limited
by the block size, while the SLAE solver requires an ex-
change of width 2. Note that due to the data structure that
we used, the performance of Hilbert-type partitions is almost
insensitive to nb at a moderate number of CPU cores. Nev-
ertheless, nb may be tuned by hand to decrease the complex-
ity of the partition optimization procedure or to increase the
percentage of wet points on a core. In runs with many CPU
cores, we use the maximum available number of blocks to
get better balancing. The parameters that we used in the ex-
periments are given in Tables 1, 2, 3, and 4.

Geosci. Model Dev., 14, 843–857, 2021 https://doi.org/10.5194/gmd-14-843-2021
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6.1 Speedup of scalar and ice advection

Advections of scalars (advect3D, depth-dependent) and
ice (iceadvect, depth-independent) are the most time-
consuming procedures in ocean and ice submodels, respec-
tively. In the following, we will show that the hilbert3d
partition is appropriate for advect3D and hilbert2d for
iceadvect.

Speedup for the mentioned procedures is given in Fig. 4.
Dashed lines correspond to measurements of code sections
between MPI exchanges and show how pure computations
accelerate. Pure computations in advect3D accelerate lin-
early for the hilbert3d partition, while pure computations in
iceadvect accelerate superlinearly for the hilbert2d parti-
tion. Superlinearity (parallel efficiency is greater than 100 %
when “doubling” the number of cores) occurs in the range of
cores 1–149, and we have investigated the possible reasons
for this using the open-access Intel Advisor profiler. We have
found that on 1 core the most time-demanding memory re-
quests are the DRAM data upload, while on 149 cores most
memory requests correspond to the L1 cache. Thus, superlin-
earity can be partially explained by better cache utilization
when the number of cores increases. Note that more local
memory access pattern (MAP) can decrease the limitations
caused by the memory requests and can be achieved by in-
corporating stride-1 access for the inner loop indices, but we
leave this point for optimizations in the future.

Speedup including MPI exchanges is shown in Fig. 4 with
solid lines. The function advect3D is only slightly limited
by MPI exchanges on 993 cores: its speedup on the parti-
tion hilbert3d falls from 940 to 640 when exchanges are ac-
counted for. Meanwhile, iceadvect loses speedup from
1540 to 576 after accounting for exchanges on the hilbert2d
partition. Both functions have an identical number of ex-
changes, but advect3D is more computationally expen-
sive. Consequently, we explain the worse performance of
iceadvect by a lower ratio of the number of operations
to the number of points to exchange. A similar bottleneck
due to exchanges in 2D dynamics is reported in Koldunov
et al. (2019a). The hilbert2d partition has a slight advantage
(about 15 %–20 %) over the 1block partition for both func-
tions (see solid lines). In total, as we expected, the hilbert3d
partition is suitable for the advect3D function, and its ac-
celeration is 2 to 3 times more efficient than when the 1block
and hilbert2d partitions are used. Also, the hilbert2d and
1block partitions show the function iceadvect that is 2 to
4 times faster compared to the hilbert3d partition. The differ-
ent accelerations are strongly connected to balancing of com-
putations. To check partition-based (LI 3D and LI 2D) and
runtime-based (LI advect3D and LI iceadvect, respectively)
load imbalance for 3D and 2D computations, see Tables 1–3.
Note that theoretical and practical LIs are moderately close
to each other, which confirms our choice of weights (Eqs. 1
and 2) for these functions. Also note that the data structure

Figure 7. Speedup compared to one core for the full model. Dif-
ferent partitions are shown in color (1block, hilbert2d, hilbert3d,
hilbert2d3d).

and organization of the calculations are appropriate for load
balancing.

Further analysis reveals that the runtime-based LI could
be 4 %–25 % more than the partition-based one; see Tables 2
and 3. This may be connected to overheads introduced by
non-efficient organization of memory. We allocate a shared
array for all blocks belonging to a CPU core, and near-land
cores may have only 20 % of the wet points (see Tables 2
and 3), which can lead to an increase in cache misses. Fig-
ure 5 shows a scatter plot for the percent of wet points vs.
advect3D runtime without exchanges (each point corre-
sponds to some CPU core). One can clearly see that on a
moderate number of cores (149) the computations are lim-
ited by the core with the smallest percentage of wet points,
which has the maximal runtime. Figure 6 additionally shows
that the spread in runtime cannot be explained by the dif-
ference in the number of computational points; i.e., the par-
titioning algorithm works well for 149 cores. Although or-
ganization of the calculations may slightly limit model effi-
ciency on a moderate number of cores, it does not limit the
model efficiency on 993 cores, for which the major part of
the advect3D runtime spread is explained by the imperfect
balancing (see Fig. 6) but not the data structure (see Fig. 5).
Stagnation of the balancing procedure is evident from the fact
that the minimum number of blocks located on a CPU core is
1 for 993 cores; see Table 3. Note that the computational sub-
domain corresponding to one CPU core is small enough: on
average, it has 9× 9 horizontal points with 12 vertical levels
for 993 cores.
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Figure 8. Relative contribution of different code sections to runtime; ocean – all procedures corresponding to ocean submodel including
advect3D, ice – ice submodel including iceadvect, processing – computation of statistics, I/O – input/output with scatter–gather
functions, SLAE – matrix inverse, other – simple service procedures.

6.2 Speedup of the full model

The coupled ocean–ice model is launched on the same CPU
cores for both submodels with a common horizontal parti-
tion. Input/output functions are sequential and utilize gather–
scatter operations, which are given by our library of parallel
exchanges. Speedup for the full model compared to one CPU
core is given in Fig. 7. Maximum speedup, approximately
430, corresponds to the partition with combined weights
(hilbert2d3d) on 993 cores. Compared to the simplest par-
tition (1block), the hilbert2d3d model is 115 % faster on
149 cores and 40 % faster on 993 cores. Partition hilbert2d3d
also gives an advantage over partitions balancing purely 2D
and 3D computations (hilbert2d, hilbert3d). On 993 CPU
cores, the parallel exchanges in this model have the following
contributions to the runtime: 20 % for boundary exchanges,
18 % for gather–scatter, and 6.5 % for Allreduce.

The relative contribution of different code sections to run-
time is given in Fig. 8. In the case of perfect scaling of
all procedures, the relative contribution must be the same
as the number of CPU core rises. For partitions 1block and
hilbert2d, we see a slowdown of the ocean component. Parti-
tion hilbert3d suffers from a slowdown of the ice component.
Finally, the closest preservation of time distribution is found
for the hilbert2d3d model. We did not pay much attention
to the processing code section because, although it acceler-
ates, its computational cost could be reduced. The section I/O
gradually saturates due to gather–scatter operations, which
consume 85 % of I/O runtime on 993 CPU cores. The new
parallel solver (SLAE) has fast convergence and low compu-
tational cost but suffers from Allreduce operations: in our im-
plementation each iteration demands five MPI_Allreduce
calls, which account for 60 % of SLAE code section runtime
on 993 cores.

Absolute values of code section runtimes for 1 model day
are shown in Fig. 9. In comparison to the hilbert3d partition,
combining of weights (hilbert2d3d) reduces the cost of the
ice component while keeping the ocean component almost
without changes (see also Tables 3 and 4 for load imbalance
values). In addition, the processing section reduces its run-
time because it contains many service functions that are not
fully optimized and that are sensitive to stretching of the hor-

Figure 9. Absolute contribution of different code sections to run-
time on 993 CPU cores.

izontal area covered by a CPU core: such stretching is done
by the hilbert3d partitioner.

Simulated years per wall-clock day (SYPD) for the best
configuration (hilbert2d3d, 993 cores) are calculated as
3463/365≈ 9.5; see Table 4. A direct comparison with other
coupled ocean–ice models cannot be achieved because our
configuration is rare. However, we can rescale the perfor-
mance (rSYPD) of the time step efficiency of the global mod-
els in the following way:

rSYPD= SYPD
Nmesh

NFEMAO
mesh

1tFEMAO

1t

NFEMAO
p

Np
, (13)

where we take into consideration different numbers of hori-
zontal mesh wet points (Nmesh), different numbers of CPU
cores (Np), and different time steps (1t), but we neglect
different numbers of vertical levels and differences in the
formulation of the ice dynamics. As follows from Table 5,
rSYPD is of the order of 10 for all of the ocean–ice models
that we have presented, including FEMAO. While this char-
acteristic cannot rate models by their efficiency, we argue that
our parallel configuration is comparable to existing parallel
ocean–ice models.
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Table 5. Efficiency of the time step loop for the FEMAO model compared to global ocean–ice models. Rescaled SYPD (rSYPD, Eq. 13)
accounts for the difference in time steps and the number of horizontal mesh points and CPU cores. Original values are published in Koldunov
et al. (2019a), Huang et al. (2016), and Ward (2016), but we took our values directly from Table 3 in Koldunov et al. (2019a).

Model Mesh points× 106 Cores Time step, s SYPD rSYPD

POP 5.8 16 875 173 10.5 24.4
FESOM2/STORM 5.6 13 828 600 15.9 12.5
NEMO 0.9 3840 1440 25.3 4.8
MOM5.1 0.9 3840 1800 21.6 3.3
FESOM2/farc 0.6 2304 900 56.2 19

FEMAO 0.085 993 100 9.5 9.5

7 Conclusions

In this paper, we present a relatively simple approach to ac-
celerate the FEMAO ocean–ice model based on a rectangular
structured grid with advances in load balancing. The mod-
ifications that had to be introduced into the program code
are identical to those that were required by the simplest de-
composition on squares. The only demand on the model to
be accelerated by this technique is marking computational
points by a logical mask. In the first step, we utilize the com-
mon partition for ocean and ice submodels. For a relatively
“small” model configuration of 500× 500 horizontal points,
we reach parallel efficiency of 60 % for particular functions
(3D scalar advection using the 3D-balancing approach and
2D ice advection using the 2D-balancing approach) and 43 %
for the full model (using the combined weight approach) on
993 CPU cores. We show that balancing the 3D computations
leads to unbalanced 2D computations and vice versa. Conse-
quently, further acceleration may be achieved by performing
computations of 2D and 3D components on distinct groups of
CPU cores with different partitions. Nevertheless, high paral-
lel efficiency of 3D scalar advection itself is a great advance
for future applications of the model, especially for the ver-
sion with a pelagic ecology submodel (Chernov et al., 2018),
wherein more than 50 3D scalars (biogeochemical concen-
trations) are added to the thermohaline fields.

Note that while the parallel approach that we have pre-
sented here can be implemented into the model in a relatively
simple way, the code of the library of parallel exchanges can
be rather complex (see the “Code availability” section).
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Appendix A: Estimating the load imbalance for
hilbert2d and hilbert3d partitions

Let us introduce two functions of bathymetry (defined by in-
teger depth K(i,j)) with the corresponding values for our
model:

ρmax(K)=
max(K)
mean(K)

=
39
12
= 3.25, (A1)

ρmin(K)=
mean(K)
min(K)

=
12
3
= 4, (A2)

here and below, “mean”, “min”, and “max” operations corre-
spond only to wet points. These values define how balancing
of 2D computations affects 3D computation imbalance and
vice versa. Let S and V be sets of surface and ocean points,
respectively, Sp and Vp be sets of these points belonging to
a CPU core p, and | · | be the number of points in a set. The
number of 3D points can be expressed via 2D points:

|V | =
∑
{i,j}∈S

K(i,j)= |S| ·mean{i,j}∈SK(i,j).

When balancing of 2D computations is used (hilbert2d),
surface points are distributed among processors in roughly
equal amounts (|Sp| = |S|/Np). Then, for 3D computations,
the ratio of maximum work to mean work among cores is
defined as

Wmax

Wmean
=

maxp(|Vp|)
meanp(|Vp|)

(A3)

=
maxp(mean{i,j}∈SpK(i,j))
meanp(mean{i,j}∈SpK(i,j))

≈ ρmax,

and the corresponding load imbalance is

LI=
Wmax−Wmean

Wmean
= ρmax− 1= 225%. (A4)

When balancing of 3D computations is used (hilbert3d),
ocean points are distributed among processors in roughly
equal amounts (|Vp| = |V |/Np). Then, for 2D computations,
the ratio of maximum work to mean work is defined as

Wmax

Wmean
=

maxp(|Sp|)
meanp(|Sp|)

(A5)

=
maxp(|Vp|/mean{i,j}∈SpK(i,j))

meanp(|Sp|)

=
|V |/|S|

minp(mean{i,j}∈SpK(i,j))

≈ ρmin,

and the corresponding load imbalance is

LI=
Wmax−Wmean

Wmean
= ρmin− 1= 300%. (A6)
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Appendix B: Finding the optimal weight for
non-overlapping 2D and 3D calculations

Let W be a full computational work, and let it be distributed
between 3D (W 3d) and 2D (W 2d) computations with the
ratio γ0: W =W 2d

+W 3d
∼ (1+ γ0)W

2d. Our goal is to
find a weight function w(i,j), which corresponds to min-
imal joint (2D and 3D) load imbalance. We use the nota-
tion presented in the previous Appendix, and we define the
number of computational points corresponding to the weight
|V w
| =

∑
{i,j}∈Sw(i,j).

Assuming equipartition with respect to this weight
(|V w

p | = |V
w
|/Np), we can derive LI for 2D calculations,

W 2d
max

W 2d
mean
=

maxp|Sp|
meanp|Sp|

≈ ρmin(w), (B1)

and for 3D calculations,

W 3d
max

W 3d
mean

=
maxp|Vp|
meanp|Vp|

(B2)

=
maxp(|Sp| ·mean{i,j}∈SpK(i,j))

meanp(|Sp| ·mean{i,j}∈SpK(i,j))

=

maxp

(
mean{i,j}∈SpK(i,j)
mean{i,j}∈Spw(i,j)

)

meanp

(
mean{i,j}∈SpK(i,j)
mean{i,j}∈Spw(i,j)

)
≈ ρmax(K/w).

Finally, assuming that 2D and 3D computations are non-
overlapping (i.e., the maximum work is under summation),
load imbalance for the full model is calculated as

LI(w)=
Wmax−Wmean

Wmean

=
ρmin(w)+ γ0ρmax(K/w)

1+ γ0
− 1. (B3)

For a given bathymetryK(i,j), the ratio γ0 = 3, and a spe-
cial type of weight function w(γ )= w2d+ γw3d, LI(w(γ ))
can be plotted numerically for different values of γ ; see
Fig. B1. The minimum of this function corresponds to the
choice γ = γ0 = 3, and LI values for 2D and 3D computa-
tions in this case are 130 % and 34 %, respectively.

Figure B1. Load imbalance for the full model LI(w(γ )), where
w(γ )= w2d+ γw3d; γ0 = 3.
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Code availability. The version of the FEMAO model used
to carry out simulations reported here can be accessed from
https://doi.org/10.5281/zenodo.3977346 (Perezhogin et al.,
2020a). The parallel exchange library with a simple ex-
ample computing the heat equation is archived on Zenodo
(https://doi.org/10.5281/zenodo.3873239; Perezhogin et al.,
2020b).
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