Articles | Volume 14, issue 11
https://doi.org/10.5194/gmd-14-6661-2021
https://doi.org/10.5194/gmd-14-6661-2021
Review and perspective paper
 | 
01 Nov 2021
Review and perspective paper |  | 01 Nov 2021

Spatial agents for geological surface modelling

Eric A. de Kemp

Related authors

Checking the consistency of 3D geological models
Marion N. Parquer, Eric A. de Kemp, Boyan Brodaric, and Michael J. Hillier
Geosci. Model Dev., 18, 71–100, https://doi.org/10.5194/gmd-18-71-2025,https://doi.org/10.5194/gmd-18-71-2025, 2025
Short summary
GeoINR 1.0: an implicit neural network approach to three-dimensional geological modelling
Michael Hillier, Florian Wellmann, Eric A. de Kemp, Boyan Brodaric, Ernst Schetselaar, and Karine Bédard
Geosci. Model Dev., 16, 6987–7012, https://doi.org/10.5194/gmd-16-6987-2023,https://doi.org/10.5194/gmd-16-6987-2023, 2023
Short summary

Related subject area

Solid Earth
Reconciling surface deflections from simulations of global mantle convection
Conor P. B. O'Malley, Gareth G. Roberts, James Panton, Fred D. Richards, J. Huw Davies, Victoria M. Fernandes, and Sia Ghelichkhan
Geosci. Model Dev., 17, 9023–9049, https://doi.org/10.5194/gmd-17-9023-2024,https://doi.org/10.5194/gmd-17-9023-2024, 2024
Short summary
Three-dimensional analytical solution of self-potential from regularly polarized bodies in a layered seafloor model
Pengfei Zhang, Yi-an Cui, Jing Xie, Youjun Guo, Jianxin Liu, and Jieran Liu
Geosci. Model Dev., 17, 8521–8533, https://doi.org/10.5194/gmd-17-8521-2024,https://doi.org/10.5194/gmd-17-8521-2024, 2024
Short summary
A fast surrogate model for 3D Earth glacial isostatic adjustment using Tensorflow (v2.8.0) artificial neural networks
Ryan Love, Glenn A. Milne, Parviz Ajourlou, Soran Parang, Lev Tarasov, and Konstantin Latychev
Geosci. Model Dev., 17, 8535–8551, https://doi.org/10.5194/gmd-17-8535-2024,https://doi.org/10.5194/gmd-17-8535-2024, 2024
Short summary
Accelerated pseudo-transient method for elastic, viscoelastic, and coupled hydro-mechanical problems with applications
Yury Alkhimenkov and Yury Y. Podladchikov
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-160,https://doi.org/10.5194/gmd-2024-160, 2024
Revised manuscript accepted for GMD
Short summary
Empirical Modeling of Tropospheric Delays and Uncertainty
Jungang Wang, Junping Chen, and Yize Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1803,https://doi.org/10.5194/egusphere-2024-1803, 2024
Short summary

Cited articles

Adamuszek, M., Schmid, D. W., and Dabrowski, M.: Fold geometry toolbox – Automated determination of fold shape, shortening, and material properties, Jour. Struct. Geol., 33, 1406–1416, 2011. 
Ailleres, L., Jessell, M., de Kemp, E. A., Caumon, G., Wellmann, F. J., and Grose, L.: Loop – Enabling 3D stochastic geological modelling, ASEG Extended Abstracts, 1–3, https://doi.org/10.1080/22020586.2019.12072955, 2019. 
Amadou, M. L., Villamor, G. B., and Kyei-Baffour, N.: Simulating agricultural land-use adaptation decisions to climate change: An empirical agent-based modelling in northern Ghana, Agric. Syst., 166, 196–209, 2018. 
An, G., Fitzpatrick, B. G., Christley, S., Federico, P., Kanarek, A., Miller, N. R., Oremland, M., Salinas, R., Laubenbacher, R., and Lenhart, S.: Optimization and Control of Agent-Based Models in Biology: A Perspective, Bull. Math. Biology, 79, 63–87, 2017. 
Azam, F., Sharif, M., and Mohsin, S.: Multi agent-based model for earthquake intensity prediction, Jour. Comp. Theor. Nano., 12, 5765–5777, 2015. 
Download
Short summary
This is a proof of concept and review paper of spatial agents, with initial research focusing on geomodelling. The results may be of interest to others working on complex regional geological modelling with sparse data. Structural agent-based swarming behaviour is key to advancing this field. The study provides groundwork for research in structural geology 3D modelling with spatial agents. This work was done with NetLogo, a free agent modelling platform used mostly for teaching complex systems.