Articles | Volume 14, issue 11
Geosci. Model Dev., 14, 6661–6680, 2021
https://doi.org/10.5194/gmd-14-6661-2021

Special issue: The Loop 3D stochastic geological modelling platform – development...

Geosci. Model Dev., 14, 6661–6680, 2021
https://doi.org/10.5194/gmd-14-6661-2021

Review and perspective paper 01 Nov 2021

Review and perspective paper | 01 Nov 2021

Spatial agents for geological surface modelling

Eric A. de Kemp

Related subject area

Solid Earth
RHEA v1.0: Enabling fully coupled simulations with hydro-geomechanical heterogeneity
José M. Bastías Espejo​​​​​​​, Andy Wilkins, Gabriel C. Rau, and Philipp Blum
Geosci. Model Dev., 14, 6257–6272, https://doi.org/10.5194/gmd-14-6257-2021,https://doi.org/10.5194/gmd-14-6257-2021, 2021
Short summary
Modelling of faults in LoopStructural 1.0
Lachlan Grose, Laurent Ailleres, Gautier Laurent, Guillaume Caumon, Mark Jessell, and Robin Armit
Geosci. Model Dev., 14, 6197–6213, https://doi.org/10.5194/gmd-14-6197-2021,https://doi.org/10.5194/gmd-14-6197-2021, 2021
Short summary
PALEOSTRIPv1.0 – a user-friendly 3D backtracking software to reconstruct paleo-bathymetries
Florence Colleoni, Laura De Santis, Enrico Pochini, Edy Forlin, Riccardo Geletti, Giuseppe Brancatelli, Magdala Tesauro, Martina Busetti, and Carla Braitenberg
Geosci. Model Dev., 14, 5285–5305, https://doi.org/10.5194/gmd-14-5285-2021,https://doi.org/10.5194/gmd-14-5285-2021, 2021
Short summary
LoopStructural 1.0: time-aware geological modelling
Lachlan Grose, Laurent Ailleres, Gautier Laurent, and Mark Jessell
Geosci. Model Dev., 14, 3915–3937, https://doi.org/10.5194/gmd-14-3915-2021,https://doi.org/10.5194/gmd-14-3915-2021, 2021
Short summary
Sub3DNet1.0: a deep-learning model for regional-scale 3D subsurface structure mapping
Zhenjiao Jiang, Dirk Mallants, Lei Gao, Tim Munday, Gregoire Mariethoz, and Luk Peeters
Geosci. Model Dev., 14, 3421–3435, https://doi.org/10.5194/gmd-14-3421-2021,https://doi.org/10.5194/gmd-14-3421-2021, 2021
Short summary

Cited articles

Adamuszek, M., Schmid, D. W., and Dabrowski, M.: Fold geometry toolbox – Automated determination of fold shape, shortening, and material properties, Jour. Struct. Geol., 33, 1406–1416, 2011. 
Ailleres, L., Jessell, M., de Kemp, E. A., Caumon, G., Wellmann, F. J., and Grose, L.: Loop – Enabling 3D stochastic geological modelling, ASEG Extended Abstracts, 1–3, https://doi.org/10.1080/22020586.2019.12072955, 2019. 
Amadou, M. L., Villamor, G. B., and Kyei-Baffour, N.: Simulating agricultural land-use adaptation decisions to climate change: An empirical agent-based modelling in northern Ghana, Agric. Syst., 166, 196–209, 2018. 
Azam, F., Sharif, M., and Mohsin, S.: Multi agent-based model for earthquake intensity prediction, Jour. Comp. Theor. Nano., 12, 5765–5777, 2015. 
Download
Short summary
This is a proof of concept and review paper of spatial agents, with initial research focusing on geomodelling. The results may be of interest to others working on complex regional geological modelling with sparse data. Structural agent-based swarming behaviour is key to advancing this field. The study provides groundwork for research in structural geology 3D modelling with spatial agents. This work was done with NetLogo, a free agent modelling platform used mostly for teaching complex systems.