Articles | Volume 14, issue 3
https://doi.org/10.5194/gmd-14-1773-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-1773-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GO_3D_OBS: the multi-parameter benchmark geomodel for seismic imaging method assessment and next-generation 3D survey design (version 1.0)
ISTerre, Univ. Grenoble Alpes, 38000 Grenoble, France
Institute of Geophysics, Polish Academy of Sciences, ul. Ks. Janusza 64, 01-452 Warsaw, Poland
Stéphane Operto
Université Côte d'Azur, Observatoire de la Côte d’Azur, CNRS, IRD, Géoazur, Valbonne, France
Related authors
Michal Malinowski, Tuomo Karinen, Uula Autio, Suvi Heinonen, Brij Singh, Andrzej Górszczyk, Lukasz Sito, and the SEEMS DEEP Working Group
EGUsphere, https://doi.org/10.5194/egusphere-2025-3111, https://doi.org/10.5194/egusphere-2025-3111, 2025
Short summary
Short summary
We acquired and processed novel 3D seismic data to reveal the hidden structure of a deep rock formation in northeastern Finland. This study uncovered a complex, layered system rather than a simple magma channel, and identified a major fault that may influence mineral deposits. Our findings offer new tools and insights for exploring valuable underground resources in hard rock environments.
Brij Singh, Andrzej Górszczyk, Michał Malinowski, Suvi Heinonen, Uula Autio, Tuomo Karinen, Marek Wojdyła, and the SEEMS DEEP Working Group
EGUsphere, https://doi.org/10.5194/egusphere-2025-496, https://doi.org/10.5194/egusphere-2025-496, 2025
Short summary
Short summary
Two reflection seismic (semi-)regional profiles were acquired to map the regional reflectivity of the Koillismaa Layered Igneous Complex in north-eastern Finland. Several reflections up to a depth of 5–6 km are mapped. The top of the magma conduit associated with KLIC is successfully revealed and it is interpreted that there might be a second magma conduit below the exposed intrusion. The study helped in better understanding of the regional structural geology of the area.
Brij Singh, Michał Malinowski, Andrzej Górszczyk, Alireza Malehmir, Stefan Buske, Łukasz Sito, and Paul Marsden
Solid Earth, 13, 1065–1085, https://doi.org/10.5194/se-13-1065-2022, https://doi.org/10.5194/se-13-1065-2022, 2022
Short summary
Short summary
Fast depletion of shallower deposits is pushing the mining industry to look for cutting-edge technologies for deep mineral targeting. We demonstrated a joint workflow including two state-of-the-art technologies: full-waveform inversion and reverse time migration. We produced Earth images with significant details which can help with better estimation of areas with high mineralisation, better mine planning and safety measures.
Michal Malinowski, Tuomo Karinen, Uula Autio, Suvi Heinonen, Brij Singh, Andrzej Górszczyk, Lukasz Sito, and the SEEMS DEEP Working Group
EGUsphere, https://doi.org/10.5194/egusphere-2025-3111, https://doi.org/10.5194/egusphere-2025-3111, 2025
Short summary
Short summary
We acquired and processed novel 3D seismic data to reveal the hidden structure of a deep rock formation in northeastern Finland. This study uncovered a complex, layered system rather than a simple magma channel, and identified a major fault that may influence mineral deposits. Our findings offer new tools and insights for exploring valuable underground resources in hard rock environments.
Brij Singh, Andrzej Górszczyk, Michał Malinowski, Suvi Heinonen, Uula Autio, Tuomo Karinen, Marek Wojdyła, and the SEEMS DEEP Working Group
EGUsphere, https://doi.org/10.5194/egusphere-2025-496, https://doi.org/10.5194/egusphere-2025-496, 2025
Short summary
Short summary
Two reflection seismic (semi-)regional profiles were acquired to map the regional reflectivity of the Koillismaa Layered Igneous Complex in north-eastern Finland. Several reflections up to a depth of 5–6 km are mapped. The top of the magma conduit associated with KLIC is successfully revealed and it is interpreted that there might be a second magma conduit below the exposed intrusion. The study helped in better understanding of the regional structural geology of the area.
Brij Singh, Michał Malinowski, Andrzej Górszczyk, Alireza Malehmir, Stefan Buske, Łukasz Sito, and Paul Marsden
Solid Earth, 13, 1065–1085, https://doi.org/10.5194/se-13-1065-2022, https://doi.org/10.5194/se-13-1065-2022, 2022
Short summary
Short summary
Fast depletion of shallower deposits is pushing the mining industry to look for cutting-edge technologies for deep mineral targeting. We demonstrated a joint workflow including two state-of-the-art technologies: full-waveform inversion and reverse time migration. We produced Earth images with significant details which can help with better estimation of areas with high mineralisation, better mine planning and safety measures.
Cited articles
Agard, P., Plunder, A., Angiboust, S., Bonnet, G., and Ruh, J.: The subduction plate interface: rock record and mechanical coupling (from long to short timescales), Lithos, 320–321, 537–566, https://doi.org/10.1016/j.lithos.2018.09.029, 2018. a
Aghamiry, H., Gholami, A., and Operto, S.: Improving full-waveform inversion by wavefield reconstruction with alternating direction method of multipliers,
Geophysics, 84, R139–R162, 2019a. a
Aghamiry, H., Gholami, A., and Operto, S.: On the robustness of ℓ1-regularized ADMM-based wavefield reconstruction inversion against compressed acquisition sampling, SEG Technical Program Expanded Abstracts, 1385–1389, 2019b. a
Agudelo, W., Ribodetti, A., Collot, J.-Y., and Operto, S.: Joint inversion of multichannel seismic reflection and wide-angle seismic data: Improved imaging and refined velocity model of the crustal structure of the north Ecuador–south Colombia convergent margin, J. Geophys. Res., 114, B02306, https://doi.org/10.1029/2008JB005690, 2009. a
Aminzadeh, F., Brac, J., and Kunz, T.: SEG/EAGE 3-D Salt and Overthrust Models. SEG/EAGE 3-D Modeling Series, No. 1: Distribution CD of Salt and Overthrust models, SEG book series, 1997. a
Angiboust, S., Glodny, J., Oncken, O., and Chopin, C.: In search of transient subduction interfaces in the Dent Blanche-Sesia Tectonic System (W. Alps), Lithos, 205, 298–321, https://doi.org/10.1016/j.lithos.2014.07.001, 2014. a
Angiboust, S., Agard, P., Glodny, J., Omrani, J., and Oncken, O.: Zagros
blueschists: Episodic underplating and long-lived cooling of a subduction
zone, Earth Planet. Sci. Lett., 443, 48–58,
https://doi.org/10.1016/j.epsl.2016.03.017, 2016. a
Arai, R., Kodaira, S., Henrys, S. A., Bangs, N. L., Obana, K., Fujie, G.,
Miura, S., Barker, D. H. N., Bassett, D., Bell, R. E., Morgan, J. V., Warner, M., Mochizuki, K., Kellett, R. L., Stucker, V., and Fry, B.:
Three-dimensional anisotropic P-wave velocity structure around the shallow
plate boundary in the Northern Hikurangi margin, New Zealand, AGU Fall
Meeting 2019, San Francisco, USA, 9–13 December 2019, T51F–0357, 2019. a
Azuma, S., Yamamoto, S., Ichikawa, H., and Maruyama, S.: Why primordial
continents were recycled to the deep: Role of subduction erosion, Geosci. Front., 8, 337–346, https://doi.org/10.1016/j.gsf.2016.08.001, 2017. a
Bangs, N., Moore, G., Gulick, S., Pangborn, E., Tobin, H., Kuramoto, S., and
Taira, A.: Broad, weak regions of the Nankai Megathrust and implications for
shallow coseismic slip, Earth Planet. Sci. Lett., 284, 44–49,
https://doi.org/10.1016/j.epsl.2009.04.026, 2009. a
Bauer, A., Schwarz, B., and Gajewski, D.: Utilizing diffractions in wavefront
tomography, Geophysics, 82, R65–R73, 2017. a
Billette, F., Podvin, P., and Lambaré, G.: Stereotomography with automatic
picking: application to the Marmousi dataset, SEG Technical Program Expanded Abstracts 1998, II, 1317–1320, https://doi.org/10.1190/1.1820143, 1998. a
Billette, F. J. and Brandsberg-Dahl, S.: The 2004 BP Velocity Benchmark, in: Extended Abstracts, 67th Annual EAGE Conference & Exhibition, Madrid, Spain, 13–16 June 2005, B035, 2004. a
Bishop, T. N., Bube, K. P., Cutler, R. T., Langan, R. T., Love, P. L., Resnick, J. R., Shuey, R. T., and Spinder, D. A.: Tomographic determination of velocity and depth in laterally varying media, Geophysics, 50, 903–923, 1985. a
Blanch, J., Jarvis, J., Hurren, C., Liu, Y., and Hu, L.: Designing an exploration scale OBN: Acquisition design for subsalt imaging and velocity determination, SEG Technical Program Expanded Abstracts: 192–196, 2019. a
Boston, B., Moore, G. F., Nakamura, Y., and Kodaira, S.: Outer-rise normal
fault development and influence on near-trench décollement propagation along the Japan Trench, off Tohoku, Earth Planet. Space, 66, 135, https://doi.org/10.1186/1880-5981-66-135, 2014. a
Brenders, A. J. and Pratt, R. G.: Full waveform tomography for lithospheric
imaging: results from a blind test in a realistic crustal model, Geophys.
J. Int., 168, 133–151, 2007b. a
Brossier, R., Operto, S., and Virieux, J.: Velocity model building from seismic reflection data by full waveform inversion, Geophys. Prospect., 63,
354–367, https://doi.org/10.1111/1365-2478.12190, 2015. a
Cawood, P. A., Kröner, A., Collins, W. J., Kusky, T. M., Mooney, W. D., and Windley, B. F.: Accretionary orogens through Earth history, Geol.
Soc. Spec. Pub., 318, 1–36, https://doi.org/10.1144/sp318.1, 2009. a
Christensen, N. I. and Mooney, W. D.: Seismic velocity structure and
composition of the continental crust: a global view, J. Geophys.
Res., 100, 9761–9788, 1995. a
Claerbout, J. F.: Imaging the Earth's interior, Blackwell Scientific Publication, Oxford, 414 pp., 1985. a
Collot, J.-Y., Agudelo, W., Ribodetti, A., and Marcaillou, B.: Origin of a
crustal splay fault and its relation to the seismogenic zone and underplating at the erosional north Ecuador–south Colombia oceanic margin, J. Geophys. Res., 113, B12102, https://doi.org/10.1029/2008jb005691, 2008. a, b
Collot, J.-Y., Ribodetti, A., Agudelo, W., and Sage, F.: The South Ecuador
subduction channel: Evidence for a dynamic mega-shear zone from 2D fine-scale
seismic reflection imaging and implications for material transfer, J. Geophys. Res., 116, B11102, https://doi.org/10.1029/2011jb008429,
2011. a
Contreras-Reyes, E., Flueh, E. R., and Grevemeyer, I.: Tectonic control on
sediment accretion and subduction off south central Chile: Implications for
coseismic rupture processes of the 1960 and 2010 megathrust earthquakes,
Tectonics, 29, TC6018, https://doi.org/10.1029/2010tc002734, 2010. a
Dessa, J.-X., Operto, S., Kodaira, S., Nakanishi, A., Pascal, G., Uhira, K., and Kaneda, Y.: Deep seismic imaging of the eastern Nankai trough (Japan) from multifold ocean bottom seismometer data by combined traveltime tomography and prestack depth migration, J. Geophys. Res., 109, B02111, https://doi.org/10.1029/2003JB002689, 2004. a, b
Ducea, M. N. and Chapman, A. D.: Sub-magmatic arc underplating by trench and
forearc materials in shallow subduction systems; A geologic perspective and
implications, Earth-Sci. Rev., 185, 763–779,
https://doi.org/10.1016/j.earscirev.2018.08.001, 2018. a
Farra, V. and Madariaga, R.: Non-linear reflection tomography, Geophys.
J., 95, 135–147, 1988. a
Goff, J. A. and Holliger, K.: Heterogeneity in the Crust and Upper
Mantle, Springer US, Springer, Boston, MA, https://doi.org/10.1007/978-1-4615-0103-9, 2003. a
Goncharov, A., Cooper, A., Chia, P., and O'Neil, P.: A new
dawn for Australian ocean-bottom seismography, Leading Edge, 35, 99–104, https://doi.org/10.1190/tle35010099.1, 2016. a
Górszczyk, A. and Operto, S.: GO_3D_OBS – The multi-parameter benchmark geomodel for seismic imaging methods assessment and next generation 3D surveys design (version 1.0), IG PAS Data Portal, https://doi.org/10.25171/InstGeoph_PAS_IGData-NCN36-2020-001, 2020.
Górszczyk, A., Operto, S., Schenini, L., and Yamada, Y.: Crustal-scale depth imaging via joint full-waveform inversion of ocean-bottom seismometer data and pre-stack depth migration of multichannel seismic data: a case study from the eastern Nankai Trough, Solid Earth, 10, 765–784, https://doi.org/10.5194/se-10-765-2019, 2019. a, b, c, d
Gras, C., Dagnino, D., Jiménez-Tejero, C. E., Meléndez, A., Sallarès, V., and Ranero, C. R.: Full-waveform inversion of short-offset, band-limited seismic data in the Alboran Basin (SE Iberia), Solid Earth, 10, 1833–1855, https://doi.org/10.5194/se-10-1833-2019, 2019. a
Gutscher, M.-A., Kukowski, N., Malavieille, J., and Lallemand, S.: Cyclical
behavior of thrust wedges: Insights from high basal friction sandbox
experiments, Geology, 24, 135–138,
https://doi.org/10.1130/0091-7613(1996)024<0135:cbotwi>2.3.co;2, 1996. a
Gutscher, M.-A., Kukowski, N., Malavieille, J., and Lallemand, S.: Material
transfer in accretionary wedges from analysis of a systematic series of
analog experiments, J. Struct. Geol., 20, 407–416,
https://doi.org/10.1016/s0191-8141(97)00096-5, 1998. a
Hashimoto, Y. and Kimura, G.: Underplating process from melange formation to
duplexing: Example from the Cretaceous Shimanto Belt, Kii Peninsula,
southwest Japan, Tectonics, 18, 92–107, https://doi.org/10.1029/1998tc900014, 1999. a
Heath, B. A., Hooft, E. E. E., Toomey, D. R., Papazachos, C. B., Nomikou, P.,
Paulatto, M., Morgan, J. V., and Warner, M. R.: Tectonism and Its Relation to
Magmatism Around Santorini Volcano From Upper Crustal P Wave Velocity,
J. Geophys. Res.-Sol. Ea., 124, 10610–10629,
https://doi.org/10.1029/2019jb017699, 2019. a
Herrmann, F. J.: Randomized sampling and sparsity: Getting more information
from fewer samples, Geophysics, 75, WB173–WB187, 2010. a
Hole, J. A., Zelt, C. A., and Pratt, R. G.: Advances in controlled-source
seismic imaging, Eos T. Am. Geophys. Un., 86, 177–184, 2005. a
Holliger, K., Levander, A. R., and Goff, J. A.: Stochastic modeling of the
reflective lower crust: petrophysical and geological evidence from the
Ivrea zone (Northern Italy), J. Geophys. Res., 98, 11967–11980, 1993. a
Huang, L. and Liu, C.-y.: Three Types of Flower Structures in a
Divergent-Wrench Fault Zone, J. Geophys. Res.-Sol. Ea.,
122, 10478–10497, https://doi.org/10.1002/2017JB014675, 2017. a
IG PAS Data Portal, https://dataportal.igf.edu.pl/dataset/go_3d_obs, last access: 24 March 2021. a
Jannane, M., Beydoun, W., Crase, E., Cao, D., Koren, Z., Landa, E., Mendes, M., Pica, A., Noble, M., Roeth, G., Singh, S., Snieder, R., Tarantola, A., and Trezeguet, D.: Wavelengths of Earth structures that can be resolved from seismic reflection data, Geophysics, 54, 906–910, 1989. a
Kameda, J., Inoue, S., Tanikawa, W., Yamaguchi, A., Hamada, Y., Hashimoto, Y., and Kimura, G.: Alteration and dehydration of subducting oceanic crust within subduction zones: implications for décollement step-down and plate-boundary seismogenesis, Earth Planet. Space, 69, 52, https://doi.org/10.1186/s40623-017-0635-1, 2017. a
Kamei, R., Pratt, R. G., and Tsuji, T.: On acoustic waveform tomography of
wide-angle OBS data – Strategies for preconditioning and inversion,
Geophys. J. Int., 192, 1250–1280, 2013. a
Kington, J. D. and Tobin, H. J.: Balanced Cross Sections, Shortening Estimates, and the Magnitude of Out-of-Sequence Thrusting in the Nankai Trough Accretionary Prism, Japan, AGU Fall Meeting 2011, San Francisco, USA, 5–9 December 2011, T21B–2364, 2011. a
Kodaira, S.: Subducted Seamount Imaged in the Rupture Zone of the 1946 Nankaido Earthquake, Science, 289, 104–106, https://doi.org/10.1126/science.289.5476.104, 2000. a
Kodaira, S., Nakanishi, A., Park, J. O., Ito, A., Tsuru, T., and Kaneda, Y.:
Cyclic ridge subduction at an inter-plate locked zone off Central Japan, Geophys. Res. Lett., 30, 1339, https://doi.org/10.1029/2002GL016595, 2003. a
Korenaga, J. and Sager, W. W.: Seismic tomography of Shatsky Rise by adaptive importance sampling, J. Geophys. Res., 117, B08102, https://doi.org/10.1029/2012jb009248, 2012. a
Korenaga, J., Holbrook, W. S., Kent, G. M., Kelemen, P. B., Detrick, R. S., Larsen, H. C., Hopper, J. R., and Dahl-Jensen, T.: Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography, J. Geophys. Res., 105, 21591–21614, 2000. a
Lallemand, S., Mallavieille, J., and Calassou, S.: Effects of ridge oceanic
subduction on accretionary wedges: Experimental modeling and marine
observations, Tectonics, 11, 1301–1313, 1992. a
Lallemant, S., Chamot-Rooke, N., Le Pichon, X., and Rangin, C.: Zenisu ridge: a deep intraoceanic thrust related to subduction, off Southwest Japan, Tectonophysics, 160, 151–174, 1989. a
Lambaré, G.: Stereotomography, Geophysics, 73, VE25–VE34, 2008. a
Le Pichon, X., Lallemant, S., Tokuyama, H., Thoué, F., Huchon, P., and
Henry, P.: Structure and evolution of the backstop in the eastern Nankai
trough area (Japan): immplicationsn for the soon-to-come Tokai earthquake,
Island Arc, 5, 440–454, 1996. a
Li, Q., Slopey, W., Rollins, F., Billette, F., Udengaard, C., and Thompson, B.: Leading a new deep water OBN acquisition era: Two 2017-2018 GoM OBN surveys, SEG Technical Program Expanded Abstracts 2019, 187–191, https://doi.org/10.1190/segam2019-3216437.1, 2019. a, b
Li, Y.-G. and Malin, P. E.: San Andreas Fault damage at SAFOD viewed with fault-guided waves, Geophys. Res. Lett., 35, L08304, https://doi.org/10.1029/2007gl032924, 2008. a
Lin, L.-F., Hsu, H.-H., Liu, C.-S., Chao, K.-H., Ko, C.-C., Chiu, S.-D., Hsieh, H.-S., Ma, Y.-F., and Chen, S.-C.: Marine 3D seismic volumes from 2D seismic survey with large streamer feathering, Mar. Geophys. Res., 40,
619–633, https://doi.org/10.1007/s11001-019-09391-9, 2019. a
Luo, Y. and Schuster, G. T.: Wave-equation traveltime inversion, Geophysics,
56, 645–653, 1991. a
Marjanović, M., Plessix, R.-É., Stopin, A., and Singh, S. C.: Elastic versus acoustic 3-D Full Waveform Inversion at the East Pacific Rise 9∘50′ N, Geophys. J. Int., 216, 1497–1506, https://doi.org/10.1093/gji/ggy503, 2018. a
Mei, J., Zhang, Z., Lin, F., Huang, R., Wang, P., and Mifflin, C.: Sparse nodes for velocity: Learnings from Atlantis OBN full-waveform inversion test, SEG Technical Program Expanded Abstracts 2019, 167–171, https://doi.org/10.1190/segam2019-3215208.1, 2019. a
Meléndez, A., Korenaga, J., Sallarès, V., Miniussi, A., and Ranero, C.: TOMO3D: 3-D joint refraction and reflection traveltime tomography
parallel code for active-source seismic data-synthetic test,
Geophys. J. Int., 203, 158–174, https://doi.org/10.1093/gji/ggv292,
2015. a
Menant, A., Angiboust, S., Monié, P., Oncken, O., and Guigner, J.-M.:
Brittle deformation during Alpine basal accretion and the origin of
seismicity nests above the subduction interface, Earth Planet. Sci. Lett., 487, 84–93, https://doi.org/10.1016/j.epsl.2018.01.029, 2018. a
Mercerat, E. D. and Nolet, G.: On the linearity of cross-correlation delay
times in finite-frequency tomography, Geophys. J. Int., 192, 681–687, 2013. a
Métivier, L., Allain, A., Brossier, R., Mérigot, Q., Oudet, E., and Virieux, J.: Optimal transport for mitigating cycle skipping in full waveform inversion: a graph space transform approach, Geophysics, 83, R515–R540, https://doi.org/10.1190/geo2017-0807.1, 2018. a
Miller, D., Oristaglio, M., and Beylkin, G.: A new slant on seismic imaging:
Migration and integral geometry, Geophysics, 52, 943–964, 1987. a
Mooney, W. D., Laske, G., and Masters, G.: CRUST 5.1: a global crustal model at 5∘ × 5∘, J. Geophys. Res., 103, 727–747, 1998. a
Mora, P. R.: Elastic wavefield inversion of reflection and transmission data, Geophysics, 53, 750–759, 1988. a
Morgan, J., Warner, M., Bell, R., Ashley, J., Barnes, D., Little, R., Roele,
K., and Jones, C.: Next-generation seismic experiments: wide-angle,
multi-azimuth, three-dimensional, full-waveform inversion, Geophys.
J. Int., 195, 1657–1678, 2013. a
Morgan, J., Warner, M., Arnoux, G., Hooft, E., Toomey, D., VanderBeek, B., and
Wilcock, W.: Next-generation seismic experiments – II:
wide-angle, multi-azimuth, 3-D, full-waveform inversion of sparse field
data, Geophys. J. Int., 204, 1342–1363, 2016. a
Neves, F. A. and Singh, S. C.: Sensitivity study of seismic
reflection/refraction data, Geophys. J. Int., 126, 470–476, 1996. a
Ni, D., Brenders, A., Dellinger, J., van Gestel, J.-P., and Li, Q.: Seismic modeling for a velocity survey at Atlantis, SEG Technical Program Expanded Abstracts 2019, 182–186, https://doi.org/10.1190/segam2019-3215801.1, 2019. a
Operto, S., Virieux, J., Dessa, J. X., and Pascal, G.: Crustal imaging from multifold ocean bottom seismometers data by frequency-domain full-waveform tomography: application to the eastern Nankai trough, J. Geophys. Res., 111, B09306, https://doi.org/10.1029/2005JB003835, 2006. a, b
Operto, S., Miniussi, A., Brossier, R., Combe, L., Métivier, L., Monteiller, V., Ribodetti, A., and Virieux, J.: Efficient 3-D frequency-domain mono-parameter full-waveform inversion of ocean-bottom cable data: application to Valhall in the visco-acoustic vertical transverse isotropic approximation, Geophys. J. Int., 202, 1362–1391, 2015. a
Pangman, P.: SEAM launched in March, Leading Edge, 26, 718–720, https://doi.org/10.1190/tle26060718.1, 2007. a
Park, J. O., Moore, G. F., Tsuru, T., Kodaira, S., and Kaneda, Y.: A subducted oceanic ridge influencing the Nankai megathrust earthquake rupture, Earth Planet. Sci. Lett., 217, 77–84, 2004. a
Park, J. O., Fujie, G., Wijerathne, L., Hori, T., Kodaira, S., Fukao, Y.,
Moore, G. F., Bangs, N. L., Kuramoto, S., and Taira, A.: A low-velocity zone with weak reflectivity along the Nankai subduction zone, Geology, 38, 283–286, 2010. a
Pozgay, S. H., Wiens, D. A., Conder, J. A., Shiobara, H., and Sugioka, H.:
Seismic attenuation tomography of the Mariana subduction system: Implications for thermal structure, volatile distribution, and slow spreading dynamics, Geochem. Geophy. Geosy., 10, Q04X05, https://doi.org/10.1029/2008gc002313, 2009. a
Pratt, R. G.: Waveform tomography – successes, cautionary tales, and future directions, in: Presented at the 70th Annual EAGE Conference and Exhibition, Roma, 9–12 June 2008, WO11, 2008. a
Pratt, R. G., Song, Z. M., Williamson, P. R., and Warner, M.: Two-dimensional
velocity models from wide-angle seismic data by wavefield inversion,
Geophys. J. Int., 124, 323–340, 1996. a
Qin, Y. and Singh, S. C.: Detailed seismic velocity of the incoming subducting sediments in the 2004 great Sumatra earthquake rupture zone from full waveform inversion of long offset seismic data, Geophys. Res. Lett.,
44, 3090–3099, https://doi.org/10.1002/2016gl072175, 2017. a
Raimbourg, H., Augier, R., Famin, V., Gadenne, L., Palazzin, G., Yamaguchi, A., and Kimura, G.: Long-term evolution of an accretionary prism: The case study of the Shimanto Belt, Kyushu, Japan, Tectonics, 33, 936–959,
https://doi.org/10.1002/2013tc003412, 2014. a
Ranero, C. R., Villaseñor, A., Morgan, J. P., and Weinrebe, W.: Relationship between bend-faulting at trenches and intermediate-depth seismicity, Geochem. Geophy. Geosy., 6, Q12002, https://doi.org/10.1029/2005gc000997, 2005. a
Ribodetti, A., Operto, S., Agudelo, W., Collot, J.-Y., and Virieux, J.: Joint ray + Born least-squares migration and simulated annealing optimization for high-resolution target-oriented quantitative seismic imaging, Geophysics, 76, R23–R42, 2011. a
Ross, M. R., Sprague, M. A., Felippa, C. A., and Park, K. C.: Treatment of
acoustic fluid-structure interaction by localized Lagrange multipliers and
comparison to alternative interface-coupling methods, Comput. Method. Appl. M., 198, 986–1005, 2009. a
Sambolian, S., Operto, S., Ribodetti, A., Tavakoli, B., and Virieux, J.: Parsimonious slope tomography based on eikonal solvers and the adjoint-state method, Geophys. J. Int., 218, 456–478, https://doi.org/10.1093/gji/ggz150, 2019. a
Shipp, R. M. and Singh, S. C.: Two-dimensional full wavefield inversion of
wide-aperture marine seismic streamer data, Geophys. J. Int., 151, 325–344, 2002. a
Shiraishi, K., Moore, G. F., Yamada, Y., Kinoshita, M., Sanada, Y., and Kimura, G.: Seismogenic zone structures revealed by improved 3D seismic images in the Nankai Trough off Kumano, Geochem. Geophy. Geosy., 20, 2252–2271, https://doi.org/10.1029/2018gc008173, 2019. a
Sirgue, L. and Pratt, R. G.: Efficient waveform inversion and imaging: a
strategy for selecting temporal frequencies, Geophysics, 69, 231–248, 2004. a
Tarantola, A.: Inversion of seismic reflection data in the acoustic
approximation, Geophysics, 49, 1259–1266, 1984. a
Tavakoli F., B., Operto, S., Ribodetti, A., and Virieux, J.: Slope tomography based on eikonal solvers and the adjoint-state method, Geophys. J. Int., 209, 1629–1647, 2017. a
Tavakoli F., B., Operto, S., Ribodetti, A., and Virieux, J.: Matrix-free anisotropic slope tomography: theory and application, Geophysics, 84,
R35–R57, 2019. a
Tong, P., Zhao, D., Yang, D., Yang, X., Chen, J., and Liu, Q.: Wave-equation-based travel-time seismic tomography – Part 1: Method, Solid Earth, 5, 1151–1168, https://doi.org/10.5194/se-5-1151-2014, 2014. a
Tsuji, T., Kodaira, S., Ashi, J., and Park, J.-O.: Widely distributed thrust
and strike-slip faults within subducting oceanic crust in the Nankai Trough
off the Kii Peninsula, Japan, Tectonophysics, 600, 52–62, 2013. a
Tsuji, T., Ashi, J., and Ikeda, Y.: Strike-slip motion of a mega-splay fault
system in the Nankai oblique subduction zone, Earth Planet. Space, 66,
120, https://doi.org/10.1186/1880-5981-66-120, 2014. a
Tsuji, T., Minato, S., Kamei, R., Tsuru, T., and Kimura, G.: 3D geometry of a
plate boundary fault related to the 2016 Off-Mie earthquake in the Nankai
subduction zone, Japan, Earth Planet. Sci. Lett., 478, 234–244,
https://doi.org/10.1016/j.epsl.2017.08.041, 2017. a
van Leeuwen, T. and Herrmann, F. J.: Mitigating local minima in full-waveform inversion by expanding the search space, Geophys. J. Int.,
195, 661–667, https://doi.org/10.1093/gji/ggt258, 2013. a
Vannucchi, P., Sage, F., Morgan, J. P., Remitti, F., and Collot, J.-Y.: Toward a dynamic concept of the subduction channel at erosive convergent margins with implications for interplate material transfer, Geochem. Geophy. Geosy., 13, Q02003, https://doi.org/10.1029/2011gc003846, 2012. a
Versteeg, R.: The Marmousi experience: Velocity model determination on a
synthetic complex data set, Leading Edge, 13, 927–936,
https://doi.org/10.1190/1.1437051, 1994. a
Virieux, J. and Operto, S.: An overview of full waveform inversion in
exploration geophysics, Geophysics, 74, WCC1–WCC26, 2009. a
von Huene, R., Ranero, C. R., and Vannucchi, P.: Generic model of subduction erosion, Geology, 32, 913–916, https://doi.org/10.1130/g20563.1, 2004. a
Warner, M. and Guasch, L.: Adaptive waveform inversion: Theory, Geophysics, 81, R429–R445, 2016. a
Wellmann, F. and Caumon, G.: 3-D Structural geological models: Concepts, methods, and uncertainties, Adv. Geophys., 59, 1–121, https://doi.org/10.1016/bs.agph.2018.09.001, 2018. a
Wiggens, R. A., Frazier, G. A., Sweet, J., and Apsel, R.: Modeling strong
motions from major earthquakes, in: Proc. of the Second International
Conference on Microzonation for Safer Construction: Research and
Application, San Francisco, California, USA, 26 November–1 December 1978, 693–700, 1978. a, b
Wu, R. S. and Toksöz, M. N.: Diffraction tomography and multisource
holography applied to seismic imaging, Geophysics, 52, 11–25, 1987. a
Wu, Z. and Alkhalifah, T.: Simultaneous inversion of the background velocity
and the perturbation in full-waveform inversion, Geophysics, 80, R317–R329, 2015. a
Xu, S., Wang, D., Chen, F., Lambaré, G., and Zhang, Y.: Inversion on Reflected Seismic Wave, SEG Technical Program Expanded Abstracts 2012, 1–7, https://doi.org/10.1190/segam2012-1473.1, 2012. a
Yang, P., Brossier, R., Métivier, L., and Virieux, J.: A review on the systematic formulation of 3D multiparameter full waveform inversion in viscoelastic medium, Geophys. J. Int., 207, 129–149, https://doi.org/10.1093/gji/ggw262, 2016. a
Zelt, C. and Barton, P. J.: Three-dimensional seismic refraction tomography: a comparison of two methods applied to data from the Faeroe Basin, J. Geophys. Res., 103, 7187–7210, 1998. a
Zelt, C. A. and Chen, J.: Frequency-dependent traveltime tomography for
near-surface seismic refraction data, Geophys. J. Int., 207, 72–88, 2016. a
Zhang, Z. and Stewart, R. R.: Seismic attenuation and well log analysis in a
heavy oilfield, SEG Technical Program Expanded Abstracts 2008, 1784–1788, https://doi.org/10.1190/1.3059251, 2008. a, b
Zhou, W., Brossier, R., Operto, S., and Virieux, J.: Full Waveform Inversion of Diving & Reflected Waves for Velocity Model Building with Impedance
Inversion Based on Scale Separation, Geophys. J. Int., 202,
1535–1554, 2015. a
Short summary
We present the 3D multi-parameter synthetic geomodel of the subduction zone, as well as the workflow designed to implement all of its components. The model contains different geological structures of various scales and complexities. It is intended to serve as a tool for the geophysical community to validate imaging approaches, design acquisition techniques, estimate uncertainties, benchmark computing approaches, etc.
We present the 3D multi-parameter synthetic geomodel of the subduction zone, as well as the...