Model evaluation paper 18 Dec 2020
Model evaluation paper | 18 Dec 2020
Synthetic seismicity distribution in Guerrero–Oaxaca subduction zone, Mexico, and its implications on the role of asperities in Gutenberg–Richter law
Marisol Monterrubio-Velasco et al.
Related authors
Marisol Monterrubio-Velasco, F. Ramón Zúñiga, José Carlos Carrasco-Jiménez, Víctor Márquez-Ramírez, and Josep de la Puente
Solid Earth, 10, 1519–1540, https://doi.org/10.5194/se-10-1519-2019, https://doi.org/10.5194/se-10-1519-2019, 2019
Short summary
Short summary
Earthquake aftershocks display spatiotemporal correlations arising from their self-organized critical behavior. Stochastical models such as the fiber bundle (FBM) permit the use of an analog of the physical model that produces a statistical behavior with many similarities to real series. In this work, a new model based on FBM that includes geometrical faults systems is proposed. Our analysis focuses on aftershock statistics, and as a study case we modeled the Northridge sequence.
Marisol Monterrubio-Velasco, Quetzalcóatl Rodríguez-Pérez, Ramón Zúñiga, Doreen Scholz, Armando Aguilar-Meléndez, and Josep de la Puente
Geosci. Model Dev., 12, 1809–1831, https://doi.org/10.5194/gmd-12-1809-2019, https://doi.org/10.5194/gmd-12-1809-2019, 2019
Short summary
Short summary
Earthquakes are the result of brittle failure within the heterogeneous crust of the Earth. In this article, we present a computer code called the stochasTic Rupture Earthquake MOdeL, TREMOL v0.1, developed to investigate the rupture process of asperities on the earthquake rupture surface. According to our results, TREMOL is able to simulate the magnitudes of real earthquakes, showing that it can be a powerful tool to deliver promising new insights into earthquake rupture processes.
Raphael S. M. De Plaen, Víctor Hugo Márquez-Ramírez, Xyoli Pérez-Campos, F. Ramón Zuñiga, Quetzalcoatl Rodríguez-Pérez, Juan Martín Gómez González, and Lucia Capra
Solid Earth, 12, 713–724, https://doi.org/10.5194/se-12-713-2021, https://doi.org/10.5194/se-12-713-2021, 2021
Short summary
Short summary
COVID-19 pandemic lockdowns in countries with a dominant informal economy have been a greater challenge than in other places. This motivated the monitoring of the mobility of populations with seismic noise throughout the various phases of lockdown and in the city of Querétaro (central Mexico). Our results emphasize the benefit of densifying urban seismic networks, even with low-cost instruments, to observe variations in mobility at the city scale over exclusively relying on mobile technology.
Quetzalcoatl Rodríguez-Pérez, Víctor Hugo Márquez-Ramírez, and Francisco Ramón Zúñiga
Solid Earth, 11, 791–806, https://doi.org/10.5194/se-11-791-2020, https://doi.org/10.5194/se-11-791-2020, 2020
Short summary
Short summary
We analyzed reported oceanic earthquakes in Mexico. We used data from different agencies. By analyzing the occurrence of earthquakes, we can extract relevant information such as the level of seismic activity, the size of the earthquakes, hypocenter depths, etc. We also studied the focal mechanisms to classify the different types of earthquakes and calculated the stress in the region. The results will be useful to understand the physics of oceanic earthquakes.
Marisol Monterrubio-Velasco, F. Ramón Zúñiga, José Carlos Carrasco-Jiménez, Víctor Márquez-Ramírez, and Josep de la Puente
Solid Earth, 10, 1519–1540, https://doi.org/10.5194/se-10-1519-2019, https://doi.org/10.5194/se-10-1519-2019, 2019
Short summary
Short summary
Earthquake aftershocks display spatiotemporal correlations arising from their self-organized critical behavior. Stochastical models such as the fiber bundle (FBM) permit the use of an analog of the physical model that produces a statistical behavior with many similarities to real series. In this work, a new model based on FBM that includes geometrical faults systems is proposed. Our analysis focuses on aftershock statistics, and as a study case we modeled the Northridge sequence.
Marisol Monterrubio-Velasco, Quetzalcóatl Rodríguez-Pérez, Ramón Zúñiga, Doreen Scholz, Armando Aguilar-Meléndez, and Josep de la Puente
Geosci. Model Dev., 12, 1809–1831, https://doi.org/10.5194/gmd-12-1809-2019, https://doi.org/10.5194/gmd-12-1809-2019, 2019
Short summary
Short summary
Earthquakes are the result of brittle failure within the heterogeneous crust of the Earth. In this article, we present a computer code called the stochasTic Rupture Earthquake MOdeL, TREMOL v0.1, developed to investigate the rupture process of asperities on the earthquake rupture surface. According to our results, TREMOL is able to simulate the magnitudes of real earthquakes, showing that it can be a powerful tool to deliver promising new insights into earthquake rupture processes.
A. Clemente-Chavez, F. R. Zúñiga, J. Lermo, A. Figueroa-Soto, C. Valdés, M. Montiel, O. Chavez, and M. Arroyo
Nat. Hazards Earth Syst. Sci., 14, 1391–1406, https://doi.org/10.5194/nhess-14-1391-2014, https://doi.org/10.5194/nhess-14-1391-2014, 2014
A. Clemente-Chavez, A. Figueroa-Soto, F. R. Zúñiga, M. Arroyo, M. Montiel, and O. Chavez
Nat. Hazards Earth Syst. Sci., 13, 2521–2531, https://doi.org/10.5194/nhess-13-2521-2013, https://doi.org/10.5194/nhess-13-2521-2013, 2013
Related subject area
Solid Earth
LoopStructural 1.0: time-aware geological modelling
Sub3DNet1.0: a deep-learning model for regional-scale 3D subsurface structure mapping
Analytical solutions for mantle flow in cylindrical and spherical shells
Towards a model for structured mass movements: the OpenLISEM hazard model 2.0a
GO_3D_OBS: the multi-parameter benchmark geomodel for seismic imaging method assessment and next-generation 3D survey design (version 1.0)
PLUME-MoM-TSM 1.0.0: a volcanic column and umbrella cloud spreading model
HydrothermalFoam v1.0: a 3-D hydrothermal transport model for natural submarine hydrothermal systems
A new open-source viscoelastic solid earth deformation module implemented in Elmer (v8.4)
CobWeb 1.0: machine learning toolbox for tomographic imaging
pygeodyn 1.1.0: a Python package for geomagnetic data assimilation
IMEX_SfloW2D 1.0: a depth-averaged numerical flow model for pyroclastic avalanches
A multilayer approach and its application to model a local gravimetric quasi-geoid model over the North Sea: QGNSea V1.0
Development of an automatic delineation of cliff top and toe on very irregular planform coastlines (CliffMetrics v1.0)
Bayesian inference of earthquake rupture models using polynomial chaos expansion
Geodynamic diagnostics, scientific visualisation and StagLab 3.0
SaLEM (v1.0) – the Soil and Landscape Evolution Model (SaLEM) for simulation of regolith depth in periglacial environments
SILLi 1.0: a 1-D numerical tool quantifying the thermal effects of sill intrusions
The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution
Ellipsoids (v1.0): 3-D magnetic modelling of ellipsoidal bodies
Global-scale modelling of melting and isotopic evolution of Earth's mantle: melting modules for TERRA
pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling
Open-source modular solutions for flexural isostasy: gFlex v1.0
FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation
PyXRD v0.6.7: a free and open-source program to quantify disordered phyllosilicates using multi-specimen X-ray diffraction profile fitting
r.randomwalk v1, a multi-functional conceptual tool for mass movement routing
Improving the global applicability of the RUSLE model – adjustment of the topographical and rainfall erosivity factors
PLUME-MoM 1.0: A new integral model of volcanic plumes based on the method of moments
Thermo-hydro-mechanical processes in fractured rock formations during a glacial advance
On the sensitivity of 3-D thermal convection codes to numerical discretization: a model intercomparison
Verification of an ADER-DG method for complex dynamic rupture problems
A semi-implicit, second-order-accurate numerical model for multiphase underexpanded volcanic jets
Numerical model of crustal accretion and cooling rates of fast-spreading mid-ocean ridges
A hierarchical mesh refinement technique for global 3-D spherical mantle convection modelling
Lachlan Grose, Laurent Ailleres, Gautier Laurent, and Mark Jessell
Geosci. Model Dev., 14, 3915–3937, https://doi.org/10.5194/gmd-14-3915-2021, https://doi.org/10.5194/gmd-14-3915-2021, 2021
Short summary
Short summary
LoopStructural is an open-source 3D geological modelling library with a model design allowing for multiple different algorithms to be used for comparison for the same geology. Geological structures are modelled using structural geology concepts and techniques, allowing for complex structures such as overprinted folds and faults to be modelled. In the paper, we demonstrate automatically generating a 3-D model from map2loop-processed geological survey data of the Flinders Ranges, South Australia.
Zhenjiao Jiang, Dirk Mallants, Lei Gao, Tim Munday, Gregoire Mariethoz, and Luk Peeters
Geosci. Model Dev., 14, 3421–3435, https://doi.org/10.5194/gmd-14-3421-2021, https://doi.org/10.5194/gmd-14-3421-2021, 2021
Short summary
Short summary
Fast and reliable tools are required to extract hidden information from big geophysical and remote sensing data. A deep-learning model in 3D image construction from 2D image(s) is here developed for paleovalley mapping from globally available digital elevation data. The outstanding performance for 3D subsurface imaging gives confidence that this generic novel tool will make better use of existing geophysical and remote sensing data for improved management of limited earth resources.
Stephan C. Kramer, D. Rhodri Davies, and Cian R. Wilson
Geosci. Model Dev., 14, 1899–1919, https://doi.org/10.5194/gmd-14-1899-2021, https://doi.org/10.5194/gmd-14-1899-2021, 2021
Short summary
Short summary
Computational models of Earth's mantle require rigorous verification and validation. Analytical solutions of the underlying Stokes equations provide a method to verify that these equations are accurately solved for. However, their derivation in spherical and cylindrical shell domains with physically relevant boundary conditions is involved. This paper provides a number of solutions. They are provided in a Python package (Assess) and their use is demonstrated in a convergence study with Fluidity.
Bastian van den Bout, Theo van Asch, Wei Hu, Chenxiao X. Tang, Olga Mavrouli, Victor G. Jetten, and Cees J. van Westen
Geosci. Model Dev., 14, 1841–1864, https://doi.org/10.5194/gmd-14-1841-2021, https://doi.org/10.5194/gmd-14-1841-2021, 2021
Short summary
Short summary
Landslides, debris flows and other types of dense gravity-driven flows threaten livelihoods around the globe. Understanding the mechanics of these flows can be crucial for predicting their behaviour and reducing disaster risk. Numerical models assume that the solids and fluids of the flow are unstructured. The newly presented model captures the internal structure during movement. This important step can lead to more accurate predictions of landslide movement.
Andrzej Górszczyk and Stéphane Operto
Geosci. Model Dev., 14, 1773–1799, https://doi.org/10.5194/gmd-14-1773-2021, https://doi.org/10.5194/gmd-14-1773-2021, 2021
Short summary
Short summary
We present the 3D multi-parameter synthetic geomodel of the subduction zone, as well as the workflow designed to implement all of its components. The model contains different geological structures of various scales and complexities. It is intended to serve as a tool for the geophysical community to validate imaging approaches, design acquisition techniques, estimate uncertainties, benchmark computing approaches, etc.
Mattia de' Michieli Vitturi and Federica Pardini
Geosci. Model Dev., 14, 1345–1377, https://doi.org/10.5194/gmd-14-1345-2021, https://doi.org/10.5194/gmd-14-1345-2021, 2021
Short summary
Short summary
Here, we present PLUME-MoM-TSM, a volcanic plume model that allows us to quantify the formation of aggregates during the rise of the plume, model the phase change of water, and include the possibility to simulate the initial spreading of the tephra umbrella cloud intruding from the volcanic column into the atmosphere. The model is first applied to the 2015 Calbuco eruption (Chile) and provides an analytical relationship between the upwind spreading and some characteristic of the volcanic column.
Zhikui Guo, Lars Rüpke, and Chunhui Tao
Geosci. Model Dev., 13, 6547–6565, https://doi.org/10.5194/gmd-13-6547-2020, https://doi.org/10.5194/gmd-13-6547-2020, 2020
Short summary
Short summary
We present the 3-D hydro-thermo-transport model HydrothermalFoam v1.0, which we designed to provide the marine geosciences community with an easy-to-use and state-of-the-art tool for simulating mass and energy transport in submarine hydrothermal systems. HydrothermalFoam is based on the popular open-source platform OpenFOAM, comes with a number of tutorials, and is published under the GNU General Public License v3.0.
Thomas Zwinger, Grace A. Nield, Juha Ruokolainen, and Matt A. King
Geosci. Model Dev., 13, 1155–1164, https://doi.org/10.5194/gmd-13-1155-2020, https://doi.org/10.5194/gmd-13-1155-2020, 2020
Short summary
Short summary
We present a newly developed flat-earth model, Elmer/Earth, for viscoelastic treatment of solid earth deformation under ice loads. Unlike many previous approaches with proprietary software, this model is based on the open-source FEM code Elmer, with the advantage for scientists to apply and alter the model without license constraints. The new-generation full-stress ice-sheet model Elmer/Ice shares the same code base, enabling future coupled ice-sheet–glacial-isostatic-adjustment simulations.
Swarup Chauhan, Kathleen Sell, Wolfram Rühaak, Thorsten Wille, and Ingo Sass
Geosci. Model Dev., 13, 315–334, https://doi.org/10.5194/gmd-13-315-2020, https://doi.org/10.5194/gmd-13-315-2020, 2020
Short summary
Short summary
We present CobWeb 1.0, a graphical user interface for analysing tomographic images of geomaterials. CobWeb offers different machine learning techniques for accurate multiphase image segmentation and visualizing material specific parameters such as pore size distribution, relative porosity and volume fraction. We demonstrate a novel approach of dual filtration and dual segmentation to eliminate edge enhancement artefact in synchrotron-tomographic datasets and provide the computational code.
Loïc Huder, Nicolas Gillet, and Franck Thollard
Geosci. Model Dev., 12, 3795–3803, https://doi.org/10.5194/gmd-12-3795-2019, https://doi.org/10.5194/gmd-12-3795-2019, 2019
Short summary
Short summary
The pygeodyn package is a geomagnetic data assimilation tool written in Python. It gives access to the Earth's core flow dynamics, controlled by geomagnetic observations, by means of a reduced numerical model anchored to geodynamo simulation statistics. It aims to provide the community with a user-friendly and tunable data assimilation algorithm. It can be used for education, geomagnetic model production or tests in conjunction with webgeodyn, a set of visualization tools for geomagnetic models.
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, Giacomo Lari, and Alvaro Aravena
Geosci. Model Dev., 12, 581–595, https://doi.org/10.5194/gmd-12-581-2019, https://doi.org/10.5194/gmd-12-581-2019, 2019
Short summary
Short summary
Pyroclastic avalanches are a type of granular flow generated at active volcanoes by different mechanisms, including the collapse of steep pyroclastic deposits (e.g., scoria and ash cones) and fountaining during moderately explosive eruptions. We present IMEX_SfloW2D, a depth-averaged flow model describing the granular mixture as a single-phase granular fluid. Benchmark cases and preliminary application to the simulation of the 11 February pyroclastic avalanche at Mt. Etna (Italy) are shown.
Yihao Wu, Zhicai Luo, Bo Zhong, and Chuang Xu
Geosci. Model Dev., 11, 4797–4815, https://doi.org/10.5194/gmd-11-4797-2018, https://doi.org/10.5194/gmd-11-4797-2018, 2018
Short summary
Short summary
A multilayer approach is parameterized for model development, and the multiple layers are located at different depths beneath the Earth’s surface. This method may be beneficial for gravity/manget field modeling, which may outperform the traditional single-layer approach.
Andres Payo, Bismarck Jigena Antelo, Martin Hurst, Monica Palaseanu-Lovejoy, Chris Williams, Gareth Jenkins, Kathryn Lee, David Favis-Mortlock, Andrew Barkwith, and Michael A. Ellis
Geosci. Model Dev., 11, 4317–4337, https://doi.org/10.5194/gmd-11-4317-2018, https://doi.org/10.5194/gmd-11-4317-2018, 2018
Short summary
Short summary
We describe a new algorithm that automatically delineates the cliff top and toe of a cliffed coastline from a digital elevation model (DEM). The algorithm builds upon existing methods but is specifically designed to resolve very irregular planform coastlines with many bays and capes, such as parts of the coastline of Great Britain.
Hugo Cruz-Jiménez, Guotu Li, Paul Martin Mai, Ibrahim Hoteit, and Omar M. Knio
Geosci. Model Dev., 11, 3071–3088, https://doi.org/10.5194/gmd-11-3071-2018, https://doi.org/10.5194/gmd-11-3071-2018, 2018
Short summary
Short summary
One of the most important challenges seismologists and earthquake engineers face is reliably estimating ground motion in an area prone to large damaging earthquakes. This study aimed at better understanding the relationship between characteristics of geological faults (e.g., hypocenter location, rupture size/location, etc.) and resulting ground motion, via statistical analysis of a rupture simulation model. This study provides important insight on ground-motion responses to geological faults.
Fabio Crameri
Geosci. Model Dev., 11, 2541–2562, https://doi.org/10.5194/gmd-11-2541-2018, https://doi.org/10.5194/gmd-11-2541-2018, 2018
Short summary
Short summary
Firstly, this study acts as a compilation of key geodynamic diagnostics and describes how to automatise them for a more efficient scientific procedure. Secondly, it outlines today's key pitfalls of scientific visualisation and provides means to circumvent them with, for example, a novel set of fully scientific colour maps. Thirdly, it introduces StagLab 3.0, a software that applies such fully automated diagnostics and state-of-the-art visualisation in the blink of an eye.
Michael Bock, Olaf Conrad, Andreas Günther, Ernst Gehrt, Rainer Baritz, and Jürgen Böhner
Geosci. Model Dev., 11, 1641–1652, https://doi.org/10.5194/gmd-11-1641-2018, https://doi.org/10.5194/gmd-11-1641-2018, 2018
Short summary
Short summary
We introduce the Soil and
Landscape Evolution Model (SaLEM) for the prediction of soil parent material evolution following a lithologically differentiated approach. The GIS tool is working within the software framework SAGA GIS. Weathering, erosion and transport functions are calibrated using extrinsic and intrinsic parameter data. First results indicate that our approach shows evidence for the spatiotemporal prediction of soil parental material properties.
Karthik Iyer, Henrik Svensen, and Daniel W. Schmid
Geosci. Model Dev., 11, 43–60, https://doi.org/10.5194/gmd-11-43-2018, https://doi.org/10.5194/gmd-11-43-2018, 2018
Short summary
Short summary
Igneous intrusions in sedimentary basins have a profound effect on the thermal structure of the hosting sedimentary rocks. In this paper, we present a user-friendly 1-D FEM-based tool, SILLi, that calculates the thermal effects of sill intrusions on the enclosing sedimentary stratigraphy. The motivation is to make a standardized numerical toolkit openly available that can be widely used by scientists with different backgrounds to test the effects of magmatic bodies in a wide variety of settings.
Charles M. Shobe, Gregory E. Tucker, and Katherine R. Barnhart
Geosci. Model Dev., 10, 4577–4604, https://doi.org/10.5194/gmd-10-4577-2017, https://doi.org/10.5194/gmd-10-4577-2017, 2017
Short summary
Short summary
Rivers control the movement of sediment and nutrients across Earth's surface. Understanding how rivers change through time is important for mitigating natural hazards and predicting Earth's response to climate change. We develop a new computer model for predicting how rivers cut through sediment and rock. Our model is designed to be joined with models of flooding, landslides, vegetation change, and other factors to provide a comprehensive toolbox for predicting changes to the landscape.
Diego Takahashi and Vanderlei C. Oliveira Jr.
Geosci. Model Dev., 10, 3591–3608, https://doi.org/10.5194/gmd-10-3591-2017, https://doi.org/10.5194/gmd-10-3591-2017, 2017
Short summary
Short summary
Ellipsoids are the only bodies for which the self-demagnetization can be treated analytically. This property is useful for modelling compact orebodies having high susceptibility. We present a review of the magnetic modelling of ellipsoids, propose a way of determining the isotropic susceptibility above which the self-demagnetization must be considered, and discuss the ambiguity between confocal ellipsoids, as well as provide a set of routines to model the magnetic field produced by ellipsoids.
Hein J. van Heck, J. Huw Davies, Tim Elliott, and Don Porcelli
Geosci. Model Dev., 9, 1399–1411, https://doi.org/10.5194/gmd-9-1399-2016, https://doi.org/10.5194/gmd-9-1399-2016, 2016
Short summary
Short summary
Currently, extensive geochemical databases of surface observations exist, but satisfying explanations of underlying mantle processes are lacking. We have implemented a new way to track both bulk compositions and concentrations of trace elements in a mantle convection code. In our model, chemical fractionation happens at evolving melting zones. We compare our results to a semi-analytical theory relating observed arrays of correlated Pb isotope compositions to melting age distributions.
J. Florian Wellmann, Sam T. Thiele, Mark D. Lindsay, and Mark W. Jessell
Geosci. Model Dev., 9, 1019–1035, https://doi.org/10.5194/gmd-9-1019-2016, https://doi.org/10.5194/gmd-9-1019-2016, 2016
Short summary
Short summary
We often obtain knowledge about the subsurface in the form of structural geological models, as a basis for subsurface usage or resource extraction. Here, we provide a modelling code to construct such models on the basis of significant deformational events in geological history, encapsulated in kinematic equations. Our methods simplify complex dynamic processes, but enable us to evaluate how events interact, and finally how certain we are about predictions of structures in the subsurface.
A. D. Wickert
Geosci. Model Dev., 9, 997–1017, https://doi.org/10.5194/gmd-9-997-2016, https://doi.org/10.5194/gmd-9-997-2016, 2016
Short summary
Short summary
Earth's lithosphere bends beneath surface loads, such as ice, sediments, and mountain belts. The pattern of this bending, or flexural isostatic response, is a function of both the loads and the spatially variable strength of the lithosphere. gFlex is an easy-to-use program to calculate flexural isostastic response, and may be used to better understand how ice sheets, glaciers, large lakes, sedimentary basins, volcanoes, and other surface loads interact with the solid Earth.
A. Folch, A. Costa, and G. Macedonio
Geosci. Model Dev., 9, 431–450, https://doi.org/10.5194/gmd-9-431-2016, https://doi.org/10.5194/gmd-9-431-2016, 2016
Short summary
Short summary
We present FPLUME-1.0, a steady-state 1-D cross-section-averaged eruption column model based on the buoyant plume theory (BPT). The model accounts for plume bending by wind, entrainment of ambient moisture, effects of water phase changes, particle fallout and re-entrainment, a new parameterization for the air entrainment coefficients and a model for wet aggregation of ash particles in presence of liquid water or ice.
M. Dumon and E. Van Ranst
Geosci. Model Dev., 9, 41–57, https://doi.org/10.5194/gmd-9-41-2016, https://doi.org/10.5194/gmd-9-41-2016, 2016
Short summary
Short summary
This paper presents a FOSS model called PyXRD used to improve the quantification of complex mixed-layer phyllosilicate assemblages using X-ray diffraction. The novelty of this model is the ab initio incorporation of the multi-specimen method, making it possible to share phases and their parameters across multiple specimens. We present results from a comparison of PyXRD with Sybilla v2.2.2 and a number of theoretical experiments illustrating the use of the multi-specimen set-up.
M. Mergili, J. Krenn, and H.-J. Chu
Geosci. Model Dev., 8, 4027–4043, https://doi.org/10.5194/gmd-8-4027-2015, https://doi.org/10.5194/gmd-8-4027-2015, 2015
Short summary
Short summary
r.randomwalk is a flexible and multi-functional open-source GIS tool for simulating the propagation of mass movements. Mass points are routed from given release pixels through a digital elevation model until a defined break criterion is reached. In contrast to existing tools, r.randomwalk includes functionalities to account for parameter uncertainties, and it offers built-in functions for validation and visualization. We show the key functionalities of r.randomwalk for three test areas.
V. Naipal, C. Reick, J. Pongratz, and K. Van Oost
Geosci. Model Dev., 8, 2893–2913, https://doi.org/10.5194/gmd-8-2893-2015, https://doi.org/10.5194/gmd-8-2893-2015, 2015
Short summary
Short summary
We adjusted the topographical and rainfall erosivity factors that are the triggers of erosion in the Revised Universal Soil Loss Equation (RUSLE) model to make the model better applicable at coarse resolution on a global scale. The adjusted RUSLE model compares much better to current high resolution estimates of soil erosion in the USA and Europe. It therefore provides a basis for estimating past and future global impacts of soil erosion on climate with the use of Earth system models.
M. de' Michieli Vitturi, A. Neri, and S. Barsotti
Geosci. Model Dev., 8, 2447–2463, https://doi.org/10.5194/gmd-8-2447-2015, https://doi.org/10.5194/gmd-8-2447-2015, 2015
Short summary
Short summary
In this paper a new mathematical model of volcanic plume, named Plume-MoM, is presented. The model is based on the method of moments and it is able to describe the continuous variability in the grain size distribution (GSD) of the pyroclastic mixture ejected at the vent, crucial to characterize the source conditions of ash dispersal models. Results show that the GSD at the top of the plume is similar to that at the base and that plume height is weakly affected by the parameters of the GSD.
A. P. S. Selvadurai, A. P. Suvorov, and P. A. Selvadurai
Geosci. Model Dev., 8, 2167–2185, https://doi.org/10.5194/gmd-8-2167-2015, https://doi.org/10.5194/gmd-8-2167-2015, 2015
Short summary
Short summary
The paper examines the coupled thermo-hydro-mechanical (THM) processes that develop in a fractured rock region within a fluid-saturated rock mass due to loads imposed by an advancing glacier. This scenario needs to be examined in order to assess the suitability of potential sites for the location of deep geologic repositories for the storage of high-level nuclear waste. The THM processes are examined using a computational multiphysics approach.
P.-A Arrial, N. Flyer, G. B. Wright, and L. H. Kellogg
Geosci. Model Dev., 7, 2065–2076, https://doi.org/10.5194/gmd-7-2065-2014, https://doi.org/10.5194/gmd-7-2065-2014, 2014
C. Pelties, A.-A. Gabriel, and J.-P. Ampuero
Geosci. Model Dev., 7, 847–866, https://doi.org/10.5194/gmd-7-847-2014, https://doi.org/10.5194/gmd-7-847-2014, 2014
S. Carcano, L. Bonaventura, T. Esposti Ongaro, and A. Neri
Geosci. Model Dev., 6, 1905–1924, https://doi.org/10.5194/gmd-6-1905-2013, https://doi.org/10.5194/gmd-6-1905-2013, 2013
P. Machetel and C. J. Garrido
Geosci. Model Dev., 6, 1659–1672, https://doi.org/10.5194/gmd-6-1659-2013, https://doi.org/10.5194/gmd-6-1659-2013, 2013
D. R. Davies, J. H. Davies, P. C. Bollada, O. Hassan, K. Morgan, and P. Nithiarasu
Geosci. Model Dev., 6, 1095–1107, https://doi.org/10.5194/gmd-6-1095-2013, https://doi.org/10.5194/gmd-6-1095-2013, 2013
Cited articles
Aki, K. and Richards, P. G.: Quantitative seismology, University Science Books, ISBN 0935702962, 2002. a
Blaser, L., Krüger, F., Ohrnberger, M., and Scherbaum, F.: Scaling
relations of earthquake source parameter estimates with special focus on
subduction environment, Bull. Seismol. Soc. Am.,
100, 2914–2926, 2010. a
Console, R., Carluccio, R., Papadimitriou, E., and Karakostas, V.: Synthetic
earthquake catalogs simulating seismic activity in the Corinth Gulf, Greece,
fault system, J. Geophys. Res.-Sol. Ea., 120, 326–343,
2015. a
Cornell, C. A.: Engineering seismic risk analysis, Bull. Seismol. Soc. Am., 58, 1583–1606, 1968. a
Dahmen, K., Fisher, D., Ben-Zion, Y., Ertas, D., and Ramanathan, S.:
Gutenberg-Richter and characteristic earthquake behavior in Simple Models of
Heterogeneous Faults, in: AGU Spring Meeting Abstracts, 10–14 December 2001, San Francisco, USA, 2001. a
Dalguer, L. A., Miyake, H., and Irikura, K.: Characterization of dynamic
asperity source models for simulating strong ground motion, in: Proceedings
of the 13th World Conference on Earthquake Engineering, 1–6 August 2004, Vancouver, B.C., Canada, 3286, 2004. a
Evernden, J.: Study of regional seismicity and associated problems, Bull. Seismol. Soc. Am., 60, 393–446, 1970. a
Hansen, A., Hemmer, P. C., and Pradhan, S.: The fiber bundle model: modeling
failure in materials, John Wiley & Sons, 2015. a
Heimpel, M. H.: Characteristic scales of earthquake rupture from numerical models, Nonlin. Processes Geophys., 10, 573–584, https://doi.org/10.5194/npg-10-573-2003, 2003. a, b, c
Lay, T., Kanamori, H., and Ruff, L.: The asperity model and the nature of large subduction zone earthquakes, Earthquake Prediction Research 1, Terra Scientific Publishing Company (Terrapub), Tokyo, Japan, 3–71, 1982. a
Lomnitz-Adler, J.: Asperity models and characteristic earthquakes, Geophys. J. Int., 83, 435–450, 1985. a
Mai, P. M. and Beroza, G. C.: Source scaling properties from
finite-fault-rupture models, Bull. Seismol. Soc. Am., 90, 604–615, 2000. a
Mai, P. M., Spudich, P., and Boatwright, J.: Hypocenter locations in
finite-source rupture models, Bull. Seismol. Soc. Am., 95, 965–980, 2005. a
Monterrubio-Velasco, M.: TREMOL_singlets, GitHub, available at: https://github.com/monterrubio-velasco/TREMOL_singlets/tree/TREMOL_singlets_SUB3study, last access: 17 December 2020. a
Monterrubio-Velasco, M., Rodríguez-Pérez, Q., Zúñiga, R., Scholz, D., Aguilar-Meléndez, A., and de la Puente, J.: A stochastic rupture earthquake code based on the fiber bundle model (TREMOL v0.1): application to Mexican subduction earthquakes, Geosci. Model Dev., 12, 1809–1831, https://doi.org/10.5194/gmd-12-1809-2019, 2019a. a, b, c, d, e, f
Monterrubio-Velasco, M., Zúñiga, F. R., Carrasco-Jiménez, J. C., Márquez-Ramírez, V., and de la Puente, J.: Modeling active fault systems and seismic events by using a fiber bundle model – example case: the Northridge aftershock sequence, Solid Earth, 10, 1519–1540, https://doi.org/10.5194/se-10-1519-2019, 2019b. a
Murotani, S., Miyake, H., and Koketsu, K.: Scaling of characterized slip models for plate-boundary earthquakes, Earth Planet. space, 60, 987–991, 2008. a
Ozturk, S.: Statistical correlation between b-value and fractal dimension
regarding Turkish epicentre distribution, Earth Sci. Res. J., 16, 103–108, 2012. a
Parsons, T. and Geist, E. L.: Is there a basis for preferring characteristic
earthquakes over a Gutenberg–Richter distribution in probabilistic
earthquake forecasting?, Bull. Seismol. Soc. Am.,
99, 2012–2019, 2009. a
Pradhan, S., Hansen, A., and Chakrabarti, B. K.: Failure processes in elastic
fiber bundles, Rev. Modern Phys., 82, 499–555, 2010. a
Ruff, L. J.: Asperity distributions and large earthquake occurrence in
subduction zones, Tectonophysics, 211, 61–83, 1992. a
Singh, S., Rodriguez, M., and Esteva, L.: Statistics of small earthquakes and
frequency of occurrence of large earthquakes along the Mexican subduction
zone, Bull. Seismol. Soc. Am., 73, 1779–1796, 1983. a
Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N.,
Iwasaki, Y., Kagawa, T., Smith, N., and Kowada, A.: Characterizing crustal
earthquake slip models for the prediction of strong ground motion,
Seismol. Res. Lett., 70, 59–80, 1999a. a
Stirling, M. W., Wesnousky, S. G., and Shimazaki, K.: Fault trace complexity,
cumulative slip, and the shape of the magnitude-frequency distribution for
strike-slip faults: A global survey, Geophys. J. Int., 124,
833–868, 1996. a
Strasser, F. O., Arango, M., and Bommer, J. J.: Scaling of the source
dimensions of interface and intraslab subduction-zone earthquakes with moment
magnitude, Seismol. Res. Lett., 81, 941–950, 2010. a
Tejedor, A., Gómez, J. B., and Pacheco, A. F.: Earthquake size-frequency
statistics in a forest-fire model of individual faults, Phys. Rev. E,
79, 046102, https://doi.org/10.1103/PhysRevE.79.046102, 2009. a, b
Yamanaka, Y. and Kikuchi, M.: Asperity map along the subduction zone in
northeastern Japan inferred from regional seismic data, J. Geophys. Res.-Sol. Ea., 109, B07307, https://doi.org/10.1029/2003JB002683, 2004. a
Yazdi, P., Gaspar‐Escribano, J. M., Santoyo, M. A., and Staller, A.:
Analysis of the 2014 Mw 7.3 Papanoa (Mexico) Earthquake: Implications for
Seismic Hazard Assessment, Seismol. Res. Lett., 90, 1801–1811,
https://doi.org/10.1785/0220190032,
2019. a
Zúñiga, F. R., Reyes, M. A., and Valdés, C.: A general overview of the catalog of recent seismicity compiled by the Mexican Seismological
Survey, Geofis. Int., 39, 161–170, 2012. a
Short summary
The Mexican subduction zone along the Pacific coast is one of the most active seismic zones in the world, where every year larger-magnitude earthquakes shake huge inland cities such as Mexico City. In this work, we use TREMOL (sThochastic Rupture Earthquake ModeL) to simulate the seismicity observed in this zone. Our numerical results reinforce the hypothesis that in some subduction regions single asperities are responsible for producing the observed seismicity.
The Mexican subduction zone along the Pacific coast is one of the most active seismic zones in...