Articles | Volume 8, issue 5
https://doi.org/10.5194/gmd-8-1285-2015
https://doi.org/10.5194/gmd-8-1285-2015
Model description paper
 | 
04 May 2015
Model description paper |  | 04 May 2015

A generic approach to explicit simulation of uncertainty in the NEMO ocean model

J.-M. Brankart, G. Candille, F. Garnier, C. Calone, A. Melet, P.-A. Bouttier, P. Brasseur, and J. Verron

Related authors

Assessment of an ensemble system that assimilates Jason-1/Envisat altimeter data in a probabilistic model of the North Atlantic ocean circulation
G. Candille, J.-M. Brankart, and P. Brasseur
Ocean Sci., 11, 425–438, https://doi.org/10.5194/os-11-425-2015,https://doi.org/10.5194/os-11-425-2015, 2015
Short summary
Optimal adjustment of the atmospheric forcing parameters of ocean models using sea surface temperature data assimilation
M. Meinvielle, J.-M. Brankart, P. Brasseur, B. Barnier, R. Dussin, and J. Verron
Ocean Sci., 9, 867–883, https://doi.org/10.5194/os-9-867-2013,https://doi.org/10.5194/os-9-867-2013, 2013

Related subject area

Oceanography
LIGHT-bgcArgo-1.0: using synthetic float capabilities in E3SMv2 to assess spatiotemporal variability in ocean physics and biogeochemistry
Cara Nissen, Nicole S. Lovenduski, Mathew Maltrud, Alison R. Gray, Yohei Takano, Kristen Falcinelli, Jade Sauvé, and Katherine Smith
Geosci. Model Dev., 17, 6415–6435, https://doi.org/10.5194/gmd-17-6415-2024,https://doi.org/10.5194/gmd-17-6415-2024, 2024
Short summary
Towards a real-time modeling of global ocean waves by the fully GPU-accelerated spectral wave model WAM6-GPU v1.0
Ye Yuan, Fujiang Yu, Zhi Chen, Xueding Li, Fang Hou, Yuanyong Gao, Zhiyi Gao, and Renbo Pang
Geosci. Model Dev., 17, 6123–6136, https://doi.org/10.5194/gmd-17-6123-2024,https://doi.org/10.5194/gmd-17-6123-2024, 2024
Short summary
A simple approach to represent precipitation-derived freshwater fluxes into nearshore ocean models: an FVCOM4.1 case study of Quatsino Sound, British Columbia
Krysten Rutherford, Laura Bianucci, and William Floyd
Geosci. Model Dev., 17, 6083–6104, https://doi.org/10.5194/gmd-17-6083-2024,https://doi.org/10.5194/gmd-17-6083-2024, 2024
Short summary
An optimal transformation method applied to diagnose the ocean carbon budget
Neill Mackay, Taimoor Sohail, Jan David Zika, Richard G. Williams, Oliver Andrews, and Andrew James Watson
Geosci. Model Dev., 17, 5987–6005, https://doi.org/10.5194/gmd-17-5987-2024,https://doi.org/10.5194/gmd-17-5987-2024, 2024
Short summary
Implementation and assessment of a model including mixotrophs and the carbonate cycle (Eco3M_MIX-CarbOx v1.0) in a highly dynamic Mediterranean coastal environment (Bay of Marseille, France) – Part 2: Towards a better representation of total alkalinity when modeling the carbonate system and air–sea CO2 fluxes
Lucille Barré, Frédéric Diaz, Thibaut Wagener, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 17, 5851–5882, https://doi.org/10.5194/gmd-17-5851-2024,https://doi.org/10.5194/gmd-17-5851-2024, 2024
Short summary

Cited articles

Achatz, U., Löbl, U., Dolaptchiev, S. I., and Gritsun, A.: Fluctuation-dissipation supplemented by nonlinearity: a climate-dependent subgrid-scale parameterization in low-order climate models, J. Atmos. Sci., 70, 1833–1846, 2013.
Arhonditsis, G. B., Perhar, G., Zhang, W., Massos, E., Shi, M., and Das, A.: Addressing equifinality and uncertainty in eutrophication models, Water Resour. Res., 44, W01420, https://doi.org/10.1029/2007WR005862, 2008.
Béal, D., Brasseur, P., Brankart, J.-M., Ourmières, Y., and Verron, J.: Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis, Ocean Sci., 6, 247–262, https://doi.org/10.5194/os-6-247-2010, 2010.
Berloff, P.: On rectification of randomly forced flows, J. Mar. Res., 63, 497–527, https://doi.org/10.1357/0022240054307894, 2005.
Bertino, L., Evensen, G., and Wackernagel, H.: Sequential data assimilation techniques in oceanography, Int. Stat. Rev., 71, 223–241, 2003.
Download
Short summary
In this paper, a simple and generic implementation approach is presented, with the aim of transforming a deterministic ocean model (like NEMO) into a probabilistic model. With this approach, several kinds of stochastic parameterizations are implemented to simulate the non-deterministic effect of unresolved processes, unresolved scales, and unresolved diversity. The method is illustrated with three applications, showing that uncertainties can produce a major effect in the model simulations.