Articles | Volume 8, issue 5
https://doi.org/10.5194/gmd-8-1285-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/gmd-8-1285-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A generic approach to explicit simulation of uncertainty in the NEMO ocean model
J.-M. Brankart
CORRESPONDING AUTHOR
CNRS/Univ. Grenoble Alpes, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) UMR 5183, Grenoble, 38041, France
G. Candille
CNRS/Univ. Grenoble Alpes, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) UMR 5183, Grenoble, 38041, France
F. Garnier
CNRS/Univ. Grenoble Alpes, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) UMR 5183, Grenoble, 38041, France
C. Calone
CNRS/Univ. Grenoble Alpes, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) UMR 5183, Grenoble, 38041, France
A. Melet
Princeton University/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
P.-A. Bouttier
CNRS/Univ. Grenoble Alpes, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) UMR 5183, Grenoble, 38041, France
P. Brasseur
CNRS/Univ. Grenoble Alpes, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) UMR 5183, Grenoble, 38041, France
J. Verron
CNRS/Univ. Grenoble Alpes, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) UMR 5183, Grenoble, 38041, France
Viewed
Total article views: 4,397 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 27 Jan 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,892 | 1,279 | 226 | 4,397 | 242 | 227 |
- HTML: 2,892
- PDF: 1,279
- XML: 226
- Total: 4,397
- BibTeX: 242
- EndNote: 227
Total article views: 3,897 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 May 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,633 | 1,052 | 212 | 3,897 | 212 | 197 |
- HTML: 2,633
- PDF: 1,052
- XML: 212
- Total: 3,897
- BibTeX: 212
- EndNote: 197
Total article views: 500 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 27 Jan 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
259 | 227 | 14 | 500 | 30 | 30 |
- HTML: 259
- PDF: 227
- XML: 14
- Total: 500
- BibTeX: 30
- EndNote: 30
Cited
47 citations as recorded by crossref.
- Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution L. Bessières et al. 10.5194/gmd-10-1091-2017
- Covariance of Optimal Parameters of an Arctic Sea Ice–Ocean Model H. Sumata et al. 10.1175/MWR-D-18-0375.1
- Ensemble analysis and forecast of ecosystem indicators in the North Atlantic using ocean colour observations and prior statistics from a stochastic NEMO–PISCES simulator M. Popov et al. 10.5194/os-20-155-2024
- Analysis of the hydrosedimentary circulation in the mouth of dominated wave environment using grain size analysis, wave/current modeling and image processing case of the principal Rivers in Zemmouri bay I. Yaiche Temam et al. 10.1007/s40808-024-02007-1
- Generating atmospheric forcing perturbations for an ocean data assimilation ensemble I. Mirouze & A. Storto 10.1080/16000870.2019.1624459
- Assimilation of satellite swaths versus daily means of sea ice concentration in a regional coupled ocean–sea ice model M. Durán Moro et al. 10.5194/tc-18-1597-2024
- An eddifying Stommel model: fast eddy effects in a two-box ocean W. Barham & I. Grooms 10.1080/03091929.2018.1464566
- Ensemble hindcasting of wind and wave conditions with WRF and WAVEWATCH III® driven by ERA5 R. Osinski & H. Radtke 10.5194/os-16-355-2020
- Oceanic Stochastic Parameterizations in a Seasonal Forecast System M. Andrejczuk et al. 10.1175/MWR-D-15-0245.1
- A Gaussian-product stochastic Gent–McWilliams parameterization I. Grooms 10.1016/j.ocemod.2016.09.005
- An Investigation of Ocean Model Uncertainties Through Ensemble Forecast Experiments in the Southwest Atlantic Ocean L. Lima et al. 10.1029/2018JC013919
- Imprint of chaotic ocean variability on transports in the southwestern Pacific at interannual timescales S. Cravatte et al. 10.5194/os-17-487-2021
- Diagnosing, modeling, and testing a multiplicative stochastic Gent-McWilliams parameterization I. Grooms & W. Kleiber 10.1016/j.ocemod.2018.10.009
- Ensemble quantification of short-term predictability of the ocean dynamics at a kilometric-scale resolution: a Western Mediterranean test case S. Leroux et al. 10.5194/os-18-1619-2022
- Data assimilative twin-experiment in a high-resolution Bay of Biscay configuration: 4DEnOI based on stochastic modeling of the wind forcing V. Vervatis et al. 10.1016/j.ocemod.2016.01.003
- Internal variability of a 3-D ocean model B. Büchmann & J. Söderkvist 10.3402/tellusa.v68.30417
- Chaotic oceanic excitation of low-frequency polar motion variability L. Börger et al. 10.5194/esd-16-75-2025
- A means of estimating the intrinsic and atmospherically-forced contributions to sea surface height variability applied to altimetric observations S. Close et al. 10.1016/j.pocean.2020.102314
- Stochastic Subgrid-Scale Ocean Mixing: Impacts on Low-Frequency Variability S. Juricke et al. 10.1175/JCLI-D-16-0539.1
- Assessing the Impact of Different Ocean Analysis Schemes on Oceanic and Underwater Acoustic Predictions A. Storto et al. 10.1029/2019JC015636
- Randomly correcting model errors in the ARPEGE-Climate v6.1 component of CNRM-CM: applications for seasonal forecasts L. Batté & M. Déqué 10.5194/gmd-9-2055-2016
- Non‐Local Eddy‐Mean Kinetic Energy Transfers in Submesoscale‐Permitting Ensemble Simulations Q. Jamet et al. 10.1029/2022MS003057
- Enhanced regional ocean ensemble data assimilation through atmospheric coupling in the SKRIPS model R. Sun et al. 10.1016/j.ocemod.2024.102424
- Accounting for model error in strong‐constraint 4D‐Var data assimilation K. Howes et al. 10.1002/qj.2996
- Requirements for an Integrated in situ Atlantic Ocean Observing System From Coordinated Observing System Simulation Experiments F. Gasparin et al. 10.3389/fmars.2019.00083
- On the Chaotic Variability of Deep Convection in the Mediterranean Sea R. Waldman et al. 10.1002/2017GL076319
- Uncertainty and scale interactions in ocean ensembles: From seasonal forecasts to multidecadal climate predictions L. Zanna et al. 10.1002/qj.3397
- Observational Needs for Improving Ocean and Coupled Reanalysis, S2S Prediction, and Decadal Prediction S. Penny et al. 10.3389/fmars.2019.00391
- Observing System Evaluation Based on Ocean Data Assimilation and Prediction Systems: On-Going Challenges and a Future Vision for Designing and Supporting Ocean Observational Networks Y. Fujii et al. 10.3389/fmars.2019.00417
- An Ensemble-Based Probabilistic Score Approach to Compare Observation Scenarios: An Application to Biogeochemical-Argo Deployments C. Germineaud et al. 10.1175/JTECH-D-19-0002.1
- Assessment of a regional physical–biogeochemical stochastic ocean model. Part 1: Ensemble generation V. Vervatis et al. 10.1016/j.ocemod.2021.101781
- Improved teleconnection between Arctic sea ice and the North Atlantic Oscillation through stochastic process representation K. Strommen et al. 10.5194/wcd-3-951-2022
- Impact of Atmospheric and Model Physics Perturbations on a High‐Resolution Ensemble Data Assimilation System of the Red Sea S. Sanikommu et al. 10.1029/2019JC015611
- Assimilation of chlorophyll data into a stochastic ensemble simulation for the North Atlantic Ocean Y. Santana-Falcón et al. 10.5194/os-16-1297-2020
- Global-scale random bottom pressure fluctuations from oceanic intrinsic variability M. Zhao et al. 10.1126/sciadv.adg0278
- Circumpolar Variations in the Chaotic Nature of Southern Ocean Eddy Dynamics A. Hogg et al. 10.1029/2022JC018440
- Perturbation of Boundary Conditions to Create Appropriate Ensembles for Regional Data Assimilation in Coastal Estuary Modeling Y. Matsuzaki & T. Inoue 10.1029/2021JC017911
- Intrinsic and Atmospherically Forced Variability of the AMOC: Insights from a Large-Ensemble Ocean Hindcast S. Leroux et al. 10.1175/JCLI-D-17-0168.1
- A multiscale ocean data assimilation approach combining spatial and spectral localisation A. Tissier et al. 10.5194/os-15-443-2019
- Parameterizing the Impact of Unresolved Temperature Variability on the Large‐Scale Density Field: Part 1. Theory. Z. Stanley et al. 10.1029/2020MS002185
- Model uncertainties of a storm and their influence on microplastics and sediment transport in the Baltic Sea R. Osinski et al. 10.5194/os-16-1491-2020
- Stochastic representations of model uncertainties at ECMWF: state of the art and future vision M. Leutbecher et al. 10.1002/qj.3094
- Extending an oceanographic variational scheme to allow for affordable hybrid and four-dimensional data assimilation A. Storto et al. 10.1016/j.ocemod.2018.06.005
- Assessment of a regional physical–biogeochemical stochastic ocean model. Part 2: Empirical consistency V. Vervatis et al. 10.1016/j.ocemod.2021.101770
- Bioluminescence potential modeling with an ensemble approach I. Shulman & S. Anderson 10.1007/s10236-019-01264-4
- Stochastic parameterizations of biogeochemical uncertainties in a 1/4° NEMO/PISCES model for probabilistic comparisons with ocean color data F. Garnier et al. 10.1016/j.jmarsys.2015.10.012
- Seasonal to annual ocean forecasting skill and the role of model and observational uncertainty S. Juricke et al. 10.1002/qj.3394
44 citations as recorded by crossref.
- Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution L. Bessières et al. 10.5194/gmd-10-1091-2017
- Covariance of Optimal Parameters of an Arctic Sea Ice–Ocean Model H. Sumata et al. 10.1175/MWR-D-18-0375.1
- Ensemble analysis and forecast of ecosystem indicators in the North Atlantic using ocean colour observations and prior statistics from a stochastic NEMO–PISCES simulator M. Popov et al. 10.5194/os-20-155-2024
- Analysis of the hydrosedimentary circulation in the mouth of dominated wave environment using grain size analysis, wave/current modeling and image processing case of the principal Rivers in Zemmouri bay I. Yaiche Temam et al. 10.1007/s40808-024-02007-1
- Generating atmospheric forcing perturbations for an ocean data assimilation ensemble I. Mirouze & A. Storto 10.1080/16000870.2019.1624459
- Assimilation of satellite swaths versus daily means of sea ice concentration in a regional coupled ocean–sea ice model M. Durán Moro et al. 10.5194/tc-18-1597-2024
- An eddifying Stommel model: fast eddy effects in a two-box ocean W. Barham & I. Grooms 10.1080/03091929.2018.1464566
- Ensemble hindcasting of wind and wave conditions with WRF and WAVEWATCH III® driven by ERA5 R. Osinski & H. Radtke 10.5194/os-16-355-2020
- Oceanic Stochastic Parameterizations in a Seasonal Forecast System M. Andrejczuk et al. 10.1175/MWR-D-15-0245.1
- A Gaussian-product stochastic Gent–McWilliams parameterization I. Grooms 10.1016/j.ocemod.2016.09.005
- An Investigation of Ocean Model Uncertainties Through Ensemble Forecast Experiments in the Southwest Atlantic Ocean L. Lima et al. 10.1029/2018JC013919
- Imprint of chaotic ocean variability on transports in the southwestern Pacific at interannual timescales S. Cravatte et al. 10.5194/os-17-487-2021
- Diagnosing, modeling, and testing a multiplicative stochastic Gent-McWilliams parameterization I. Grooms & W. Kleiber 10.1016/j.ocemod.2018.10.009
- Ensemble quantification of short-term predictability of the ocean dynamics at a kilometric-scale resolution: a Western Mediterranean test case S. Leroux et al. 10.5194/os-18-1619-2022
- Data assimilative twin-experiment in a high-resolution Bay of Biscay configuration: 4DEnOI based on stochastic modeling of the wind forcing V. Vervatis et al. 10.1016/j.ocemod.2016.01.003
- Internal variability of a 3-D ocean model B. Büchmann & J. Söderkvist 10.3402/tellusa.v68.30417
- Chaotic oceanic excitation of low-frequency polar motion variability L. Börger et al. 10.5194/esd-16-75-2025
- A means of estimating the intrinsic and atmospherically-forced contributions to sea surface height variability applied to altimetric observations S. Close et al. 10.1016/j.pocean.2020.102314
- Stochastic Subgrid-Scale Ocean Mixing: Impacts on Low-Frequency Variability S. Juricke et al. 10.1175/JCLI-D-16-0539.1
- Assessing the Impact of Different Ocean Analysis Schemes on Oceanic and Underwater Acoustic Predictions A. Storto et al. 10.1029/2019JC015636
- Randomly correcting model errors in the ARPEGE-Climate v6.1 component of CNRM-CM: applications for seasonal forecasts L. Batté & M. Déqué 10.5194/gmd-9-2055-2016
- Non‐Local Eddy‐Mean Kinetic Energy Transfers in Submesoscale‐Permitting Ensemble Simulations Q. Jamet et al. 10.1029/2022MS003057
- Enhanced regional ocean ensemble data assimilation through atmospheric coupling in the SKRIPS model R. Sun et al. 10.1016/j.ocemod.2024.102424
- Accounting for model error in strong‐constraint 4D‐Var data assimilation K. Howes et al. 10.1002/qj.2996
- Requirements for an Integrated in situ Atlantic Ocean Observing System From Coordinated Observing System Simulation Experiments F. Gasparin et al. 10.3389/fmars.2019.00083
- On the Chaotic Variability of Deep Convection in the Mediterranean Sea R. Waldman et al. 10.1002/2017GL076319
- Uncertainty and scale interactions in ocean ensembles: From seasonal forecasts to multidecadal climate predictions L. Zanna et al. 10.1002/qj.3397
- Observational Needs for Improving Ocean and Coupled Reanalysis, S2S Prediction, and Decadal Prediction S. Penny et al. 10.3389/fmars.2019.00391
- Observing System Evaluation Based on Ocean Data Assimilation and Prediction Systems: On-Going Challenges and a Future Vision for Designing and Supporting Ocean Observational Networks Y. Fujii et al. 10.3389/fmars.2019.00417
- An Ensemble-Based Probabilistic Score Approach to Compare Observation Scenarios: An Application to Biogeochemical-Argo Deployments C. Germineaud et al. 10.1175/JTECH-D-19-0002.1
- Assessment of a regional physical–biogeochemical stochastic ocean model. Part 1: Ensemble generation V. Vervatis et al. 10.1016/j.ocemod.2021.101781
- Improved teleconnection between Arctic sea ice and the North Atlantic Oscillation through stochastic process representation K. Strommen et al. 10.5194/wcd-3-951-2022
- Impact of Atmospheric and Model Physics Perturbations on a High‐Resolution Ensemble Data Assimilation System of the Red Sea S. Sanikommu et al. 10.1029/2019JC015611
- Assimilation of chlorophyll data into a stochastic ensemble simulation for the North Atlantic Ocean Y. Santana-Falcón et al. 10.5194/os-16-1297-2020
- Global-scale random bottom pressure fluctuations from oceanic intrinsic variability M. Zhao et al. 10.1126/sciadv.adg0278
- Circumpolar Variations in the Chaotic Nature of Southern Ocean Eddy Dynamics A. Hogg et al. 10.1029/2022JC018440
- Perturbation of Boundary Conditions to Create Appropriate Ensembles for Regional Data Assimilation in Coastal Estuary Modeling Y. Matsuzaki & T. Inoue 10.1029/2021JC017911
- Intrinsic and Atmospherically Forced Variability of the AMOC: Insights from a Large-Ensemble Ocean Hindcast S. Leroux et al. 10.1175/JCLI-D-17-0168.1
- A multiscale ocean data assimilation approach combining spatial and spectral localisation A. Tissier et al. 10.5194/os-15-443-2019
- Parameterizing the Impact of Unresolved Temperature Variability on the Large‐Scale Density Field: Part 1. Theory. Z. Stanley et al. 10.1029/2020MS002185
- Model uncertainties of a storm and their influence on microplastics and sediment transport in the Baltic Sea R. Osinski et al. 10.5194/os-16-1491-2020
- Stochastic representations of model uncertainties at ECMWF: state of the art and future vision M. Leutbecher et al. 10.1002/qj.3094
- Extending an oceanographic variational scheme to allow for affordable hybrid and four-dimensional data assimilation A. Storto et al. 10.1016/j.ocemod.2018.06.005
- Assessment of a regional physical–biogeochemical stochastic ocean model. Part 2: Empirical consistency V. Vervatis et al. 10.1016/j.ocemod.2021.101770
3 citations as recorded by crossref.
- Bioluminescence potential modeling with an ensemble approach I. Shulman & S. Anderson 10.1007/s10236-019-01264-4
- Stochastic parameterizations of biogeochemical uncertainties in a 1/4° NEMO/PISCES model for probabilistic comparisons with ocean color data F. Garnier et al. 10.1016/j.jmarsys.2015.10.012
- Seasonal to annual ocean forecasting skill and the role of model and observational uncertainty S. Juricke et al. 10.1002/qj.3394
Saved (final revised paper)
Saved (preprint)
Latest update: 19 Jan 2025
Short summary
In this paper, a simple and generic implementation approach is presented, with the aim of transforming a deterministic ocean model (like NEMO) into a probabilistic model. With this approach, several kinds of stochastic parameterizations are implemented to simulate the non-deterministic effect of unresolved processes, unresolved scales, and unresolved diversity. The method is illustrated with three applications, showing that uncertainties can produce a major effect in the model simulations.
In this paper, a simple and generic implementation approach is presented, with the aim of...
Special issue