Articles | Volume 18, issue 5
https://doi.org/10.5194/gmd-18-1709-2025
https://doi.org/10.5194/gmd-18-1709-2025
Methods for assessment of models
 | 
12 Mar 2025
Methods for assessment of models |  | 12 Mar 2025

Selecting a conceptual hydrological model using Bayes' factors computed with replica-exchange Hamiltonian Monte Carlo and thermodynamic integration

Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale

Related authors

Vegetation optimality explains the convergence of catchments on the Budyko curve
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 6289–6309, https://doi.org/10.5194/hess-26-6289-2022,https://doi.org/10.5194/hess-26-6289-2022, 2022
Short summary
Technical note: Do different projections matter for the Budyko framework?
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 4575–4585, https://doi.org/10.5194/hess-26-4575-2022,https://doi.org/10.5194/hess-26-4575-2022, 2022
Short summary
Influence of modifications (from AoB2015 to v0.5) in the Vegetation Optimality Model
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Geosci. Model Dev., 15, 883–900, https://doi.org/10.5194/gmd-15-883-2022,https://doi.org/10.5194/gmd-15-883-2022, 2022
Short summary
Does maximization of net carbon profit enable the prediction of vegetation behaviour in savanna sites along a precipitation gradient?
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 525–550, https://doi.org/10.5194/hess-26-525-2022,https://doi.org/10.5194/hess-26-525-2022, 2022
Short summary
The evolution of root-zone moisture capacities after deforestation: a step towards hydrological predictions under change?
Remko Nijzink, Christopher Hutton, Ilias Pechlivanidis, René Capell, Berit Arheimer, Jim Freer, Dawei Han, Thorsten Wagener, Kevin McGuire, Hubert Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 4775–4799, https://doi.org/10.5194/hess-20-4775-2016,https://doi.org/10.5194/hess-20-4775-2016, 2016
Short summary

Related subject area

Hydrology
The Water Table Model (WTM) (v2.0.1): coupled groundwater and dynamic lake modelling
Kerry L. Callaghan, Andrew D. Wickert, Richard Barnes, and Jacqueline Austermann
Geosci. Model Dev., 18, 1463–1486, https://doi.org/10.5194/gmd-18-1463-2025,https://doi.org/10.5194/gmd-18-1463-2025, 2025
Short summary
Modelling rainfall with a Bartlett–Lewis process: pyBL (v1.0.0), a Python software package and an application with short records
Chi-Ling Wei, Pei-Chun Chen, Chien-Yu Tseng, Ting-Yu Dai, Yun-Ting Ho, Ching-Chun Chou, Christian Onof, and Li-Pen Wang
Geosci. Model Dev., 18, 1357–1373, https://doi.org/10.5194/gmd-18-1357-2025,https://doi.org/10.5194/gmd-18-1357-2025, 2025
Short summary
Virtual Joint Field Campaign: a framework of synthetic landscapes to assess multiscale measurement methods of water storage
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev., 18, 819–842, https://doi.org/10.5194/gmd-18-819-2025,https://doi.org/10.5194/gmd-18-819-2025, 2025
Short summary
SERGHEI v2.0: introducing a performance-portable, high-performance, three-dimensional variably saturated subsurface flow solver (SERGHEI-RE)
Zhi Li, Gregor Rickert, Na Zheng, Zhibo Zhang, Ilhan Özgen-Xian, and Daniel Caviedes-Voullième
Geosci. Model Dev., 18, 547–562, https://doi.org/10.5194/gmd-18-547-2025,https://doi.org/10.5194/gmd-18-547-2025, 2025
Short summary
The global water resources and use model WaterGAP v2.2e: description and evaluation of modifications and new features
Hannes Müller Schmied, Tim Trautmann, Sebastian Ackermann, Denise Cáceres, Martina Flörke, Helena Gerdener, Ellen Kynast, Thedini Asali Peiris, Leonie Schiebener, Maike Schumacher, and Petra Döll
Geosci. Model Dev., 17, 8817–8852, https://doi.org/10.5194/gmd-17-8817-2024,https://doi.org/10.5194/gmd-17-8817-2024, 2024
Short summary

Cited articles

Allanach, B. C. and Lester, C. G.: Sampling Using a “Bank” of Clues, Comp. Phys. Commun., 179, 256–266, https://doi.org/10.1016/j.cpc.2008.02.020, 2008. a
Ashton, G., Bernstein, N., Buchner, J., Chen, X., Csányi, G., Fowlie, A., Feroz, F., Griffiths, M., Handley, W., Habeck, M., Higson, E., Hobson, M., Lasenby, A., Parkinson, D., Pártay, L. B., Pitkin, M., Schneider, D., Speagle, J. S., South, L., Veitch, J., Wacker, P., Wales, D. J., and Yallup, D.: Nested Sampling for Physical Scientists, Nature Reviews Methods Primers, 2, 39, https://doi.org/10.1038/s43586-022-00121-x, 2022. a
Bai, Z., Rao, C. R., and Wu, Y.: Model selection with data-oriented penalty, J. Stat. Plan. Infer., 77, 103–117, https://doi.org/10.1016/S0378-3758(98)00168-2, 1999. a
Berger, J. O. and Pericchi, L. R.: The Intrinsic Bayes Factor for Model Selection and Prediction, J. Am. Stat. Assoc., 91, 109–122, https://doi.org/10.1080/01621459.1996.10476668, 1996. a
Berger, J. O., Pericchi, L. R., Ghosh, J. K., Samanta, T., De Santis, F., Berger, J. O., and Pericchi, L. R.: Objective Bayesian Methods for Model Selection: Introduction and Comparison, Lecture Notes-Monograph Series, 38, 135–207, 2001. a
Download
Short summary
Hydrologists are often faced with selecting amongst a set of competing models with different numbers of parameters and ability to fit available data. Bayes’ factor is a tool that can be used to compare models; however, it is very difficult to compute Bayes' factor numerically. In our paper, we explore and develop highly efficient algorithms for computing Bayes’ factor of hydrological systems, which will introduce this useful tool for selecting models into everyday hydrological practice.
Share