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Abstract. We develop a method for computing Bayes’ fac-
tors of conceptual rainfall–runoff models based on thermody-
namic integration, gradient-based replica-exchange Markov
chain Monte Carlo algorithms and modern differentiable pro-
gramming languages. We apply our approach to the problem
of choosing from a set of conceptual bucket-type models with
increasing dynamical complexity calibrated against both syn-
thetically generated and real runoff data from Magela Creek,
Australia. We show that using the proposed methodology, the
Bayes factor can be used to select a parsimonious model and
can be computed robustly in a few hours on modern comput-
ing hardware.

1 Introduction

Hydrologists are often faced with assessing the performance
of models that differ in their complexity and ability to repro-
duce observed data. The Bayes factor (BF) is one method for
selecting between models from an a priori chosen set (Berger
and Pericchi, 1996). The appeal of the BF lies in its ability to
implicitly and automatically balance model complexity and
goodness of fit with few simplifying assumptions. The BF is
also invariant to data and parameter transformations unlike
information-theory-based criteria, such as Akaike informa-
tion criterion (AIC) and the Bayesian information criterion

(BIC) (O’Hagan, 1997). For example, a logarithmic transfor-
mation of the discharge or the square root of a parameter such
as the flow rate can accelerate the convergence of the model,
but it will not affect the computed BF.

However, the BF requires the computation of the marginal
likelihood (the denominator in Bayes’ theorem) for each
model, which is a difficult and expensive integration prob-
lem. This expense and difficulty can be attributed to three
main factors; the necessity of many model runs at different
points in the parametric space; the possibly multimodal and
highly correlated nature of the posterior that can lead to iso-
lated and/or slowly mixing chains; and, finally, the inherent
difficulty of the marginal likelihood integration problem.

Because of these difficulties, it is the case today that the BF
is not widely used by practitioners despite it being a crucial
component in Bayesian model comparison, selection, and av-
eraging (Höge et al., 2019). This stands in contrast with the
widely studied and used Bayesian parameter estimation pro-
cedure (Gelman et al., 2020). Consequently, model uncer-
tainty is often ignored or assessed by either ad hoc techniques
or information-theoretic criteria (Birgé and Massart, 2007;
Bai et al., 1999) that explicitly (rather than implicitly) penal-
ize model complexity based on some measure of the number
of parameters and under limiting assumptions; see, for exam-
ple, Berger et al. (2001) for a full discussion.
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1.1 Background

Looking outside of hydrology, there are a number of notable
works that have developed techniques for numerically esti-
mating the BF. A recent comprehensive review by Llorente
et al. (2023) discusses the relative advantages of commonly
used methods for computing the marginal likelihood and
consequently, the BF, such as the naive Monte Carlo meth-
ods, harmonic mean estimator (Newton and Raftery, 1994);
generalized harmonic mean estimator (Gelfand and Dey,
1994); importance sampling and Chib’s method (Chib and
Jeliazkov, 2001; Chib, 1995); bridge sampling (Meng and
Wong, 1996; Gelman and Meng, 1998); nested sampling
(Skilling, 2004, 2006); and, finally, thermodynamic integra-
tion (Calderhead and Girolami, 2009; Lartillot and Philippe,
2006; Ogata, 1989), the technique that we choose to use
in this study. Thermodynamic integration is well suited for
high-dimensional integrals (Ogata, 1989, 1990) involving
physics-based models, such as ordinary differential equa-
tion (ODE) systems. The naive Monte Carlo is unstable and
usually not efficient, requiring a huge number of samples
for convergence. Importance sampling and harmonic estima-
tors require a suitable choice of the importance and proposal
distributions, respectively. The performance of bridge sam-
pling also depends on a good choice of proposal distribution,
which in practice is not straightforward to determine a priori.
The main difficulty with nested sampling is generating sam-
ples from a truncated prior as the threshold increases (Chopin
and Robert, 2010; Henderson and Goggans, 2019). However,
the efficiency of Chib’s method depends on how close an ar-
bitrary value is to the posterior mode (Dai and Liu, 2022).
Hug et al. (2016) illustrated that Chib’s method significantly
underestimates the marginal likelihood of a bimodal Gaus-
sian mixture model.

Turning our attention to works within hydrology that de-
velop methods for computing Bayes’ factors, to the best of
our knowledge, the seminal work by Marshall et al. (2005)
was the first to propose computing Bayes’ factors for hydro-
logical model selection. Marshall et al. (2005) used Chib’s
method to estimate the marginal likelihood of conceptual
models. More recently, various other authors (Liu et al.,
2016; Brunetti et al., 2019, 2017; Volpi et al., 2017; Cao
et al., 2019; Brunetti and Linde, 2018; Marshall et al., 2005)
have considered the computation of Bayes’ factors in a hy-
drological or hydrogeological context.

Perhaps most closely related to our study are the recent
works of Brunetti et al. (2019, 2017) and Brunetti and Linde
(2018), who computed Bayes’ factors for conceptual hy-
drogeological models with thermodynamic integration tech-
niques. Brunetti et al. (2017) compared naive Monte Carlo,
bridge sampling based on the proposal distribution developed
by Volpi et al. (2017), and the Laplace–Metropolis method
in terms of calculating the marginal likelihood of conceptual
models. Like most studies, the naive Monte Carlo approach
performed poorly. Also, Brunetti and Linde (2018) computed

the marginal likelihood using methods based on a proposal
distribution, notably bridge sampling. Several marginal like-
lihood estimation methods have been compared within hy-
drological studies. For example, Liu et al. (2016) found that
thermodynamic integration gives consistent results compared
to nested sampling and is less biased.

Many studies in hydrology (e.g. Zhang et al., 2020;
Brunetti et al., 2017; Zheng and Han, 2016; Shafii et al.,
2014; Laloy and Vrugt, 2012, and Kavetski and Clark, 2011)
have used the Differential Evolution Adaptive Metropolis
(DREAM) algorithm (Vrugt, 2016) for posterior parameter
inference. Volpi et al. (2017) introduced a method to con-
struct the proposal distribution for bridge sampling and in-
tegrated it into the DREAM algorithm. However, it still re-
quires the user to choose the number of Gaussian distribu-
tions for the Gaussian mixture proposal distribution. The
DREAM algorithm has been developed with an acceptance
rate similar to the random walk Metropolis (RWM) algo-
rithm, which has an optimal acceptance rate of 0.234 (Vrugt
et al., 2008; Gelman et al., 1996b; Roberts and Rosenthal,
2009). The acceptance rate or probability is the propor-
tion of the proposed samples accepted in the Metropolis–
Hastings algorithm. In contrast, a gradient-based sampler
such as Hamiltonian Monte Carlo (HMC), which we use in
this work, typically has a far higher optimal acceptance rate
of around 0.65 (Radford, 2011; Beskos et al., 2013). In ad-
dition, gradient-based samplers show improved chain mixing
properties in high dimensions and on posteriors with strongly
correlated parameters (Radford, 2011). Gradient-based al-
gorithms have been used in hydrology for parameter esti-
mation but not model selection. For instance, Hanbing Xu
and Guo (2023) found that the No-U-Turn Sampler (NUTS)
(Hoffman and Gelman, 2014) performed well for calibrat-
ing a model of daily runoff predictions of the Yellow River
basin in China. Krapu and Borsuk (2022) employed HMC
to calibrate the parameters of rainfall–runoff models. The
model selection studies by Liu et al. (2016) and Brunetti
et al. (2017, 2019) that use the BF use posterior samples from
the DREAM algorithm and consequently a lower acceptance
rate than gradient-based samples, e.g. HMC. In addition, be-
cause gradient-based samplers incorporate information about
the local geometry of the posterior, they are usually easier
to tune to achieve the optimal acceptance rate, particularly
in the moderate- or high-dimensional parameter setting (the
number of parameters being > 5).

1.2 Contribution

The overall contribution of this paper is to describe the
development of a method, replica-exchange preconditioned
Hamiltonian Monte Carlo (REpHMC), which, when used
in conjunction with thermodynamic integration (TI), can be
used to estimate the BF of competing conceptual rainfall–
runoff hydrological models. Our approach for estimating the
marginal likelihood combines TI for marginal likelihood es-
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timation, replica-exchange Monte Carlo (REMC) for power
posterior ensemble simulation, and preconditioned Hamil-
tonian Monte Carlo (pHMC) for highly efficient gradient-
based sampling which together we call the REpHMC +
TI estimator. We demonstrate that REpHMC can sample
from moderate-dimensional, strongly correlated, and/or mul-
timodal distributions that frequently arise from hydrologi-
cal models. In addition, REpHMC + TI can obtain poste-
rior parameter estimates and the marginal likelihood simul-
taneously. We remark that Brunetti et al. (2019) also sug-
gested, but did not explore, the idea of using REMC (therein
called parallel tempering Monte Carlo) to improve chain
mixing in hydrological models. Two other gradient-based
samplers, Metropolis-adjusted Langevin algorithm (MALA)
(Xifara et al., 2014) and NUTS (Hoffman and Gelman, 2014)
are used briefly in this paper as a point of comparison, but we
do not include their detailed derivation.

Another key contribution of our work compared with,
for example, Brunetti et al. (2017, 2019) is the incorpo-
ration of recent ideas from probabilistic programming for
the automatic specification of Bayesian inference problems
(parameter and BF estimation). Utilizing recent techniques
from the literature on neural ordinary differential equations
(ODEs) (Chen et al., 2018; Rackauckas et al., 2020; Kelly
et al., 2020), we formulate a set of models like Hydrolo-
giska Byråns Vattenbalansavdelning (HBV) with extensible
model complexity as a system of ordinary differential equa-
tions (ODEs). Working in this framework allows us to use
efficient high-order time-stepping schemes for the numerical
solution of the ODE system and to automatically derive the
associated continuous adjoint ODE system. With this adjoint
system, we can efficiently calculate the derivative of the pos-
terior functional with respect to the model parameters, a nec-
essary step for working with gradient-based samplers such as
HMC. We emphasize at this point that our approach is largely
free of manual tuning parameters and straightforward to
implement in a differentiable programming framework (we
use TensorFlow probability (TFP) (https://www.tensorflow.
org/probability, last access: 22 February 2023) with
the JAX (https://www.tensorflow.org/probability/examples/
TensorFlow_Probability_on_JAX, https://docs.jax.dev, last
access: 25 February 2025) backend, but the ideas are appli-
cable in similar frameworks such as Stan (https://mc-stan.
org/, last access: 22 February 2023) or PyMC3 (https:
//www.pymc.io/projects/docs/en/v3/index.html, last access:
22 February 2023). We remark that a recent, more theory-
focused paper (Henderson and Goggans, 2019) also proposed
using TI with HMC via the Stan probabilistic programming
language, but with results for non-time series models and
without using REMC, which is an important aspect of our
approach.

After model selection via the BF, it is essential to check
if the chosen model can generate the observed data. Hydro-
graphs show the time series of streamflow. However, for-
mal goodness-of-fit testing is necessary since it is challeng-

ing to see a mismatch in hydrographs for dense data. We
therefore use the prior-calibrated posterior predictive p value
(PCPPP), which simultaneously tests for prior data conflict
and discrepancies in the model for further improvements.

In summary, this paper is the first to propose the REpHMC
+ TI method in a probabilistic programming framework for
the estimation of marginal likelihoods related to hydrologi-
cal systems in view of model selection. We demonstrate the
performance of our method by showing (a) a validation of
the methodology using an analytically tractable model, (b) its
improved efficiency with respect to classical methods using
artificially generated data, and (c) an application of a Bayes-
factor-based model selection on real rainfall/runoff data col-
lected from the Magela Creek catchment in Australia.

Our overall perspective is that these techniques have the
potential to bring robust model comparison techniques based
on BF closer to everyday hydrological modelling prac-
tice. Aside from the algorithmic developments in this pa-
per, a necessary technological requirement would be the
(re-)implementation of hydrological models in a differen-
tiable programming language, e.g. JAX, PyTorch, or Ten-
sorFlow, rather than in a traditional language such as C,
Fortran, or Python. While using modern differentiable pro-
gramming techniques is commonplace for model developers
working with machine-learning-type approaches, e.g. neural
networks, it is less commonly used, but no less applicable,
for more traditional hydrological modelling approaches like
the ODE-based HBV-like system we consider here. We hope
our results encourage more hydrologists to consider differen-
tiable programming tools for conceptual model implementa-
tion given the advantages that derivative-based sampling and
optimization algorithms bring to the table in terms of com-
putational efficiency and improved insight, e.g. model selec-
tion.

The rest of the paper is organized as follows. Section 2 is
about conceptual hydrological models and Bayesian method-
ology, which includes model formulation, prior and like-
lihood construction, posterior predictive checks, numerical
methods, and algorithms. Section 3 contains the results and
discussions, while the conclusions are provided in Sect. 4.
There is also a list of acronyms at the end.

2 Methodology

This section describes the model formulation, likelihood con-
struction, algorithms used, and implementation in differen-
tiable software. We leave other modelling aspects, like the
type of priors used, for the next section, where we present
experiments.

2.1 Conceptual models

We develop a set of rainfall–runoff conceptual hydrological
models in the framework of continuous dynamical systems
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Figure 1. Schematic representation of HBV-like ODE model with
n buckets according to the notations in the text. The blue boxes rep-
resent the buckets with a given state V1 to Vn. The solid arrows
represent mass flows between buckets into the system or out of the
system. The dashed arrow represents the collective mass flow be-
tween multiple buckets.

that can be written as a system of ODEs of the following
form:

Vt = f (t,V ,θ) ∀t ∈ (0, T̄ ],

V (t = 0)= V̂ ,
(1)

where V are the n system states, Vt := dV
dt is the derivative of

the state with respect to the time variable t , T̄ is the final time,
V̂ ∈ Rn are the initial conditions, f are known functions, and
θ ∈ Rp is a vector containing the p model parameters.

For the purpose of the results in this paper, we derive a set
of HBV-like models under the principle of conservation of
mass. The algorithms developed in this study can be applied
to other bucket-type models, e.g. Parajka et al. (2007), Jansen
et al. (2021), or those described in the comprehensive MAR-
RMoT rainfall–runoff models toolbox (Trotter et al., 2022).
In comparison with the “standard” HBV model (Bergström,
1976), our model lacks snow and a routing routine, and we
choose to replace the traditional soil moisture routine with a
linear reservoir. A schematic representation of mass flow be-
tween the buckets system is given in Fig. 1. The system states
{V1, . . .,Vn} [L3], where L is a generic length unit, represent-
ing the volume of water in the ith bucket, and n is the total
number of buckets. The system of ODEs for general n≥ 1
can be written as follows:

(V1)t = P −Ea− k1V1, n= 1, (2a)
(V1)t = P −Ea− k1V1− k1,2V1, n≥ 2, (2b)
(Vi)t = k(i−1),(i)Vi−1− kiVi − k(i),(i+1)Vi,

i = 2, . . ., n− 1, n≥ 3, (2c)
(Vn)t = k(n−1),(n)Vn−1− knVn, n≥ 2, (2d)

V (t = 0)= V̂ , (2e)

Ea =
Ep

Vmax
V1, (2f)

Q=

n∑
i=1

kiVi . (2g)

The parameter k(i−1),(i) [T−1], i = 2, . . .,n, is the interbucket
recession coefficient, where T is a generic time unit. The pa-
rameter k(i) [T−1], i = 1, . . .,n, is the outflow recession coef-
ficients. The total outflow, Q [L3 T−1], specified in Eq. (2g)
is the noiseless quantity y used in the upcoming calibra-
tion and model selection procedures. The precipitation, P
[L3 T−1

], is an a priori known function of time. Poten-
tial evaporation, Ep [L3 T−1], is a known function of time,
whereas actual evaporation, Ea [L3 T−1], is a function of Ep,
and Vmax [L3] through Eq. (2f), where Vmax is the maxi-
mum amount of water the soil can store. We remark that the
term Ep/Vmax in Eq. (2f) has the dimension [L3 T−1] and
can therefore be thought of as a dynamic recession coeffi-
cient with the dynamic behaviour controlled by the known
time-varying potential evapotranspiration function, Ep.

The parameter vector θ ∈ Rp associated with the model is
then

θ := {Vmax︸︷︷︸
1

, k1, . . .,kn︸ ︷︷ ︸
n

, k1,2, . . .,k(n−1),(n)︸ ︷︷ ︸
n−1

, V̂1, . . ., V̂n︸ ︷︷ ︸
n

}. (3)

The number of buckets can be varied by adjusting n ∈ N+,
leading to a set of models, {M1, . . .,Mn}, each with n states
and p = 3n parameters. Note that for i > j , a more complex
modelMi contains a superset of the components of a simpler
modelMj . Consequently, after the calibration of both models
on a dataset produced byMj ,Mi should be able to reproduce
the data as well as Mj but at the cost of higher model com-
plexity. This construction is used in the results to show that
the BF does penalize the complex model Mi , leading to the
selection of Mj , the expected result.

2.2 Bayesian methodology

We briefly restate the Bayes theorem in order to set our no-
tation. If y is the data and θ the parameter vector associated
with a model M , then Bayes’ theorem in Eq. (4) defines the
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posterior probability of θ as

π(θ |y,M)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
f (y|θ,M)

prior︷ ︸︸ ︷
π(θ |M)

p(y|M)︸ ︷︷ ︸
marginal (averaged) likelihood

=
f (y|θ,M)π(θ |M)∫
f (y|θ,M)π(θ |M)dθ

. (4)

The prior is a probability distribution of a parameter before
data are considered. It can incorporate expert knowledge, his-
torical results, or any belief about the model parameters. The
likelihood tells us how likely it is that various parameter val-
ues could have generated the observed data. The denominator
in Bayes’ theorem, that is

p(y|M)=

∫ likelihood︷ ︸︸ ︷
f (y|θ,M)

prior︷ ︸︸ ︷
π(θ |M) dθ, (5)

is called the marginal likelihood. The marginal likelihood
tells us how likely it is that the model supports the data. The
distribution of the parameters given the data is known as the
posterior and is proportional to the product of the likelihood
and the prior. In the Bayesian paradigm, all inference is based
on the posterior.

2.2.1 Likelihood construction

In this section, we drop the explicit index on the model
for notational convenience. We define a solution operator
Gsol : R3n

→X that maps a parameter vector θj to the to-
tal outflow function Q. Concretely, this solution operator is
calculated by numerically solving Eqs. (2a) to (2g). We then
define the observation operator Gobs :X→ Rq which evalu-
ates the solutionQ ∈X at a set of q points in time {t1, . . ., tq}.

We assume the following standard Gaussian white noise
model for the observed data: y =GobsGsol(θ)+ η, where
η ∼MVN(0,σ 2Iq), with MVN being a multivariate nor-
mal distribution with mean 0 ∈ Rq and covariance σ 2Iq ∈
Rq×q and σ 2

∈ R the variance of the measurement noise
and Iq the usual q-dimensional identity matrix. Let G :=
GobsGsol : R3n

→ Rq . By standard arguments it can be
shown that y|θ ∼MVN(G(θ),σ 2Iq), resulting in the like-
lihood f (y|θ,M) in Eq. (4) being fully defined. For brevity,
we leave precise prior specifications to the results in Sect. 3.

We remark that according to Cheng et al. (2014), our
choice of a likelihood function with Gaussian white noise
is equivalent to using the well-known Nash–Sutcliffe effi-
ciency (NSE) as a metric. However, other popular metrics
such as Kling–Gupta efficiency (KGE) cannot be explicitly
linked with a likelihood function and consequently cannot be
used within a formal Bayesian analysis. A recent paper (Liu
et al., 2022) proposes an adaptation of the KGE idea using
a gamma distribution which can be used as an informal like-
lihood function within a Bayesian analysis, but we do not

Table 1. Interpretation of the Bayes factor (Kass and Raftery, 1995).

log10 BFij BFij Evidence in favour of model i

0 to 1/2 1 to 3.2 Not worth more than a bare mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
>2 >100 Decisive

explore this option further here. An alternative option which
bypasses the need for an explicit likelihood function is ap-
proximate Bayesian computation (ABC) could be an appro-
priate alternative when an appropriate explicit metric or like-
lihood function is unavailable (see, for example, Nott et al.,
2012, and Liu et al., 2023).

2.2.2 Model comparison

The marginal likelihood is also called the normalizing con-
stant (Chen et al., 2000; Gelman and Meng, 1998), prior
predictive density, evidence (MacKay, 2003), or integrated
likelihood (Lenk and DeSarbo, 2000; Gneiting and Raftery,
2007). This quantity is essential to the definition of the Bayes
factor. Indeed, the Bayes factor for two competing models,
Mi and Mj , with i 6= j , is the ratio of their marginal likeli-
hoods:

BFij =
p(y|Mi)

p(y|Mj )
=

∫
f (y|θi,Mi)π(θi |Mi)dθi∫
f (y|θj ,Mj )π(θj |Mj )dθj

. (6)

Since BF is a ratio, a value greater than 1 means that Mi

should be preferred to Mj and vice versa for a value smaller
than 1. Kass and Raftery (1995) proposed a measure of the
strength of evidence (Table 1) that we use throughout this
paper to interpret the Bayes factors.

An appealing feature of the BF is its consistency in the
limit of a high number of observations. Proofs of consis-
tency for non-nested models are in Casella et al. (2009).
For other cases, including nonparametric models, a review
and detailed study of consistency can be found in Chib and
Kuffner (2016). Also, information-theoretic model selection
approaches usually require an explicit penalty for the number
of model parameters (model complexity). In contrast, the BF
implicitly penalizes the complexity of the model. That is, we
do not need to assign a penalty for model complexity since it
is already accounted for in the marginal likelihood and hence
the BF.

2.2.3 Posterior predictive checks

Model selection does not reveal discrepancies between the
predictions from the chosen model and observed data. Hence,
posterior predictive checks (PPCs) are also necessary to see
if the selected model can replicate the observed data (Gel-
man et al., 1996a). PPCs can be graphical or formal. Graph-
ical PPCs consist of making plots of predictions from the
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chosen model and the observed data to reveal discrepan-
cies. Formal PPC entails calculating a posterior predictive
p value (PPP). The concept of posterior predictive check-
ing was introduced by Rubin (1984) and later generalized by
Gelman et al. (1996a) under the name PPP, where a discrep-
ancy measure can depend on the model parameters. PPCs are
the Bayesian equivalent of frequentist goodness-of-fit tests,
with the difference being that the PPP can be based on any
discrepancy measure, not just a statistic.

To compute the PPP, the chosen discrepancy mea-
sure, D, is calculated based on replicated data yrep,
drawn from the predictive distribution π(yrep

|yobs)=∫
f (yrep

|θ)π(θ |yobs)dθ and compared with that based on ob-
served data. In mathematical terms, we wish to approximate
the theoretical probability

ppp(yobs)= Pr
[
D(y(rep),θ)≥D(yobs,θ)|yobs

]
. (7)

This quantity can be estimated as

ppp(yobs)=
1
B

B∑
i=1

I
[
D(y

rep
i ,θi)≥D(yobs,θi)

]
, (8)

where I [A] stands for the indicator function which takes the
value 1 if A occurs and 0 otherwise, yobs is the observed
dataset, yrep

i is a replicated dataset from the posterior pre-
dictive distribution, B is the number of replicated datasets,
and θi is a single draw from the posterior distribution.

Unlike the frequentist p value, the interpretation of the
PPP is not straightforward since it does not follow a uniform
distribution but is concentrated around 0.5 (Meng, 1994).
When the p value has a uniform distribution, the type I er-
ror can be controlled. For the frequentist p value, the proba-
bility of falsely rejecting a null hypothesis, which is referred
to as a type I error rate, can be set to a fixed value. Typi-
cally, this value is prespecified to be 0.05 or 0.01. On the
contrary, it is difficult to fix the type I error rate for the PPP.
Hence, we might fail to reject poor models for a given PPP
at a chosen type I error (Gelman, 2013; Hjort et al., 2006).
For this reason, we computed the prior-calibrated posterior
predictive p value (PCPPP) introduced by Hjort et al. (2006)
that has a uniform distribution and the same interpretation
as a classical p value. For more on the type I error and the
distribution of the p value, refer to Hung et al. (1997), and
for Bayesian p values, see Zhang (2014). To calculate the
PCPPP, a PPP based on data from the prior predictive distri-
bution π(yprior)=

∫
f (yrep

|θ)π(θ)dθ is computed and com-
pared with a PPP based on replicated data from the posterior
predictive distribution

pcppp(yobs)=
1
B

B∑
i=1

I
[
ppp(yrep

priori
)≤ ppp(yobs)

]
,

where ppp(yobs) is obtained by Eq. (8) and ppp(yrep
priori

) can
be in a similar way. From this equation, it becomes visible

that the PCPPP can also reveal prior data conflicts. A PCPPP
greater than a prespecified type I error, say of 0.05, means
that the prior distribution and model support the data at the
0.05 level. The PPP can also be calibrated based on posterior
samples (Hjort et al., 2006; Wang and Xu, 2021).

2.3 Numerical methods

In this section, we discuss the proposed new numeri-
cal method, replica-exchange Hamiltonian Monte Carlo
(REHMC) + TI, that we employ to simultaneously draw
posterior samples and estimate the marginal likelihood. We
recommend the reader refer to Fig. 2 and its caption for a
high-level overview of the approach before continuing to the
detailed descriptions below.

2.3.1 Thermodynamic integration

Thermodynamic integration (TI) has its origins in theoreti-
cal physics, where it is used to calculate free energy differ-
ences between systems (Torrie and Valleau, 1977) before ap-
pearing in the statistical literature as path sampling (Gelman
and Meng, 1998), a method for calculating marginal likeli-
hoods. TI converts a high-dimensional integral into a one-
dimensional integration problem over a unit interval.

To derive the TI estimate of the marginal likelihood p(y),
we first raise the likelihood to the power of 0≤ β ≤ 1 to form
the power posterior (Friel and Pettitt, 2008):

πpower(θ |y,β)=

[
f (y|θ)

]β
π(θ)

p(y|β)
, (9)

with

p(y|β)=

∫ [
f (y|θ)

]β
π(θ) dθ. (10)

When β = 0, the power posterior is the same as the prior dis-
tribution. When β = 1, we have the standard posterior distri-
bution. This makes a continuous path between the prior and
posterior distributions.

Taking the logarithm on both sides of Eq. (10) and using
the chain rule, a differentiation with respect to β yields

∂

∂β
logp(y|β)=

1
p(y|β)

∂

∂β
p(y|β)

=
1

p(y|β)

∫
∂

∂β

[
f (y|θ)

]β
π(θ) dθ

=
1

p(y|β)

∫ [
f (y|θ)

]β logf (y|θ)π(θ) dθ

=

∫ [
f (y|θ)

]β
π(θ)

p(y|β)
logf (y|θ) dθ

= Ep(θ |y,β)[logf (y|θ)], (11)

where Ep(θ |y,β) is the expectation with respect to the power
posterior. Integrating both sides of equation (Eq. 11) with re-
spect to β gives the log of the marginal likelihood of interest,
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Figure 2. Overall schematic of the REHMC + TI algorithm for estimating the marginal likelihood for a given model M . Working from
left to right, N pHMC samplers are run at different values of the inverse temperature parameter {β1,β2, . . .,βN } with 0≤ βj ≤ 1,j =
1, . . .,N, to simulate from the power posterior logf (y;θi ,βj ). The REMC algorithm is responsible for swapping the state between adjacent
chains according to the Metropolis–Hastings criteria. Finally, the TI methodology is used to calculate an estimate of the marginal likelihood
logp(y|M). Note that in terms of setup, information flows from right to left; i.e. the discretization of the TI integral is responsible for setting
the number (N ) and values of inverse temperatures (β1, . . .,βN ).

p(y), in terms of an integral of β:

logp(y)=

1∫
0

Ep(θ |y,β)[logf (y|θ)] dβ, (12)

This manipulation allows us to find a way to approximate the
value of p(y). Computationally, posterior samples are drawn
for each value of β. The values are then evaluated in the log
likelihood, and the mean for each value of β is obtained. The
integral in Eq. (12) on β can be estimated using the trape-
zoidal rule as follows:

logp(y)=
N∑
j=1

(βj −βj−1)

2

[
Ep(θ |y,βj ) logf (y|θ)

+Ep(θ |y,βj−1) logf (y|θ)
]
.

The Monte Carlo estimate of the expectations can then be
obtained by

logp(y)≈
N∑
j=1

(βj −βj−1)

2

[
1
S

S∑
i=1

logf (y|θi,βj )

+
1
S

S∑
i=1

logf (y|θi,βj−1)

]
, (13)

where j = 1, . . .,N is the index for the β values and S is
the number of posterior samples for each β value. The ac-
curacy of the TI estimate depends on the integration rule on
β, i.e. the number of β values and the spacing of the val-
ues, and the convergence of the Markov chain Monte Carlo
(MCMC). The most commonly employed path is a geometric
path (Calderhead and Girolami, 2009):

βj =

(
j

N

)5

, j = 1, . . .,N. (14)

The number of βj values can be adaptively chosen as a
tradeoff between model convergence and computational effi-
ciency, for instance, see Vousden et al. (2016). The complete
TI algorithm is presented in Algorithm 1.

2.3.2 Replica-exchange Monte Carlo

The REMC algorithm was introduced by Swendsen and
Wang (1986). Geyer (1991) presented a similar formula-
tion to the statistical community under the name Metropolis-
coupled MCMC. REMC is a generic algorithm in that it can
be combined with other algorithms. Miasojedow et al. (2013)
combined REMC with random walk Metropolis (RWM).
RWM is a gradient-free algorithm in that it generates pos-
terior samples from the target distribution by randomly sam-
pling from a proposal distribution. We combine REMC with
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Algorithm 1 Thermodynamic integration (TI).

Require: β {β = {1, . . .,0} : schedule of inverse temperatures
based on the trapezoidal rule of size N , and S is the number
of samples per replica.}

Ensure: Log marginal likelihood (logp(y)).
1: REpHMC(β) {Run a single step of the REpHMC algorithm S

times; see Sect. 2.3.2.}
2: Estimate logp(y) by the definition of the quadrature rule, e.g.

trapezoidal rule

logp(y)≈
N∑
j=1

(βj −βj−1)

2

[
1
S

S∑
i=1

logf (y|θi ,βj )

+
1
S

S∑
i=1

logf (y|θi ,βj−1)

]
.

HMC, which gives the new algorithm, REHMC, explained
in the rest of this section. When REMC is combined with
pHMC, we get the REpHMC. The REpHMC gives a higher
effective sample size than REHMC. The effective sample
size is the number of independent samples with the same
amount of information as correlated samples. Each sample
in a Markov chain is correlated to the preceding sample,
so the samples have less information than independent sam-
ples. The effective sample size takes into account this au-
tocorrelation. The main idea of REMC is that an ensemble
of power posterior chains, known as replicas, run in paral-
lel. The likelihood of these chains is raised to values from
0 to 1. These values are called inverse temperatures. Each
replica performs a Metropolis update to get the next value at
each iteration. Adjacent replica pairs are randomly selected,
and an attempt is made to swap the current values of the
replica pairs. A swap is accepted or rejected according to
the Metropolis–Hastings algorithm. The swapping acceler-
ates convergence to the target distribution, avoids chains be-
coming trapped in topologically isolated areas of the param-
eter space, and improves the mixing of the chains. REMC is
also known as parallel tempering (Hansmann, 1997; Earl and
Deem, 2005). When the method has an iterated importance
sampling step, it is known as population Monte Carlo (PMC)
(Iba, 2000; Cappé et al., 2004). However, the term PMC has
also been used for methods without an importance sampling
step (Calderhead and Girolami, 2009; Friel and Pettitt, 2008;
Mingas and Bouganis, 2016).

The REpHMC is summarized in Algorithm 2. We empha-
size that the samples of the replica with β = 1 are used to es-
timate the posterior parameters, while the entire ensemble is
used as input within TI to calculate the marginal likelihood.

Like any sampling method, the REpHMC’s convergence
should be assessed. We used both trace plots and formal
diagnostic tests to check for convergence of the Markov
chain since there is no universal robust test for convergence
(Cowles and Carlin, 1996). The most widely used method

Algorithm 2 Single step of replica-exchange preconditioned
Hamiltonian Monte Carlo (REpHMC).

Require: L, ε, θ t , β {L: number of leapfrog steps, ε: leapfrog
step size, θ t = {θ t1, . . .,θ

t
N
}: initial values for each β, β =

{β1, . . .,βN }: schedule of N inverse temperatures}
Ensure: (θ t+1

1 , . . .,θ t+1
N

) {Posterior samples for each β}.
1: for i = 1 to N do
2: θ t+1

i
← pHMC(L,ε,θ t

i
) {Run single step of pHMC algo-

rithm on each replica}
3: end for
4: for i = 1 to N − 1 do
5: j ← i+ 1 {Select adjacent chain}

6: α←min
(

1,
πi(θ

t+1
j

)πj (θ
t+1
i

)

πi(θ
t+1
i

)πj (θ
t+1
j

)

)
{where, for example,

πi(·) is the power posterior associated with temperature βi}.

7: u∼ U(0,1)
8: if u≤ α then
9: (θ t+1

i
,θ t+1
j

)← (θ t+1
j

,θ t+1
i

)
10: else
11: (θ t+1

i
,θ t+1
j

)← (θ t+1
i

, θ t+1
j

)
12: end if
13: end for

to assess the convergence of Markov chains is the poten-
tial scale reduction factor R̂ developed by Gelman and Ru-
bin (1992) and extended by Brooks and Gelman (1998). Re-
cently, an improved factor R̂ was proposed by Vehtari et al.
(2021). For R̂ to be a valid statistic, the chains must be inde-
pendent of each other. In REpHMC, the chains are not inde-
pendent due to swapping. Therefore, we used methods that
require one chain or replica per temperature – namely, the
Geweke diagnostic (Geweke, 1992) and the integrated au-
tocorrelation time (IAT) (Geyer, 1992; Kendall et al., 2005).
For the sake of brevity, we do not explain these concepts here
but instead refer the reader to the respective papers.

2.3.3 Hamiltonian Monte Carlo

HMC is a gradient-based technique used to sample from a
continuous probability density (Duane et al., 1987). HMC
scales better in high dimensions than gradient-free samplers,
such as nested sampling, due to the inclusion of derivative
information (Ashton et al., 2022). Therefore, many applica-
tions combine HMC and gradient-free samplers. For exam-
ple, Elsheikh et al. (2014) have combined HMC and nested
sampling. HMC is based on the Hamiltonian, which de-
scribes a particle’s position and momentum at any time. New
positions are known by solving Hamilton’s equations of mo-
tion for position and momentum. In Bayesian inference, the
Hamiltonian H(θ,ρ) in Eq. (15) describes the evolution of a
d-dimensional vector (θ ) of parameters and a corresponding
d-dimensional vector of auxiliary momentum (ρ) variables
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at any time t .

H(θ,ρ)=−logf (y|θ)π(θ)+
1
2
ρTMρ

= U(θ)+K(ρ)

(15)

In Eq. (15), M is the positive definite mass matrix. U(θ) is
the desired posterior known as potential energy, and K(ρ) is
the kinetic energy that is a function of momentum. To sample
from the Hamiltonian, we take the partial derivatives, which
give Hamilton’s equations of motion:

dθ
dt
=
∂H

∂ρ
=
∂K

∂ρ
, (16a)

dρ

dt
=−

∂H

∂θ
=−

∂U

∂θ
. (16b)

We now have a system of ODEs (Eqs. 16a to 16b). The
leapfrog method (Duane et al., 1987; Radford, 2011) is used
to solve Eqs. (16a) to (16b) and propose new values for the
parameters. The accuracy of the leapfrog method depends on
discretization step ε.

Each HMC iteration consists of two steps (Radford, 2011).
In the first step, the momentum values for each parameter are
sampled from a Gaussian distribution independent of the cur-
rent θ values, ρ∗ ∼MVN(0,M). Then, using the current pa-
rameter and momentum values, (θ t ,ρt ), the Hamiltonian is
simulated using an appropriate time-stepping method, such
as the leapfrog method (Betancourt, 2017). At the end of
Hamiltonian dynamics, the momentum values are negated,
and the new parameter values (θ∗,ρ∗) are accepted or re-
jected using the Metropolis–Hastings criterion with accep-
tance probability α, where

α =min
[
1,exp

(
−U(θ∗)+U(θ t )−K(ρ∗)+K(ρt )

)]
. (17)

The HMC is summarized in Algorithm 3. The mixing of
the HMC chain depends on the number of leapfrog steps,
L, and step size ε. L and ε can be automatically tuned dur-
ing the warm-up phase of the algorithm (Hoffman and Gel-
man, 2014). The warm-up phase is the period during which
posterior samples are discarded and is also called burn-in.
In this work, ε was automatically tuned by the dual aver-
aging algorithm, while L was manually tuned. Dual averag-
ing automatically adjusts ε during the warm-up of the HMC
algorithm until a specific acceptance rate is achieved. We
used an acceptance rate of 0.75, which is higher than the
optimal acceptance rate of RWM-based algorithms. This is
the mean of various reported values and the default in Ten-
sorFlow probability. To increase the sampling efficiency of
HMC, we have to reduce the correlation of the parameters,
especially for ODE models. This is achieved by introducing
a preconditioned matrix, M, and hence the name is pHMC.
This leads to even faster convergence and higher effective
sample sizes for each parameter (Girolami and Calderhead,
2011). In practice, the preconditioned matrix is the inverse

of the covariance matrix of the target posterior. In contrast
to HMC, where the momentum is sampled from a normal
distribution, for pHMC, the momentum values are sampled
from a multivariate Gaussian distribution with a covariance
matrix as the preconditioned matrix, ρ ∼MVN(0,M). The
covariance matrix controls the correlation of the parameters.
The rest of the algorithm for pHMC works in the same way
as for HMC.

Algorithm 3 A single step of preconditioned Hamiltonian
Monte Carlo (pHMC), with notation following Radford
(2011).

Require: L,ε,θ t {L: number of leapfrog steps, ε: leapfrog step
size, θ t : initial value.}

Ensure: θ t+1

1: ρ∗ ∼MVN(0,M) {Sample momentum values, and M is the
mass matrix}

2: θ∗← θ t

3: for i = 1 to L do
4: (θε ,ρε)← leapfrog(θ,ρ,ε)
5: end for
6: ρ∗←−ρ∗

7: α←min
(
1,exp

(
−U(θ∗)+U(θ t )−K(ρ∗)+K(ρt )

))
8: u∼ U(0,1)
9: if u≤ α then

10: θ t+1
← θ∗

11: else
12: θ t+1

← θ t

13: end if
14:
15: function leapfrog(θ,ρ,ε) {Solves the equations to propose

new values}
16: ρε/2← ρ− ε

2
∂U
∂θ
(θ)

17: θε← θ + εMs−1ρε/2

18: ρε← ρε/2− ε
2
∂U
∂θ
(θε)

19: return (θε ,ρε )

2.4 Implementation aspects

In this section, we outline some of the more non-standard
aspects of implementing the proposed methodology in the
probabilistic programming language (PPL) TFP. Probabilis-
tic programming (PP) is a methodology for performing com-
putational statistical modelling in which all elements of
the Bayesian joint posterior π(θ |y,M) are specified in a
PPL. Popular PPLs include Stan (Carpenter et al., 2017),
PyMC3 (Salvatier et al., 2016), and TFP (Dillon et al., 2017).
Once specified in a PPL, the subsequent Bayesian parameter
inference problem can then be handled semi-automatically.
We refer the reader to the “Code and data availability” sec-
tion for the full implementation and simply remark that the
joint posterior for our problem can be defined in around 70
lines of TFP/JAX code.

We choose to use TFP in this study. From our experience,
TFP is the most flexible and extensible PPL in terms of al-
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lowing advanced model specification and the ability to break
out of the high-level interface and perform low-level opera-
tions. However, this flexibility comes at the cost of a steeper
learning curve, particularly TFP’s complex batch and event
shape semantics (Dillon et al., 2017). We note that despite
TensorFlow in the name, TFP is backend agnostic and can
run on top of various differentiable programming languages.
We choose to run TFP on top of JAX, instead of the de-
fault choice of TensorFlow. Anecdotally, our experience is
that TFP on JAX has better runtime performance and is more
robust than TFP on TensorFlow, particularly when working
with ODE-based models. We use JAX with the CPU backend
and double-precision floating point representation, although
in principle the GPU backend could also be used. TFP al-
ready includes an implementation of the HMC and REMC
algorithms, the output of which can be used with TI for com-
puting the marginal likelihood.

JAX can automatically perform arbitrarily composable
forward- and backward-mode automatic differentiation of
nearly arbitrary computer programs. This is used to automat-
ically differentiate the TFP specification of the negative log
posterior U(θ) with respect to the model parameter θ for use
within the HMC algorithm. As this approach is now stan-
dard, we refer the reader to Margossian (2019) for a detailed
review.

For the automatic differentiation of the ODE model, we
use the continuous adjoint approach. This approach is also
called continuous backpropogation in the neural ODE liter-
ature; see, for example, Kelly et al. (2020) and Höge et al.
(2022) for an application in hydrology. We follow the presen-
tation in Kidger (2021), where a new set of adjoint ODEs is
from the original continuous ODE system. This adjoint sys-
tem is then discretized (backwards in time) using the same
ODE solver as for Eq. (1), an explicit adaptive Dormand–
Prince ODE integrator that is already included in JAX. It is
worth remarking that while the continuous adjoint system is
still derived automatically within JAX, the result is distinctly
different to backwards differentiation through the steps of the
forward ODE solver at the programmatic level. For more de-
tails, we refer the reader to Kidger (2021) for a discussion of
the different methods for automatically differentiating ODE
systems and their relative tradeoffs.

Let V be the solution to Eq. (1). In the simplest case, let
J = J (V (T )) be some scalar function of the terminal so-
lution value V (T ) (the approach extends straightforwardly
to other functionals). Setting dJ

dV = aV (t) and dJ
dθ = aθ (0)

where aV : [0,T ] → Rn and aθ : [0,T ] → Rp are the solu-
tions to the following adjoint ODE system:

(aV )t =−aV (t)
T ∂f

∂V
(t,V ,θ), aV (T )=

dJ
dV (T )

, (18a)

(aθ )t =−aV (t)
T ∂f

∂θ
(t,V ,θ), aθ (T )= 0. (18b)

Note that the adjoint system requires the forward solution to
have already been computed and that the adjoint system runs

backwards in time, i.e. evolving from known states aV (T )
and aθ (T ) at terminal time t = T to the starting time t = 0.
Once aθ (0) has been computed, the required gradient of the
functional dJ

dθ = aθ (0) can be computed straightforwardly.
This continuous adjoint ODE approach can be arbitrarily
composed with JAX’s programme level automatic differen-
tiation capabilities, meaning that it is possible to add non-
ODE-based components (e.g. smoothers) to the model and
use our framework for computing marginal likelihoods.

3 Results and discussion

The purpose of this section is to test the accuracy of
REpHMC in calculating the BF by employing it to solve
benchmark problems with complex distributions but well-
known log marginal likelihoods and thus the BF. We illus-
trate that the BF can distinguish between models with an
equally good fit by calculating the BF of synthetic discharge
data for three different models, among which is the data-
generating model. We repeat the experiment using another
data-generating model. Finally, the BF is applied to the real-
world discharge data.

3.1 Gaussian shell example

This section aims to show that the proposed methodol-
ogy accurately estimates the marginal likelihood of a syn-
thetic example. In addition, it illustrates the effectiveness of
REpHMC in sampling multimodal distributions. The bench-
mark example is the Gaussian shells (Feroz et al., 2009; Al-
lanach and Lester, 2008). This example has two wholly sepa-
rated Gaussian shells, making it difficult to sample from. This
example has been used to test various techniques for calculat-
ing the marginal likelihood (Thijssen et al., 2016; Henderson
and Goggans, 2019). The Gaussian shell likelihood is given
as

`(θ)=
1√

2πw2
1

exp
[
−
(‖θ1− c1‖− r1)

2

2w2
1

]

+
1√

2πw2
2

exp
[
−
(‖θ2− c2‖− r2)

2

2w2
2

]
. (19)

The unknown parameters are θ = (θ1, θ2), while the
marginalized fixed parameters are r1, r2,w1,w2,c1, and c2.
The first shell has a radius of r1 and the second shell of r2.
The first shell is centred at c1, while the second is centred at
c2. The variance (width) of the first shell is w1 and that of
shell 2 is w2. We assign uniform priors to θ1 and θ2 in the
range from −6 to 6, and the marginalized parameters are set
to w1 = w2 = 0.1, r1 = r2 = 2, c1 = 3.5, and c2 =−3.5. We
used 26 temperature schedules since it is a difficult sampling
problem to obtain fast mixing due to the two regions of prob-
ability mass. The convergence of the number of temperatures
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Figure 3. Convergence diagnostic plots of the log marginal like-
lihood for the Gaussian shell in two dimensions. The temperature
schedules is run twice in parallel with random initial parameter val-
ues. Convergence occurs when the curves plateau.

Table 2. Log marginal likelihood (log p(y)) of the Gaussian shell
example. The true values are shown, and the estimates are based
on thermodynamic integration with samples from REpHMC. The
results are shown for up to 30 dimensions.

Dimensions Reference∗ Estimated
p(y) log p(y)

2 −1.75 −1.75± 0.003
5 −5.67 −5.68± 0.006
10 −14.59 −14.60± 0.006
20 −36.09 −36.12± 0.014
30 −60.13 −60.19± 0.025

∗ As reported in Feroz et al. (2009).

was checked after the convergence of the posterior samples.
The log marginal likelihood is stable after using 22 tempera-
tures. From this point, there is very little variation in the log
marginal likelihood, as shown in Fig. 3. The plot shows that
the log marginal likelihood is constant from 10 to 11 temper-
atures. Although 10 temperatures are commonly used, this
would have underestimated the actual value. To assess con-
vergence, diagnostic plots were made by running the same
temperature schedules twice in parallel with two different
random initial parameter values, and the results are displayed
in Fig. 3, where the horizontal red line is the true value. The
swap acceptance rate ranges from 0.389 for 10 temperature
schedules to 0.479 for more than 50 temperatures.

A plot of the samples for the parameters using various
samplers is shown in Fig. 4. The plot demonstrates that due
to the addition of replica exchange the REpHMC method
can sample across the shells compared to algorithms such as
NUTS (Hoffman and Gelman, 2014), MALA (Xifara et al.,
2014), or plain HMC (not shown), which are purely local.
The results of the marginal likelihood up to 30 dimensions
are shown in Table 2, with agreement with the marginal like-
lihood values reported in the literature (Feroz et al., 2009).

3.2 Synthetic examples

In this section, we generate synthetic discharge data using the
observed precipitation and observed potential evapotranspi-
ration as inputs to our models. The following two examples
aim to verify the correct implementation and study the be-
haviour of the methodology to calculate the marginal likeli-
hood. In the first experiment, data yobs is generated from the
simplest model, M2. In the second experiment, M3 (three-
bucket model) is the data-generating model. For each experi-
ment, the log marginal likelihood logp(y|Mi) for i = 2,3,4
and the respective Bayes factors are calculated. The deviance
information criterion (DIC) and widely applicable informa-
tion criterion (WAIC) are also calculated for experiments in
Sect. 3.2.1 and 3.2.2 and for real-world discharge data in
Sect. 3.3.

3.2.1 Experiment 1 with data generated from the
two-bucket model, M2

In the first experiment, synthetic discharge data yobs is gen-
erated from the simplest model, M2 (two-bucket model) to
see if the BF will select M2. We set up the priors as in Ta-
ble 3. The synthetic discharge is generated to have similar
dynamics as the observed discharge shown in Fig. 5. First,
we obtain the daily precipitation and evapotranspiration for
the Magela Creek catchment in Australia for 1980. The initial
time, t = 0, corresponds to midnight on 1 January 1980, and
the final time, T = 366 d, to midnight on 31 December 1980
(1980 was a leap year). It is assumed that the total precip-
itation and evapotranspiration on a given day are uniformly
distributed over the 24 h from midnight to midnight. This is
an acceptable assumption when modelling the dynamics of a
catchment on a multiday timescale.

Our analysis focuses on a 3-month period in 1980 running
from 1 January to 31 March 1980 when the precipitation fre-
quency is the highest, and there are no missing data.

We set up the priors according to the following reasoning:

– The top bucket associated with state V1 typically repre-
sents the fast dynamics of the catchment system, such
as surface runoff into rivers. The parameters k1 and k1,2
are the recession coefficients of the top bucket. They
represent the flow rates from the top bucket. Since the
parameters have to be positive, we use lognormal pri-
ors, the most commonly used distribution for dynamic
models.

– The set of lower bucket states, Vi , represents processes
with progressively slower dynamics such as ground-
water storage and is associated with parameters ki ,
k(i−1),(i), and k(i),(i+1) for i = 2, . . .,n− 1. The bottom
bucket state, Vn, is associated with parameters kn and
k(n−1),(n).

– The system starts with a nonzero initial condition that
mimics the standard procedure of “bootstrapping” the
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Figure 4. Posterior samples for the Gaussian shell example obtained by different algorithms alongside the target distribution. Top left (a)
is NUTS, top right (b) is REpHMC, bottom left (c) is MALA, and bottom right (d) is the target distribution. Because of the addition of
replica exchange, REpHMC can sample across the entire distribution space. This is in contrast to the NUTS, MALA, and HMC (not shown)
samplers which cannot transition across the gap between the two shells.

Table 3. Description of the parameters and priors. Note that here we have used units more common in the hydrological literature. LN is the
lognormal distribution and IG is the inverse gamma distribution. The IG was chosen because it is easier to sample than other distributions for
the prior noise parameter, which must be positive.

Parameter Unit Description Prior

k1 d−1 Outflow recession coefficient for bucket 1 LN(1.0,0.25)
k2 d−1 Outflow recession coefficient for bucket 2 LN(0.6,0.25)
k3 d−1 Outflow recession coefficient for bucket 3 LN(0.3,0.25)
k4 d−1 Outflow recession coefficient for bucket 4 LN(0.1,0.25)
k1,2 d−1 Interbucket recession coefficient 1 to 2 LN(0.8,0.25)
k2,3 d−1 Interbucket recession coefficient 2 to 3 LN(0.4,0.25)
k3,4 d−1 Interbucket recession coefficient 3 to 4 LN(0.1,0.25)
V̂1 mm Initial condition on V1 LN(0.0,1.0)
V̂2 mm Initial condition on V2 LN(0.0,1.0)
V̂3 mm Initial condition on V3 LN(0.0,1.0)
V̂4 mm Initial condition on V4 LN(0.0,1.0)
Vmax mm Maximum amount of water the soil can store LN(1.0,0.25)
σ 2 mm2 d−2 Variance of the Gaussian noise model IG(5.0,0.1)

ODE system for a period TB < 0. For real-world data,
the initial conditions are not known and must be iden-
tified. The initial condition to be identified is V̂i , where
i = 1,2, . . .,n.

The meaning of the parameters and the priors are shown in
Table 3. We follow a Bayesian workflow and do a prior pre-
dictive check. This helps to verify if the priors are reason-

able. For the prior predictive check, 50 samples were drawn
from the prior and then evaluated in the likelihood. This gave
50 different datasets for the synthetic discharge. The mean
synthetic discharge is then obtained, and the 95 % point-
wise credible intervals are obtained and shown in Fig. 6.
The marginal likelihoods for M2,M3, and M4 were calcu-
lated, and the corresponding Bayes factors were calculated.
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Figure 5. Plot of observed discharge, synthetic discharge, and precipitation from 1 January to 31 December 1980. The observed discharge has
missing values, represented by the broken blue line, mostly in the seventh month. Synthetic discharge data generated via the joint posterior
(before calibration) shows similar overall trends to the observed discharge.

Figure 6. Plot of observed discharge, synthetic discharge, and precipitation from 1 January to 29 May 1980. This period has no missing
values and has the highest precipitation frequency and discharge of the year 1980. The synthetic discharge has a similar trend to the observed
discharge. The synthetic discharge here is generated using a different set of parameters compared to that in Fig. 5.

For each model, 15 different runs of the marginal likelihood
were calculated using REpHMC+ TI. This enabled us to get
the estimate’s standard deviation, which is different from the
Monte Carlo standard error.

We perform REpHMC with 10 replicas where the likeli-
hood of a replica is raised to an inverse temperature value ac-
cording to the schedule in Eq. (14). Each replica was run until
IAT< S/50, where S is the number of posterior samples. The
IAT is the number of samples required to obtain an indepen-
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dent sample and a smaller value is preferable. We found that
4000 posterior samples per replica were enough to rule out
non-stationarity. We also did a full run with 20 000 posterior
samples per chain, and we saw no significant change in the
results. The p value for Geweke diagnostics was not signif-
icant at 5 % for all parameters and models (p value> 0.90),
indicating there is a high probability that the parameters have
converged. The IAT and Geweke diagnostics were performed
using the Python package pymcmcstat (Miles, 2019).

The posterior parameter estimates and 95 % credible inter-
val (CI) are in Table 4. For M2, the true model, the posterior
parameters are very close to the true values and are within
the 95 % CI. Moreover, the parameters k1, V̂1, V̂2, Vmax, and
σ 2 are very close to the true values. However, the error term,
σ 2, is the same for all three models as all models fit the data
well. Therefore, a model selection criterion is needed to dis-
criminate between models.

Fifteen marginal likelihoods are calculated in parallel for
each model. The mean log marginal likelihood is presented in
Table 4. We can calculate the log BF of any model compared
to another by taking the difference in their log marginal like-
lihoods. Based on the interpretation of BF in Table 1, there
is decisive evidence in favour of the data-generating model
M2.

The distributions of the log marginal likelihood for each
model are shown in box plots (Fig. 7). In addition, the
DIC and WAIC are shown along with those of the marginal
likelihood, and they also select the data-generating model.
The DIC is a Bayesian generalization of information-theory-
based criterion AIC for model selection introduced by
Spiegelhalter et al. (2002). The WAIC is based on point-
wise out-of-sample predictive accuracy (Vehtari et al., 2017;
Watanabe and Opper, 2010) and for large samples equivalent
to the leave-one-out cross-validation (Watanabe and Opper,
2010). For these information-based theoretic methods, a dif-
ference of 10 is usually required for a decisive preference of
one model over the other (Burnham and Anderson, 2002b,
p. 70). A difference of up to 7 is considered less evidence
for preferring one model over the other (Spiegelhalter et al.,
2002). Model M2 has the largest median log marginal likeli-
hood, while model M4 has the lowest.

The prior and posterior distributions for model M2 are in
Fig. 8. The prior distribution is in blue, while the posterior is
in red. The prior range is wide compared to the posterior, so
the posterior contours are too small. The posterior marginal
densities are also more contracted compared to the prior den-
sities, as seen on the diagonal of the plots. The prior contours
show no significant correlation between the parameters.

The posterior distributions for this model are shown
in Fig. 9. The marginal posterior distributions are on
the diagonal. The red dots represent the true pa-
rameters. There is also a high correlation between
pairs (k1,k2), (k1,Vmax), (k1,2,k2), (k1,2,Vmax), (k2,Vmax),
and (V̂1, V̂2).

We also performed graphical posterior predictive checks.
Discharge data were generated from the posterior predictive
distribution of each model and plotted. There is no notice-
able visual difference in discharge (Fig. 10) for all the models
since the posterior error estimate is too small for all models.
We also calculated PPP for the selected model using autocor-
relation as a discrepancy measure. Hence, Eq. (8) becomes

ppp(yobs)=
1
n

n∑
i=1

I
[
(ρ

rep
i ,θi)≥ (ρobs,θi)

]
. (20)

Posterior predictive plots might not tell us if the chosen
model fits the data well, especially for dense datasets. There-
fore, formal posterior predictive tests based on the discrep-
ancy measure are needed. Like most statistical tests, the re-
sults will depend on the type of discrepancy measure or the
test statistics. Carefully choosing such discrepancy measures
is crucial. For example, we may test whether the model can
predict peak discharge values, which would require a differ-
ent discrepancy measure than if the aim of our analysis was
to predict the mean values. Hence, we suggest using formal
posterior predictive tests and graphical posterior predictive
checks as in this study.

The PPP is 0.51, which means that the model has good
predictive performance. This is expected for synthetic data.
Values further from 0.50 indicate a model mismatch with the
data. Values closer to 0 indicate that the model predictions
are lower than the observed data. In contrast, values closer
to 1 reveal that predictions are higher than observed data.
A plot of the autocorrelations of predicted versus synthetic
observed data is shown in Fig. 11. The proportion of val-
ues above the 45° line is the PPP. We also calculated PCPPP
for the selected model and got a value of 0.64> 0.05, which
implies the model can generate the data. The PCPPP is cali-
brated based on prior predictive distribution and is uniformly
distributed. Thus, it has the same interpretation as a classical
p value.

3.2.2 Experiment 2 with data generated from the
three-bucket model, M3

For the second experiment, the data model is M3. Model M3
has three more parameters than M2 and three fewer param-
eters than model M4. The priors for model M2 and M3 are
shown in Table 3. The data in this experiment were also
generated to follow the same trend as the observed data.
All models were fitted to the data, and inference is based
on 20 000 posterior samples with a burn-in of 5000. As
explained above, convergence was checked using IAT and
Geweke diagnostics. The posterior estimates are in Table 5.
Although the error term is small for all models, M2 has a
higher value than the other two models, suggesting that it
may not have the right complexity. Fifteen marginal likeli-
hoods were also calculated for each model in parallel. The
mean log marginal likelihood is presented in Fig. 5. The re-
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Table 4. True value, posterior mean with 95 % credible intervals of the parameters and log marginal likelihood of the models for experiment
1. Model M2 has the highest log marginal likelihood and is the true model. The DIC and WAIC are also shown.

Parameter True value M2 (95 % CI) M3 (95 % CI) M4 (95 % CI)

k1 1.454 1.454 (1.445, 1.462) 1.438 (1.434, 1.457) 1.089 (1.081, 1.095)
k2 0.248 0.248 (0.248, 0.248) 0.241 (0.241, 0.250) 0.160 (0.129, 0.174)
k3 0.000 – 0.248 (0.247, 0.248) 0.241 (0.196, 0.265)
k4 0.000 – – 0.208 (0.207, 0.208)
k1,2 3.232 3.234 (3.205, 3.263) 3.157 (3.145, 3.256) 1.628 (1.552, 1.670)
k2,3 0.000 – 1.619 (0.993, 1.683) 1.102 (0.921, 1.400)
k3,4 0.000 – − 1.861 (1.105, 2.749)
V̂1 1.081 1.067 (1.039, 1.095) 1.067 (1.038, 1.071) 1.246 (1.181, 1.282)
V̂2 0.813 0.894 (0.787, 0.990) 0.490 (0.483, 0.593) 0.599 (0.474, 0.761)
V̂3 0.000 – 0.520 (0.453, 0.525) 0.731 (0.459, 0.827)
V̂4 0.000 – − 0.576 (0.433, 0.954)
Vmax 2.520 2.520 (2.502, 2.542) 2.573 (2.507, 2.581) 3.106 (2.999, 3.149)
σ 2 0.014 0.014 (0.011, 0.016) 0.015 (0.015, 0.016) 0.023 (0.022, 0.027)
logp(y|M) – 217.968 203.383 154.768
log BF23 – 14.585 – –
log BF24 – 63.200 – –
DIC – −521.235 −448.980 −449.000
WAIC – −514.354 −501.686 −445.233

–: the parameter is not included in the model. σ2: error term. logp(y|M): log marginal likelihood. log BFij : Bayes’ factor of
model i compared to model j .

Figure 7. Distribution of the log marginal likelihood, DIC, and WAIC for 15 different runs each. Distribution of the log marginal likelihood
for 15 different runs. The boxplot of the data-generating model,M2, is the highest, whileM4 is the lowest. Hence,M2 has the highest marginal
likelihood. M3 has the shortest interquartile range and, therefore, variability (a). DIC (b) and WAIC (c). For the log marginal likelihood,
higher values are preferred, while for the deviance information criterion (DIC) and widely applicable information criterion (WAIC), smaller
values are preferred. All techniques select the data-generating model.

sults are also shown in box plots in Fig. 12. The box plots re-
veal that M3 has the highest median log marginal likelihood,
and M2 the lowest. There is decisive evidence in favour of
model M3, the expected result.

Following the recommendations in Burnham and Ander-
son (2002a) for interpreting information-theoretic criteria, a
difference of 4 to 7 suggests a weak preference for a model,
and a difference of at least 10 suggests strong preference for

a model. Consequently, the DIC and the WAIC do not sug-
gest a strong preference for the true model (M3) over the
richer model (M4). The WAIC shows possible weak evidence
in favour of M3 over M4, but we note that the error bar in
Fig. 12 for WAIC M4 indicates substantial uncertainty in the
estimate. In this case, the BF then decisively selects the data-
generating model M3 where the information-theoretic crite-
ria fail to do so. This example alone is clearly not proof that
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Figure 8. Prior and posterior distributions for modelM2. It is difficult to see the correlations due to the high difference in variance between the
prior and posterior distributions. The red represents the posterior distributions and the blue the prior distributions. The posterior distributions
have contracted compared to the priors.

the BF is always superior to WAIC or DIC, but it suggests
that there are cases in which BF succeeds and information-
theoretic criteria can fail. The success of the BF of course
comes with a significantly higher computational cost.

As in experiment 1, a hydrograph from the posterior pre-
dictive distribution is shown in Fig. 13. From the hydrograph,
we cannot determine the best model through visual inspec-
tion since all the models fit the data equally well. Therefore,
we require a formal model selection technique, such as the
BF.

3.3 Real data experiment

This section uses real-world discharge data for Magela Creek
in Australia. For each model, 10 chains of the REpHMC were
run as in the previous examples. We obtained 4000 posterior
samples per chain, discarding the first 1000 as burn-in. The
trace plots showed no indication of non-stationarity of the
Markov chain, and both Geweke diagnostics and IAT sup-
ported convergence. The Z statistic, p value, and IAT are
shown in Table 7. All p values are greater than 0.05, indicat-
ing no significant difference in the means of earlier and later
posterior samples and no evidence against convergence. The

null hypothesis states that the mean of the earlier and later
posterior samples are equal. Furthermore, the IAT is less than
S/50 for all parameters, indicating well-mixed and stationary
chains, where S represents the number of posterior samples.
Smaller values of IAT indicate that fewer samples are needed
to obtain an independent sample in the Markov chain.

Since we do not use an objective Bayesian approach, we
used two sets of priors, where the second set is a sensitiv-
ity analysis. The first set of priors has higher variances for
some parameters and is less informative than the second set
(Table 6). It is common practice to try different priors and to
check if the parameter estimates change with different pri-
ors. This is known as prior-sensitivity analysis. The models
converge faster with the second set of priors. The first set
of priors (Table 3) is the same as in the previous sections.
For the second set of priors, we used lognormal priors with
lower variances for some parameters compared to the first set
of priors. The mean values used for the priors are also differ-
ent from those of the first set of priors. The prior to the error
term remains unchanged.

We checked the precision of our chosen model by com-
paring predicted and observed discharges using a posterior
predictive check based on a second set of priors. The hy-
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Figure 9. Posterior distributions for model M2. There is a high correlation between k1 and Vmax, k1,2 and k2, and k1,2 and Vmax. The
marginal posterior distributions are on the diagonal. The black dots represent the true parameters used in the data-generating process.

Figure 10. Plot of the mean discharge data generated from the pos-
terior predictive distribution of each model for experiment 1. It is
difficult to choose one model by inspection as they all fit the data
well. However, the BF implicitly penalizes the unnecessarily com-
plex models M3 and M4 and correctly selects M2.

drographs for all three models are in Fig. 16. The plots of
the predicted and observed autocorrelations with PPP are in
Fig. 17. The PPP is 0.444, which is not too close to 0.5, and
the PCPPP is 0.639. Hence, one can conclude that the model

Figure 11. Autocorrelation of the replicated versus observed syn-
thetic discharge data. The posterior predictive p value is the pro-
portion of observations above the 45° line. The autocorrelation of
the first point is 1, which isolates it from the other observations.

fits the data based on autocorrelation. Instead of autocorrela-
tion, another metric could be used for the posterior predictive
check depending on the objective of the model. The NSE
for the chosen model is 0.526, and the KGE is 0.705. This
means that the model performs better than using the mean
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Table 5. True value, posterior mean with 95 % credible intervals of parameters, and log marginal likelihood of models for experiment 2. M3
the true model has the highest log marginal likelihood. The DIC and WAIC are also included.

Parameter True value M2 (95 % CI) M3 (95 % CI) M4 (95 % CI)

k1 1.091 1.109 (1.104, 1.113) 1.090 (1.084, 1.097) 1.089 (1.081, 1.095)
k2 0.188 0.207 (0.206, 0.207) 0.172 (0.160, 0.190) 0.160 (0.129, 0.174)
k3 0.208 – 0.208 (0.207, 0.208) 0.241 (0.196, 0.265)
k4 0.000 – – 0.208 (0.207, 0.208)
k1,2 1.675 1.772 (1.759, 1.786) 1.648(1.613, 1.693) 1.628 (1.552, 1.670)
k2,3 1.050 – 1.520 (1.070, 1.781) 1.102 (0.921, 1.400)
k3,4 0.000 – – 1.861 (1.105, 2.749)
V̂1 1.317 1.263 (1.224, 1.325) 1.302 (1.242, 1.346) 1.246 (1.181, 1.282)
V̂2 0.936 1.758 (1.622, 1.914) 0.977 (0.733, 1.167) 0.599 (0.474, 0.761)
V̂3 0.910 – 0.856 (0.696, 1.103) 0.731 (0.459, 0.827)
V̂4 0.000 – – 0.576 (0.433, 0.954)
Vmax 3.048 2.929 (2.910, 2.948) 3.081 (3.026, 3.127) 3.106 (2.999, 3.149)
σ 2 0.024 0.027 (0.024, 0.030) 0.023 (0.020, 0.027) 0.023 (0.022, 0.027)
logp(y|M) – 161.586 173.845 148.060
log BF32 – – 12.259 –
log BF34 – – 25.785 –
DIC – −401.612 −427.913 −426.127
WAIC – −394.247 −420.380 −417.174

–: the parameter is not included in the model. σ2: error term. logp(y|M): log marginal likelihood. log BFij : Bayes’ factor of
model i compared to model j .

Figure 12. Distribution of the log marginal likelihood, DIC, and WAIC for 15 different runs, each with different initial parameter values.
M3, the data-generating model, has the highest median log marginal likelihood (a), while M4 has the lowest. M4 has the highest number of
parameters, while M2 has the fewest parameters. DIC (b) and WAIC (c). For the log marginal likelihood, higher values are preferred, while
for the DIC and WAIC, smaller values are preferred. The log marginal likelihood selects the data-generating model, while DIC and WAIC
do not have any preference for models M3 and M4.

observed discharge. Knoben et al. (2019) found that the KGE
is <−0.41 when the model performs more poorly than the
mean observed discharge. The marginal posterior distribu-
tions for model M4 are shown in Fig. 14. We have also pre-
sented the posterior distributions of the parameters in model
M3 in Fig. 15. There is no noticeable correlation between pa-
rameters when real-world discharge data are used. However,
Vmax plays a major role in the dynamics of the model. A more

realistic prior for Vmax based on the soil physics of Magela
Creek Australia will reduce the model error.

The results of the second set of priors are in Table 8. The
selected model did not change when we used diffuse priors.
The error in the second set of models is lower than in the first
set. Model M2 is always preferred, while M4 is always the
least supported one by the data. The error term, its precision,
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Figure 13. Plot of the mean discharge data generated from the
posterior predictive distribution of each model for experiment 2.
It is difficult to choose one model by inspection as they all fit the
data equally. The BF implicitly penalizes the unnecessarily com-
plex model M4 and correctly selects M3.

Table 6. Second set of priors. LN is the lognormal distribution, and
IG is the inverse gamma distribution.

Parameter Prior distribution

k1 LN(0.8, 0.25)
k2, k3, k4 LN(0.2, 0.25)
k1,2, k2,3, k3,4 LN(0.6, 0.25)
V̂1, V̂2, V̂3 , V̂4, Vmax LN(0.0, 0.25)
σ 2 IG(5.0, 0.1)

effective sample size (ESS), and the number of parameters
influence the marginal likelihood.

We also applied two fully Bayesian information criteria,
DIC and WAIC. Unlike the BF, there is no clear model choice
for the information criteria. The difference in DIC or WAIC
between M2 and M3 is less than 1, which means we do not
have a reason to choose one model over the other.

RWM, NUTS, and MALA were also applied to all the
three models with real world data. Even the other gradient-
based algorithms, NUTS and MALA, could not sample the
parameter space. Attempts to improve algorithms by trying
various values for the initial step size in the case of NUTS
and the step size for MALA did not make any difference.
This further confirms the fact that combining replica ex-
change with an algorithm improves mixing and convergence.

3.3.1 Hydrograph of model M2

Based on the hydrograph in Fig. 16, most of the model pre-
dictions are very close to the observed discharge and within
50 % pointwise credible intervals. However, two peaks are
not captured in the model. The first peak discharge period
was from 4 to 5 February 1980. The observed precipitation
during this period is 41.4 to 122 mm d−1 on 4 and 5 Febru-
ary 1980, respectively. The observed discharge on these days
is 62.09 and 21.82 mm d−1, respectively. It is illogical that

the discharge is reduced with similar weather conditions. The
second peak event occurred on 19 February 1980, with a pre-
cipitation of 15.70 mm d−1 and discharge of 40.00 mm d−1.

The precipitation on the previous day, 18 February 1980,
was 39.30 mm d−1 with potential evapotranspiration similar
to other days and a lower discharge of 9.46 mm d−1. This
observed discharge is irrational as there is higher discharge
with lower precipitation. Also, on 19 March 1980, the precip-
itation was 39.50 mm d−1, with a discharge of 9.44 mm d−1.
In contrast, on 20 March 1980, the precipitation decreased
to 28.30 mm d−1, accompanied by an even lower discharge
of 8.43 mm d−1. This indicates a pattern of higher discharge
with higher precipitation common on most days for similar
weather conditions. An alternative explanation for the mis-
match in peak discharge could be that the field capacity of
the soil changed during these periods and is not captured in
our models.

3.4 Convergence

3.4.1 Model convergence time

In terms of the theoretical complexity, if N is the number of
posterior chains, S the number of samples per chain, and L
the number of leapfrog steps per sample, then there are on the
order of NSL likelihood and likelihood gradient evaluations
for the algorithm to complete.

In terms of actual performance, all models converge by
3000 samples, even for real-world data. A single replica set
runs on a single CPU core within a high-performance com-
puter. The model runtime of Gaussian shell examples ranges
from 6 s for 2 dimensions to 24 s for 30 dimensions. Syn-
thetic examples converge in 2 to 4 h, depending on the param-
eter’s dimension. On the contrary, with real data, the models
converge in 6 to 20 h, depending on the parameter space and
number of temperatures. Models can converge faster with
proper tuning of the number of leapfrog steps. The poste-
rior summary statistics, such as the mean of the parameters,
do not change much with the number of temperatures. The
number of temperatures mainly affects the estimate of the
log marginal likelihood. With large datasets, REpHMC can
be combined with subsampling without replacement to ac-
celerate convergence. The REpHMC converges in minutes if
we are interested only in parameter estimation.

3.4.2 Convergence of marginal likelihood

As proposed by Calderhead and Girolami (2009), most stud-
ies use 10 temperatures. However, it is important to check for
convergence of the log marginal likelihood after convergence
of the posteriors. We suggest starting from eight tempera-
tures until the marginal likelihood is stable. That is the stop-
ping point, when there is very little variation in the marginal
likelihood. This can be visualized by a graph of the marginal
likelihood against the number of temperatures. The number
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Figure 14. Posterior distributions of the 13 parameters for model M4 using the second set of priors. There is no obvious correlation between
the parameters. The marginal posterior distributions are on the diagonal.

of temperatures at which the log marginal likelihood starts
to plateau or flatten is the temperature at which it converges.
Also, a horizontal line can be drawn at any point to see where
most of the values lie or are close to the line, which helps
to check for convergence. As observed with the Gaussian
shell example, the marginal likelihood is constant from 10
to 12 temperatures. Thus, running beyond 12 temperatures is
recommended. The diagnostic plot of the log marginal like-
lihood for the real-world example shows that it is constant

from 10 to 12 temperatures too (Fig. 18). For the real-world
data, we used 45 temperature schedules for each model. Also,
The swap acceptance rate ranges from 0.169 for 10 tempera-
ture schedules to 0.379 for more than 44 temperatures.
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Figure 15. Posterior distributions of the 10 parameters of model M3 based the second set of priors. There is no pronounced correlation
between the parameters. The marginal posterior distributions are on the diagonal.

4 Conclusions

We have introduced a methodology for simultaneous
Bayesian parameter estimation and model selection. The
methodology includes formal model diagnostics, which
check for goodness of fit and prior data conflict. The method
uses a new gradient-based algorithm REpHMC to draw pos-
terior samples, TI for the calculation of marginal likelihood,
and PCPPP for model diagnostics. The REpHMC and TI
were validated on the Gaussian shell example, which is a
difficult sampling benchmark problem since it has isolated
modes. The REpHMC is effective in sampling the entire pa-
rameter space for models with isolated modes. This sets it
apart from other gradient-based algorithms such as HMC,
NUTS, and MALA. Also, we have shown that BF selects
the data-generating model in two experiments, while DIC

and WAIC correctly select the true model in one of two
experiments. Also, none of the other mentioned gradient-
based algorithms worked when real-world data were used
with our developed model. In addition, formal posterior pre-
dictive checks have been introduced to determine if a model
can accurately predict observed or desired values, such as
the minimum or peak discharge. The method was employed
to discharge data from Magela Creek in Australia. We also
calculated NSE and KGE for the chosen model with real-
world data. The framework has been implemented in open-
source software TFP, which supports most algorithms. The
REpHMC can be applied to any hydrological model. Our de-
veloped model performed better than using the mean as a
predictor for real discharge data. However, the model does
not capture peak discharge values. Therefore, some improve-
ments in that regard need to be made.
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Table 7. Convergence diagnostics for real-world data: Z statistic, p value, and IAT. The null hypothesis is that the mean of earlier posterior
samples is the same as that of later posterior samples in a Markov chain. All p values are above 0.05, indicating no significant difference in
the mean of earlier and later posterior samples and no evidence against convergence. The IAT is the number of samples required to obtain an
independent sample in the Markov chain, and smaller values are preferred.

Model

M2 M3 M4

Parameter Z statistic (p value) IAT Z statistic (p value) IAT Z statistic (p value) IAT

k1 0.029 (0.977) 8.489 −0.169 (0.866) 5.561 −0.001 (0.999) 4.811
k2 0.631 (0.528) 3.254 0.520 (0.603) 15.302 0.221 (0.825) 16.99
k3 – – −0.432 (0.666) 14.723 0.137 (0.891) 9.892
k4 – – – −0.371 (0.710) 8.542
k1,2 0.136 (0.892) 21.421 0.423 (0.672) 22.547 0.358 (0.720) 12.855
k2,3 – – 0.399 (0.690) 20.578 −0.253 (0.800) 21.233
k3,4 – – – – 0.291 (0.771) 9.495
V̂1 −0.801 (0.423) 29.976 0.084 (0.933) 7.650 0.037 (0.970) 11.571
V̂2 −0.809 (0.419) 40.986 −0.015 (0.988) 8.317 0.045 (0.964) 20.099
V̂3 – – −0.226 (0.821) 15.710 0.264 (0.792) 8.548
V̂4 – – – – −0.402 (0.688) 12.131
Vmax −0.146 (0.884) 15.897 −0.184 (0.854) 5.786 0.032 (0.975) 3.953
σ 2 <−0.0001(1.000) 9.092 0.018 (0.985) 1.761 0.001 (1.000) 2.167

Figure 16. Hydrographs for all three models. Models M2 and M3 are not visually distinguishable. The results are better than the prior
predictive check shown in Fig. 6, where most predictions are further from the observed data.
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Table 8. Posterior summary statistics and log marginal likelihood for models with the second set of priors. Model M2 is the preferred over
M3 based on the log marginal likelihood. The difference in value between model M2 and M3 is less than 1 for both the DIC and the WAIC,
so there is no preference between the two models according to these criteria. For information-theory-based approaches, a difference of 7 is
necessary for a strong preference for one model. Model M4 is the least preferred model based on any approach.

M2 (95 % CI) M3 (95 % CI) M4 (95 % CI)

k1 0.724 (0.517, 0.940) 0.794 (0.0.574, 1.046) 1.169 (0.774, 1.520 )
k2 0.125 (0.081, 0.174) 0.242 (0.155, 0.344) 1.991 (1.192, 2.801)
k3 – 0.157 (0.096, 0.221) 1.352 (0.720, 1.964)
k4 – – 1.067 (0.598, 1.546)
k1,2 1.195 (0.838, 1.637) 1.923 (1.105, 2.889) 2.292 (1.367, 3.417)
k2,3 – 0.511 (0.380, 0.648) 0.728 (0.463, 0.983)
k3,4 – – 0.826 (0.497, 1.136)
V̂1 1.030 (0.548, 1.530) 1.029 (0.566, 1.457) 1.140 (0.032, 2.893)
V̂2 1.017 (0.593, 1.549) 0.999 (0.582, 1.477) 0.861 (0.048, 2.239)
V̂3 – 0.997 (0.569, 1.523) 0.940 (0.041, 2.325)
V̂4 – – 1.082 (0.060, 2.768)
Vmax 1.139 (0.808, 1.474) 0.912 (0.657, 1.201) 0.796 (0.549, 1.057)
σ 2 5.289 (4.694, 5.830) 5.273 (4.739, 5.828) 5.847 (5.212, 6.499)
logp(y|M) −506.259 −529.483 −608.181
log BF23 23.224 – –
log BF24 101.922 – –
DIC 940.352 940.397 969.722
WAIC 946.536 946.512 979.932

–: the parameter is not included in the model. σ2: error term. logp(y|M): log marginal likelihood. log BFij :
Bayes’ factor of model i compared to model j .

Figure 17. Autocorrelation of replicated versus observed data for
model M2. The posterior predictive p value is the proportion of
observations above the 45° line.

By combining a gradient-based algorithm, HMC, and
REMC, we obtain a powerful algorithm that can sample com-
plex posteriors thanks to the exchange of information be-
tween parallel running chains. We have also illustrated that
the BF is a reliable Bayesian tool for model selection in con-
trast to two common Bayesian-based information criteria for
model selection.

Future work could combine REMC with the NUTS algo-
rithm (Hoffman and Gelman, 2014) which requires less nu-
merical parameter tuning than HMC. Also, introducing sub-
sampling in the case of big data or models with millions of
parameters will reduce the inference time. Another direction
would be to focus on improving the model goodness of fit,

Figure 18. Convergence diagnostic of the log marginal likelihood
for the two-bucket model. The optimal number of temperatures is
48 as there is a very small variation in the log marginal likelihood,
and the curve begins to flatten. The values almost follow the red line
from 45 temperatures.

as the KGE indicates. Furthermore, one could develop a dis-
crepancy measure for the posterior predictive check to test
whether the selected model can capture peak discharge val-
ues. On the practical side, this study could be extended to the
multi-catchment setting. Also, different types of conceptual
hydrological models could be compared using this approach.

https://doi.org/10.5194/gmd-18-1709-2025 Geosci. Model Dev., 18, 1709–1736, 2025



1732 D. N. Mingo et al.: Selecting a hydrological model using Bayes’ factors

Appendix A: Glossary

AIC Akaike information criterion
BIC Bayesian information criterion
HMC Hamiltonian Monte Carlo
MALA Metropolis-adjusted Langevin algorithm
pHMC Preconditioned Hamiltonian Monte Carlo
REMC Replica-exchange Monte Carlo
REpHMC Replica-exchange preconditioned

Hamiltonian Monte Carlo
REHMC Replica-exchange Hamiltonian Monte

Carlo
HBV Hydrologiska Byråns

Vattenbalansavdelning
NUTS No-U-Turn Sampler
ODEs Ordinary differential equations
ODE Ordinary differential equation
TFP TensorFlow probability
TF TensorFlow
TI Thermodynamic integration
MCMC Markov chain Monte Carlo
IAT Integrated autocorrelation time
BF Bayes’ factor
RWM Random walk Metropolis
DREAM Differential Evolution Adaptive

Metropolis
PMC Population Monte Carlo
CI Credible interval
PPC Posterior predictive check
PPP Posterior predictive p value
PPL Probabilistic programming language
PPLs Probabilistic programming languages
PP Probabilistic programming
PCPPP Prior-calibrated posterior predictive p

value
ESS Effective sample size
NSE Nash–Sutcliffe efficiency
KGE Kling–Gupta efficiency
LN Lognormal
IG Inverse gamma
WAIC Widely applicable information criterion
DIC Deviance information criterion
ABC Approximate Bayesian computation
ODEs Ordinary differential equations
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