Articles | Volume 17, issue 22
https://doi.org/10.5194/gmd-17-8455-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-8455-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GNNWR: an open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity
Ziyu Yin
School of Earth Sciences, Zhejiang University, Hangzhou, China
Jiale Ding
School of Earth Sciences, Zhejiang University, Hangzhou, China
School of Earth Sciences, Zhejiang University, Hangzhou, China
Ruoxu Wang
School of Earth Sciences, Zhejiang University, Hangzhou, China
Yige Wang
School of Earth Sciences, Zhejiang University, Hangzhou, China
Yijun Chen
School of Earth Sciences, Zhejiang University, Hangzhou, China
Jin Qi
School of Earth Sciences, Zhejiang University, Hangzhou, China
Sensen Wu
CORRESPONDING AUTHOR
School of Earth Sciences, Zhejiang University, Hangzhou, China
Zhenhong Du
School of Earth Sciences, Zhejiang University, Hangzhou, China
Related authors
No articles found.
Enjiang Yue, Mengjiao Qin, Linshu Hu, Riel Bryan, Sensen Wu, and Zhenhong Du
Geosci. Model Dev., 18, 6275–6293, https://doi.org/10.5194/gmd-18-6275-2025, https://doi.org/10.5194/gmd-18-6275-2025, 2025
Short summary
Short summary
Laboratory earthquakes are an important means to understand natural earthquakes. While previous work focused on transient prediction, lacking future prediction capability, we propose a method and evaluate on data from laboratory experiments with different slip behaviours. It shows stable predictions in modelling slip moments, intervals, and predictions beyond trained horizons, especially for challenging slip scenarios, which is crucial for cyclic geophysical process such as seismicity.
Junda Zhan, Sensen Wu, Jin Qi, Jindi Zeng, Mengjiao Qin, Yuanyuan Wang, and Zhenhong Du
Geosci. Model Dev., 16, 2777–2794, https://doi.org/10.5194/gmd-16-2777-2023, https://doi.org/10.5194/gmd-16-2777-2023, 2023
Short summary
Short summary
We develop a generalized spatial autoregressive neural network model used for three-dimensional spatial interpolation. Taking the different changing trend of geographic elements along various directions into consideration, the model defines spatial distance in a generalized way and integrates it into the process of spatial interpolation with the theories of spatial autoregression and neural network. Compared with traditional methods, the model achieves better performance and is more adaptable.
Cited articles
Ahadnejad Reveshty, M., Heydari, M. T., and Tahmasebimoghaddam, H.: Spatial Analysis of the Factors Impacting on the Spread of Covid-19 in the Neighborhoods of Zanjan, Iran, Spatial Information Research, 32, 151–164, https://doi.org/10.1007/s41324-023-00550-0, 2023. a
Bivand, R. and Yu, D.: spgwr: Geographically Weighted Regression, CRAN [code], https://cran.r-project.org/package=spgwr (last access: 26 November 2024), 2023. a
Brunsdon, C., Fotheringham, A. S., and Charlton, M. E.: Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity, Geogr. Anal., 28, 281–298, https://doi.org/10.1111/j.1538-4632.1996.tb00936.x, 1996. a
Brunsdon, C., Fotheringham, A. S., and Charlton, M.: Some Notes on Parametric Significance Tests for Geographically Weighted Regression, J. Regional Sci., 39, 497–524, https://doi.org/10.1111/0022-4146.00146, 1999. a
Chen, Y., Wu, S., Wang, Y., Zhang, F., Liu, R., and Du, Z.: Satellite-Based Mapping of High-Resolution Ground-Level PM2.5 with VIIRS IP AOD in China through Spatially Neural Network Weighted Regression, Remote Sens., 13, 1979, https://doi.org/10.3390/rs13101979, 2021. a
Dai, Z., Wu, S., Wang, Y., Zhou, H., Zhang, F., Huang, B., and Du, Z.: Geographically Convolutional Neural Network Weighted Regression: A Method for Modeling Spatially Non-Stationary Relationships Based on a Global Spatial Proximity Grid, Int. J. Geogr. Inf. Sci., 36, 2248–2269, https://doi.org/10.1080/13658816.2022.2100892, 2022. a
Du, Z.: GNNWR Code and Simulated Data, figshare [code and data set], https://doi.org/10.6084/m9.figshare.11375826, 2019. a
Du, Z., Wang, Z., Wu, S., Zhang, F., and Liu, R.: Geographically neural network weighted regression for the accurate estimation of spatial non-stationarity, Int. J. Geogr. Inf. Sci., 34, 1–25, https://doi.org/10.1080/13658816.2019.1707834, 2020a. a, b, c
Du, Z., Wu, S., Wang, Z., Wang, Y., Zhang, F., and Liu, R.: Estimating Ground-Level PM2.5 Concentrations Across China Using Geographically Neural Network Weighted Regression, Journal of Geo-information Science, 22, 122, https://doi.org/10.12082/dqxxkx.2020.190533, 2020b. a
Du, Z., Qi, J., Wu, S., Zhang, F., and Liu, R.: A Spatially Weighted Neural Network Based Water Quality Assessment Method for Large-Scale Coastal Areas, Environ. Sci. Technol., 55, 2553–2563, https://doi.org/10.1021/acs.est.0c05928, 2021. a
Fotheringham, A. S., Crespo, R., and Yao, J.: Geographical and Temporal Weighted Regression (GTWR), Geogr. Anal., 47, 431–452, https://doi.org/10.1111/gean.12071, 2015. a, b
Fotheringham, A. S., Yang, W., and Kang, W.: Multiscale Geographically Weighted Regression (MGWR), Ann. Am. Assoc. Geogr., 107, 1247–1265, https://doi.org/10.1080/24694452.2017.1352480, 2017. a, b
Georganos, S. and Kalogirou, S.: A Forest of Forests: A Spatially Weighted and Computationally Efficient Formulation of Geographical Random Forests, ISPRS Int. J. Geo-Inf., 11, 471, https://doi.org/10.3390/ijgi11090471, 2022. a
Guo, B., Wang, X., Pei, L., Su, Y., Zhang, D., and Wang, Y.: Identifying the Spatiotemporal Dynamic of PM2.5 Concentrations at Multiple Scales Using Geographically and Temporally Weighted Regression Model Across China During 2015–2018, Sci. Total Environ., 751, 141765, https://doi.org/10.1016/j.scitotenv.2020.141765, 2021. a
Hagenauer, J. and Helbich, M.: A Geographically Weighted Artificial Neural Network, Int. J. Geogr. Inf. Sci., 36, 215–235, https://doi.org/10.1080/13658816.2021.1871618, 2022. a
Han, L., Zhou, W., and Li, W.: Fine Particulate PM 2.5 Dynamics During Rapid Urbanization in Beijing, 1973–2013, Sci. Rep., 6, srep23604, https://doi.org/10.1038/srep23604, 2016. a
He, J., Wei, Y., and Yu, B.: Geographically Weighted Regression Based on a Network Weight Matrix: A Case Study Using Urbanization Driving Force Data in China, Int. J. Geogr. Inf. Sci., 37, 1209–1235, https://doi.org/10.1080/13658816.2023.2192122, 2023. a
He, Q. and Huang, B.: Satellite-Based Mapping of Daily High-Resolution Ground PM2.5 in China via Space-Time Regression Modeling, Remote Sens. Environ., 206, 72–83, https://doi.org/10.1016/j.rse.2017.12.018, 2018. a
Huang, B., Wu, B., and Barry, M.: Geographically and Temporally Weighted Regression for Modeling Spatio-Temporal Variation in House Prices, Int. J. Geogr. Inf. Sci., 24, 383–401, https://doi.org/10.1080/13658810802672469, 2010. a, b, c
Leung, Y., Mei, C.-L., and Zhang, W.-X.: Statistical Tests for Spatial Nonstationarity Based on the Geographically Weighted Regression Model, Environ. Plan. A, 32, 9–32, https://doi.org/10.1068/a3162, 2000. a
Lewandowska-Gwarda, K.: Geographically Weighted Regression in the Analysis of Unemployment in Poland, ISPRS Int. J. Geo-Inf., 7, 17, https://doi.org/10.3390/ijgi7010017, 2018. a
Liang, M., Zhang, L., Wu, S., Zhu, Y., Dai, Z., Wang, Y., Qi, J., Chen, Y., and Du, Z.: A High-Resolution Land Surface Temperature Downscaling Method Based on Geographically Weighted Neural Network Regression, Remote Sens., 15, 1740, https://doi.org/10.3390/rs15071740, 2023. a
Liu, C., Wu, S., Dai, Z., Wang, Y., Du, Z., Liu, X., and Qiu, C.: High-Resolution Daily Spatiotemporal Distribution and Evaluation of Ground-Level Nitrogen Dioxide Concentration in the Beijing–Tianjin–Hebei Region Based on TROPOMI Data, Remote Sens., 15, 3878, https://doi.org/10.3390/rs15153878, 2023. a
Lu, B., Charlton, M., Harris, P., and Fotheringham, A. S.: Geographically Weighted Regression with a Non-Euclidean Distance Metric: A Case Study Using Hedonic House Price Data, Int. J. Geogr. Inf. Sci., 28, 660–681, https://doi.org/10.1080/13658816.2013.865739, 2014. a
Lu, B., Harris, P., Charlton, M., Brunsdon, C., Nakaya, T., Murakami, D., Gollini, I., Hu, Y., and Evans, F. H.: GWmodel: Geographically-Weighted Models, http://gwr.nuim.ie/ (last access: 26 November 2024), 2024. a
Ma, X., Zhang, J., Ding, C., and Wang, Y.: A Geographically and Temporally Weighted Regression Model to Explore the Spatiotemporal Influence of Built Environment on Transit Ridership, Computers, Environment and Urban Systems, 70, 113–124, https://doi.org/10.1016/j.compenvurbsys.2018.03.001, 2018. a
McKinney, W.: Data structures for statistical computing in python, Proceedings of the Python in Science Conference, 56–61, https://doi.org/10.25080/majora-92bf1922-00a, 2010. a
Ni, S., Wang, Z., Wang, Y., Wang, M., Li, S., and Wang, N.: Spatial and Attribute Neural Network Weighted Regression for the Accurate Estimation of Spatial Non-Stationarity, ISPRS Int. J. Geo-Inf., 11, 620, https://doi.org/10.3390/ijgi11120620, 2022. a
Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., and Fotheringham, A. S.: mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale, ISPRS Int. J. Geo-Inf., 8, 269, https://doi.org/10.3390/ijgi8060269, 2019. a, b
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library, in: Advances in Neural Information Processing Systems, vol. 32, Curran Associates, Inc., https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html (last access: 26 November 2024), 2019. a
Qi, J., Du, Z., Wu, S., Chen, Y., and Wang, Y.: A Spatiotemporally Weighted Intelligent Method for Exploring Fine-Scale Distributions of Surface Dissolved Silicate in Coastal Seas, Sci. Total Environ., 886, 163981, https://doi.org/10.1016/j.scitotenv.2023.163981, 2023. a, b
Shen, Y., de Hoogh, K., Schmitz, O., Clinton, N., Tuxen-Bettman, K., Brandt, J., Christensen, J. H., Frohn, L. M., Geels, C., Karssenberg, D., Vermeulen, R., and Hoek, G.: Europe-Wide Air Pollution Modeling from 2000 to 2019 Using Geographically Weighted Regression, Environ. Int., 178, 107485, https://doi.org/10.1016/j.envint.2023.108111, 2023. a
Sisman, S. and Aydinoglu, A. C.: A Modelling Approach with Geographically Weighted Regression Methods for Determining Geographic Variation and Influencing Factors in Housing Price: A Case in Istanbul, Land Use Policy, 119, 106183, https://doi.org/10.1016/j.landusepol.2022.106183, 2022. a
Stein, R. E., Conley, J. F., and Davis, C.: The Differential Impact of Physical Disorder and Collective Efficacy: A Geographically Weighted Regression on Violent Crime, GeoJournal, 81, 351–365, https://doi.org/10.1007/s10708-015-9626-6, 2015. a
Sun, K.: mgtwr, PyPI [code], https://pypi.org/project/mgtwr (last access: 26 November 2024), 2024. a
Wang, Y., Niu, Y., Li, M., Yu, Q., and Chen, W.: Spatial Structure and Carbon Emission of Urban Agglomerations: Spatiotemporal Characteristics and Driving Forces, Sustain. Cities Soc., 78, 103600, https://doi.org/10.1016/j.scs.2021.103600, 2022. a, b
Wheeler, D.: Fits Geographically Weighted Regression Models with Diagnostic Tools, CRAN [code], https://cran.r-project.org/package=gwrr (last access: 26 November 2024), 2022. a
Wu, J., Xia, L., Chan, T., Awange, J., and Zhong, B.: Downscaling Land Surface Temperature: A Framework Based on Geographically and Temporally Neural Network Weighted Autoregressive Model with Spatio-Temporal Fused Scaling Factors, ISPRS J. Photogramm. Remote, 187, 259–272, https://doi.org/10.1016/j.isprsjprs.2022.03.009, 2022. a
Wu, S.: Simulated datasets and codes of GTNNWR, figshare [code and data set], https://doi.org/10.6084/m9.figshare.12355472.v1, 2020. a
Wu, S., Du, Z., Wang, Y., Lin, T., and Liu, R.: Modeling Spatially Anisotropic Nonstationary Processes in Coastal Environments Based on a Directional Geographically Neural Network Weighted Regression, Sci. Total Environ., 709, 136097, https://doi.org/10.1016/j.scitotenv.2019.136097, 2019. a, b, c
Wu, S., Wang, Z., Du, Z., Huang, B., Zhang, F., and Liu, R.: Geographically and Temporally Neural Network Weighted Regression for Modeling Spatiotemporal Non-stationary Relationships, Int. J. Geogr. Inf. Sci., 35, 582–608, https://doi.org/10.1080/13658816.2020.1775836, 2021. a, b, c
Wu, S., Yin, Z., Ding, J., and Liu, Y.: gnnwr 0.1.11, PyPi [code], https://pypi.org/project/gnnwr/0.1.11/, last access: 26 November 2024. a
Yang, Q., Yuan, Q., Yue, L., Li, T., Shen, H., and Zhang, L.: The Relationships Between PM2.5 and Aerosol Optical Depth (AOD) in Mainland China: About and Behind the Spatio-Temporal Variations, Environ. Pollut., 248, 526–535, https://doi.org/10.1016/j.envpol.2019.02.071, 2019. a
Yang, Y., Wang, H., Qin, S., Li, X., Zhu, Y., and Wang, Y.: Analysis of Urban Vitality in Nanjing Based on a Plot Boundary-Based Neural Network Weighted Regression Model, ISPRS Int. J. Geo-Inf., 11, 624, https://doi.org/10.3390/ijgi11120624, 2022. a
Yin, Z., Ding, J., Liu, Y., Wang, R., Wang, Y., Qi, J., Chen, Y., Wu, S., and Du, Z.: GNNWR v0.1.11: A Python package for modeling spatial temporal non-stationary, Zenodo [code], https://doi.org/10.5281/zenodo.10890176, 2024a. a
Yin, Z., Ding, J., Liu, Y., Wang, R., Wang, Y., Qi, J., Chen, Y., Wu, S., and Du, Z.: Replication package for GNNWR v0.1.11: A Python package for modeling spatial temporal non- stationary, Zenodo [code and data set], https://doi.org/10.5281/zenodo.13270526, 2024b. a
Short summary
In geography, understanding how relationships between different factors change over time and space is crucial. This study implements two neural-network-based spatiotemporal regression models and an open-source Python package named Geographically Neural Network Weighted Regression to capture relationships between factors. This makes it a valuable tool for researchers in fields such as environmental science, urban planning, and public health.
In geography, understanding how relationships between different factors change over time and...