Articles | Volume 17, issue 22
https://doi.org/10.5194/gmd-17-8455-2024
https://doi.org/10.5194/gmd-17-8455-2024
Development and technical paper
 | 
28 Nov 2024
Development and technical paper |  | 28 Nov 2024

GNNWR: an open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity

Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du

Related authors

A dynamic informed deep learning method for future estimation of laboratory stick-slip
Enjiang Yue, Mengjiao Qin, Linshu Hu, Sensen Wu, and Zhenhong Du
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-46,https://doi.org/10.5194/gmd-2024-46, 2024
Preprint under review for GMD
Short summary
A generalized spatial autoregressive neural network method for three-dimensional spatial interpolation
Junda Zhan, Sensen Wu, Jin Qi, Jindi Zeng, Mengjiao Qin, Yuanyuan Wang, and Zhenhong Du
Geosci. Model Dev., 16, 2777–2794, https://doi.org/10.5194/gmd-16-2777-2023,https://doi.org/10.5194/gmd-16-2777-2023, 2023
Short summary

Related subject area

Earth and space science informatics
Moving beyond post hoc explainable artificial intelligence: a perspective paper on lessons learned from dynamical climate modeling
Ryan J. O'Loughlin, Dan Li, Richard Neale, and Travis A. O'Brien
Geosci. Model Dev., 18, 787–802, https://doi.org/10.5194/gmd-18-787-2025,https://doi.org/10.5194/gmd-18-787-2025, 2025
Short summary
Remote-sensing-based forest canopy height mapping: some models are useful, but might they provide us with even more insights when combined?
Nikola Besic, Nicolas Picard, Cédric Vega, Jean-Daniel Bontemps, Lionel Hertzog, Jean-Pierre Renaud, Fajwel Fogel, Martin Schwartz, Agnès Pellissier-Tanon, Gabriel Destouet, Frédéric Mortier, Milena Planells-Rodriguez, and Philippe Ciais
Geosci. Model Dev., 18, 337–359, https://doi.org/10.5194/gmd-18-337-2025,https://doi.org/10.5194/gmd-18-337-2025, 2025
Short summary
Checking the consistency of 3D geological models
Marion N. Parquer, Eric A. de Kemp, Boyan Brodaric, and Michael J. Hillier
Geosci. Model Dev., 18, 71–100, https://doi.org/10.5194/gmd-18-71-2025,https://doi.org/10.5194/gmd-18-71-2025, 2025
Short summary
The effect of lossy compression of numerical weather prediction data on data analysis: a case study using enstools-compression 2023.11
Oriol Tintó Prims, Robert Redl, Marc Rautenhaus, Tobias Selz, Takumi Matsunobu, Kameswar Rao Modali, and George Craig
Geosci. Model Dev., 17, 8909–8925, https://doi.org/10.5194/gmd-17-8909-2024,https://doi.org/10.5194/gmd-17-8909-2024, 2024
Short summary
RiverBedDynamics v1.0: A Landlab component for computing two-dimensional sediment transport and river bed evolution
Angel D. Monsalve, Samuel R. Anderson, Nicole M. Gasparini, and Elowyn M. Yager
EGUsphere, https://doi.org/10.5194/egusphere-2024-3390,https://doi.org/10.5194/egusphere-2024-3390, 2024
Short summary

Cited articles

Ahadnejad Reveshty, M., Heydari, M. T., and Tahmasebimoghaddam, H.: Spatial Analysis of the Factors Impacting on the Spread of Covid-19 in the Neighborhoods of Zanjan, Iran, Spatial Information Research, 32, 151–164, https://doi.org/10.1007/s41324-023-00550-0, 2023. a
Bivand, R. and Yu, D.: spgwr: Geographically Weighted Regression, CRAN [code], https://cran.r-project.org/package=spgwr (last access: 26 November 2024), 2023. a
Brunsdon, C., Fotheringham, A. S., and Charlton, M. E.: Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity, Geogr. Anal., 28, 281–298, https://doi.org/10.1111/j.1538-4632.1996.tb00936.x, 1996. a
Brunsdon, C., Fotheringham, A. S., and Charlton, M.: Some Notes on Parametric Significance Tests for Geographically Weighted Regression, J. Regional Sci., 39, 497–524, https://doi.org/10.1111/0022-4146.00146, 1999. a
Chen, Y., Wu, S., Wang, Y., Zhang, F., Liu, R., and Du, Z.: Satellite-Based Mapping of High-Resolution Ground-Level PM2.5 with VIIRS IP AOD in China through Spatially Neural Network Weighted Regression, Remote Sens., 13, 1979, https://doi.org/10.3390/rs13101979, 2021. a
Download
Short summary
In geography, understanding how relationships between different factors change over time and space is crucial. This study implements two neural-network-based spatiotemporal regression models and an open-source Python package named Geographically Neural Network Weighted Regression to capture relationships between factors. This makes it a valuable tool for researchers in fields such as environmental science, urban planning, and public health.
Share