
Geosci. Model Dev., 17, 8455–8468, 2024
https://doi.org/10.5194/gmd-17-8455-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

GNNWR: an open-source package of spatiotemporal intelligent
regression methods for modeling spatial and temporal
nonstationarity
Ziyu Yin1,�, Jiale Ding1,�, Yi Liu1, Ruoxu Wang1, Yige Wang1, Yijun Chen1, Jin Qi1, Sensen Wu1, and
Zhenhong Du1

1School of Earth Sciences, Zhejiang University, Hangzhou, China
�These authors contributed equally to this work.

Correspondence: Sensen Wu (wusensengis@zju.edu.cn)

Received: 29 March 2024 – Discussion started: 29 May 2024
Revised: 15 August 2024 – Accepted: 14 October 2024 – Published: 28 November 2024

Abstract. Spatiotemporal regression is a crucial method in
geography for discerning spatiotemporal nonstationarity in
geographical relationships and has found widespread ap-
plication across diverse research domains. This study im-
plements two innovative spatiotemporal intelligent regres-
sion models, i.e., Geographically Neural Network Weighted
Regression (GNNWR) and Geographically and Temporally
Neural Network Weighted Regression (GTNNWR), which
use neural networks to estimate spatiotemporal nonstation-
arity. Due to the higher accuracy and generalization ability,
these models have been widely used in various fields of sci-
entific research. To facilitate the application of GNNWR and
GTNNWR in addressing spatiotemporal nonstationary pro-
cesses, the Python-based package GNNWR has been devel-
oped. This article details the implementation of these models
and introduces the GNNWR package, enabling users to effi-
ciently apply these cutting-edge techniques. Validation of the
package is conducted through two case studies. The first case
involves the verification of GNNWR using air quality data
from China, while the second employs offshore dissolved
silicate concentration data from Zhejiang Province to vali-
date GTNNWR. The results of the case studies underscore
the effectiveness of the GNNWR package, yielding outcomes
of notable accuracy. This contribution anticipates a signifi-
cant role for the developed package in supporting future re-
search that will leverage big data and spatiotemporal regres-
sion techniques.

1 Introduction

Spatiotemporal nonstationarity, denoting variations in ge-
ographical elements or structures across different tempo-
ral and spatial contexts, constitutes an intrinsic attribute of
nearly all kinds of geographical processes and phenom-
ena. Geographically weighted regression (GWR), a classic
methodology for delineating spatial nonstationarity in geo-
graphical relationships, facilitates variations of parameter co-
efficients within a regression equation according to spatial
locations (Brunsdon et al., 1996). As a foundational algo-
rithm within the domain of spatiotemporal regression analy-
sis, GWR has been widely used across diverse research do-
mains, including environmental studies (Yang et al., 2019;
Shen et al., 2023), urban studies (Sisman and Aydinoglu,
2022; He et al., 2023), and the social sciences (Stein et al.,
2015; Lewandowska-Gwarda, 2018; Ahadnejad Reveshty
et al., 2023).

On the basis of GWR, various methods have been pro-
posed that focus on optimizing a model’s ability to solve spa-
tiotemporal nonstationary relationships. The improvements
mainly include the following aspects: the selection of spa-
tiotemporal distance metrics (Fotheringham et al., 2015;
Lu et al., 2014), the choice of weight kernel functions
(Fotheringham et al., 2017), and the optimization of sta-
tistical diagnostic methods (Brunsdon et al., 1999; Leung
et al., 2000). Notably, multiscale geographically weighted
regression (MGWR) extends the weight kernel function to
varying bandwidths for each independent variable and fur-

Published by Copernicus Publications on behalf of the European Geosciences Union.



8456 Z. Yin et al.: GNNWR

ther enhances the model’s capacity to fit spatial nonsta-
tionarity (Fotheringham et al., 2017). To deploy a MGWR
model, researchers developed a Python-based software pack-
age, mgwr, that focuses on multiscale estimation and effi-
cient computation of spatial nonstationarity (Oshan et al.,
2019). It supplements R-language-based open-source tools,
e.g., spgwr (Bivand and Yu, 2023), gwrr (Wheeler, 2022),
and GWmodel (Lu et al., 2024), improving the overall acces-
sibility of the GWR and MGWR methods.

Owing to the intricate linear interplay between spatial dis-
tance and nonstationary weights inherent in geographical
processes, precise computation of the weight matrix through
simple kernel functions faces notable challenges. In response
to this, diverse methodologies within the domain of geospa-
tial artificial intelligence (GeoAI) have been proposed to ef-
fectively capture nonlinear spatial relationships between per-
tinent factors (Georganos and Kalogirou, 2022; Hagenauer
and Helbich, 2022). The majority of existing GeoAI ap-
proaches utilize neural networks in an opaque manner to
establish spatial relationships, leading to constrained spa-
tial interpretability of the estimated relationships. To address
this, researchers have integrated a spatiotemporal weighted
framework with neural networks, leading to the formulation
of spatiotemporal intelligent regression models. Notably, the
Geographically Neural Network Weighted Regression (GN-
NWR) model has been introduced, which employs neural
networks to learn the nonlinear relationship between spa-
tial distance and nonstationary weights (Du et al., 2020a).
Taking inspiration from GWR, GNNWR employs a spatially
weighted neural network (SWNN) to accurately derive the
spatial weight matrix. Subsequently, this SWNN is combined
with an ordinary linear regression (OLR) model to estimate
spatial nonstationarity.

In addition to space, time is another fundamental dimen-
sion associated with geographical processes. In recent years,
numerous studies have focused on incorporating temporal ef-
fects into GWR models to account for both temporal and
spatial nonstationarity (Huang et al., 2010; Fotheringham
et al., 2015). Recognizing that time and space exhibit dis-
tinct scale effects, Huang et al. (2010) proposed a straight-
forward approach to combine spatial and temporal distances
into a unified space–time distance, leading to the develop-
ment of the Geographically and Temporally Weighted Re-
gression (GTWR) model. The GTWR model, along with its
extended methodologies, has been effectively applied across
various domains, producing remarkable results and offering
satisfactory interpretability (Ma et al., 2018; He and Huang,
2018; Guo et al., 2021; Wang et al., 2022).

However, the form of space–time distance usually requires
a priori assumptions and should be assumed to be relatively
simple (e.g., a linear weighted function) so as to eliminate the
estimation problem in the terminal model. Considering that
neural networks have the potential to capture complex non-
linear effects in space and time, Wu et al. (2021) proposed a
spatiotemporal proximity neural network (STPNN) to accu-

rately generate space–time distance and extended GNNWR
with the STPNN to incorporate temporal effects into spatial
nonstationarity. Accordingly, a spatiotemporal intelligent re-
gression model, Geographically and Temporally Neural Net-
work Weighted Regression (GTNNWR), was developed to
estimate spatiotemporal nonstationary relationships.

In recent years, GNNWR and GTNNWR have been
widely applied in various fields and have achieved excellent
fitting capabilities and geographical interpretability, such as
for atmospheric pollution (Chen et al., 2021; Ni et al., 2022;
Liu et al., 2023), environmental modeling (Wu et al., 2019;
Du et al., 2021; Wu et al., 2022; Qi et al., 2023), and urban
geography (Wang et al., 2022; Yang et al., 2022; Liang et al.,
2023). However, the accessible versions for the source code
of GNNWR (Du, 2019) and GTNNWR (Wu, 2020) are im-
plemented with TensorFlow 1.x, which is too old to run in
the latest hardware environment. The codes are not highly
encapsulated, which makes it harder for researchers to use
and develop the model. Therefore, there is a need to develop
a set of model implementations with a newer architecture,
simpler usage, and clearer code structure to facilitate the uti-
lization of these spatiotemporal intelligent regression models
by researchers in different fields and to solicit feedback for
refinement and enhancement of these models.

This research has developed an open-source Python pack-
age, denoted the GNNWR package, to furnish a suite of spa-
tiotemporal intelligent regression models encompassing the
GNNWR and GTNNWR variants, thereby serving as a re-
source for researchers seeking to address challenges within
their respective fields. The GNNWR package offers a compre-
hensive workflow analysis capability, enabling users to cre-
ate datasets, instantiate models, conduct training, generate
output results, and perform model predictions and visualiza-
tions. The GNNWR package uses PyTorch as a deep-learning
framework (Paszke et al., 2019), and its dynamic computa-
tional graph makes model construction and debugging more
intuitive. This package provides extended models and great
flexibility, allowing advanced users to design custom models
based on existing models using the PyTorch framework.

The remainder of this article is constructed as follows. In
Sect. 2, we provide a review of the GNNWR and GTNNWR
models that the package has implemented. In Sect. 3, we de-
scribe the package architecture and offer a usage example for
the package. Finally, in Sect. 4, we conclude with a summary
of our outcomes and suggest potential avenues for future de-
velopment.

2 Model review

This section offers a concise overview of the GNNWR family
of models, which are accommodated by the GNNWR package.
Detailed descriptions and performance analysis can be found
in the original articles (Du et al., 2020a; Wu et al., 2021).

Geosci. Model Dev., 17, 8455–8468, 2024 https://doi.org/10.5194/gmd-17-8455-2024



Z. Yin et al.: GNNWR 8457

2.1 OLR and GWR

For a regression relation to p independent variables and n ob-
servations, the regression formula of the classic OLR model
is expressed as

yi = β
OLR
0 +

p∑
k=1

βOLR
k xik + εi for i = 1,2, . . .,n, (1)

where yi and xik are the dependent variable and kth indepen-
dent variable at observation i, βOLR

k is the regressive coeffi-
cient for the kth independent variable, βOLR

0 is the intercept
term, and εi is the error term.

Considering the spatial nonstationarity, the GWR model
extends the OLR approach to enable spatially localized esti-
mates by allowing local variations in rates of change. Thus,
the regression can be represented as

yi = β0(ui,vi)+

p∑
k=1

βk(ui,vi)xik+εi for i = 1,2, . . .,n, (2)

where β0(ui,vi) and βk(ui,vi) are the localized regression
coefficients for the constant term and the kth independent
variable at location (ui,vi). Their estimation can be calcu-
lated with a weighted least-squares method:

β̂(ui,vi)= (X>W(ui, vi)X)−1X>W(ui,vi)y, (3)

where W(ui,vi) is the spatial weighting diagonal matrix at
fit point i, and y and X are the dependent and independent
variables for all the observations. A distance-decaying kernel
function (e.g., a Gaussian kernel) is then employed to calcu-
late the spatial weights from the fit point to its neighboring
observations within the bandwidth b:

wij = exp[−(dij/b)2], (4)

where dij is the distance between fit point i and its neighbor
j .

2.2 GNNWR

Since a predefined kernel function might not accurately es-
timate complex, heterogenous geographical processes, the
GNNWR model introduces an SWNN to represent the non-
stationary weight matrix (Fig. 1).

The spatial weight estimation for point i is calculated as
follows:

W(ui,vi)= SWNN([dS
i1,d

S
i2, . . .,d

S
in]
>), (5)

where [dS
i1,d

S
i2, . . .,d

S
in] are the distances from loca-

tion i to the other training samples, and the weight-
ing matrix W(ui,vi) is a diagonal matrix whose
diagnostic elements are the nonstationary weights
w0(ui,vi),w1(ui,vi), . . .,wp(ui,vi) for the regression.

Accordingly, the GNNWR model describes spatial non-
stationarity through fluctuating changes in the coefficients of
OLR at different locations (Du et al., 2020a). Thereby, the
spatial nonstationarity can be represented as

yi = w0(ui,vi)β
OLR
0 +

p∑
k=1

wk(ui,vi)β
OLR
k xik + εi

for i = 1,2, . . .,n. (6)

Then, the estimates of dependent variables in GNNWR can
be calculated as

ŷ =


ŷ1
ŷ2
.
.
.
ŷn

=

x>1 W(u1,v1)(X>X)−1X>
x>2 W(u2,v2)(X>X)−1X>

.

.

.

x>n W(un,vn)(X>X)−1X>

 ,

y =


x1
>SWNN([dS

i1,d
S
i2, . . .,d

S
in]
>)(X>X)−1X>

x2
>SWNN([dS

i1,d
S
i2, . . .,d

S
in]
>)(X>X)−1X>

.

.

.

xn
>SWNN([dS

i1,d
S
i2, . . .,d

S
in]
>)(X>X)−1X>

y = Sy, (7)

where S is the hat matrix of the GNNWR model.

2.3 GTNNWR

Alongside space, time constitutes a fundamental dimen-
sion in the study of geographic phenomena. The GTNNWR
model extends the spatial form of the nonstationary relation-
ship in Eq. (6) to the following spatiotemporal form:

yi = β0(ui,vi, ti)+

p∑
k=1

βk(ui,vi, ti)xik + εi

= w0(ui,vi, ti)β
OLR
0 +

p∑
k=1

wk(ui,vi, ti)β
OLR
k xik

+ εi, for i = 1,2, . . .,n, (8)

where wk(ui,vi, ti) represents the spatiotemporal nonsta-
tionary weight of βOLR

k , which is determined by its spa-
tiotemporal location (ui,vi, ti) and is influenced by other
samples.

Similar to the SWNN of GNNWR, the GTNNWR
model designed a spatiotemporal weighted neural network
(STWNN) to calculate the spatiotemporal weights as fol-
lows:

W(ui,vi, ti)= STWNN
([
dST
i1 ,d

ST
i2 , . . .,d

ST
in

]>)
, (9)

where
[
dST
i1 ,d

ST
i2 , . . .,d

ST
in

]
are the spatiotemporal distances

from point i to other training samples. This expression indi-
cates that the spatiotemporal nonstationary weight is deter-
mined by the spatiotemporal distance. To quantify the spa-
tiotemporal distance, Huang et al. (2010) defined the distance
as having the following form:

dST
ij = d

S
ij ⊗ d

T
ij , (10)

https://doi.org/10.5194/gmd-17-8455-2024 Geosci. Model Dev., 17, 8455–8468, 2024



8458 Z. Yin et al.: GNNWR

Figure 1. The framework of the GNNWR model.

where ⊗ represents a fusion operator which integrates tem-
poral (dT

ij ) and spatial (dS
ij ) distances into a spatiotemporal

distance dST
ij .

To fully capture the nonlinear effects in the spatiotempo-
ral dimension, Wu et al. (2021) proposed a STPNN as the
fusion operator⊗. Therefore, the spatiotemporal weight ma-
trix for any given point across time and space can be derived
by merging the STPNN with the STWNN (Fig. 2):

W(ui,vi, ti)= STWNN
([
dST
i1 ,d

ST
i2 , . . .,d

ST
in

]T)
= STWNN

([
STPNN

(
dS
i1,d

T
i1

)
. . .,STPNN

(
dS
in,d

T
in

)]T)
. (11)

The spatiotemporal weights are then integrated with global
OLR estimates, generating continuous coefficients varying in
space and time, and the regression relationship of GTNNWR
can be expressed as

yi = w0(ui,vi, ti)β
OLR
0

+

p∑
k=1

wk(ui,vi, ti)β
OLR
k xik + εi for i = 1,2, . . .,n, (12)

where wk(ui,vi, ti) are the diagonal elements of the spa-
tiotemporal weight matrix W(ui,vi, ti).

The estimated dependent variables ŷ can be calculated as

ŷ =


ŷ1
ŷ2
...
ŷn

=

x>1 W(u1,v1, t1)(X>X)−1X>
x>2 W(u2,v2, t2)(X>X)−1X>

...

x>n W(un,vn, tn)(X>X)−1X>

y = Sy, (13)

where S is the hat matrix of the GTNNWR model.

3 Package descriptions

In this section, we present a comprehensive overview of the
gnnwr package (version 0.1.11) and the range of models it
supports. We begin by introducing the fundamental architec-
ture of the software package, delving into its essential com-
ponents and functionalities. Following this, we outline the
analysis process employed in utilizing the package, show-
casing its practical application through two case studies.

3.1 Package architecture

The gnnwr package is designed with a modular architecture,
enabling the integration of diverse module strategies to facil-
itate a variety of task workflows. It comprises four primary
modules: Dataset, Network, Utils, and Model.

3.1.1 Dataset

The Dataset module specifies the data types employed
throughout the package. It includes the BasicDataset
class for training and the PredictDataset class for pre-
diction. This module also offers preprocessing functions that
convert Pandas DataFrame data into the necessary formats
(McKinney, 2010), handling tasks such as normalization and
dataset partitioning. Additionally, it provides methods for
saving and loading datasets, enabling users to directly work
with processed data files and instantiate data objects.

3.1.2 Network

The Network module, extending PyTorch’s nn.Module
class, defines the architectures for models such as SWNN and
STPNN. It allows users with programming expertise to cus-
tomize new network structures based on existing ones, adapt-
ing to their specific research requirements.

Geosci. Model Dev., 17, 8455–8468, 2024 https://doi.org/10.5194/gmd-17-8455-2024



Z. Yin et al.: GNNWR 8459

Figure 2. The framework of the GTNNWR model. dS
ij

and dT
ij

represent the spatial distance and temporal distance between the estimated

points Pi and Pj , respectively. The spatiotemporal proximity dST
ij

is obtained by integrating dS
ij

and dT
ij

through the STPNN.

3.1.3 Utils

The Utils module contains classes for statistical diagnos-
tics and visualization techniques specific to spatial weighted
regression. These diagnostic classes offer a suite of meth-
ods to evaluate model performance, while the visualization
classes employ map-based representations to enhance the
analysis of spatial data and model outcomes.

3.1.4 Model

The Model module is the cornerstone of the package, pro-
viding two classes: GNNWR and GTNNWR. GNNWR acts as the
foundational class, with GTNNWR being its subclass. These
classes encapsulate methods for model training, prediction,
diagnostics, and loading. Users can easily invoke these meth-
ods to employ the models for problem analysis and forecast-
ing on unseen data.

3.2 Usage example for GNNWR

We commence our investigation by examining air quality
modeling through the analysis of data gathered from Chi-
nese air monitoring stations (Du et al., 2020b). This analysis
seeks to delineate the spatially nonstationary associations be-
tween PM2.5 (particulate matter with an aerodynamic diame-
ter of less than 2.5 µm) concentrations and their environmen-
tal determinants. Given the pivotal role of PM2.5 as an indi-
cator of air quality, elucidating its spatial variability is cru-
cial for comprehending the underlying spatial processes and
environmental dynamics of atmospheric contamination (Han
et al., 2016). The objective of this study is to develop a pre-
dictive model for the annual average PM2.5 concentrations
in the study area at a 3 km× 3 km spatial resolution for the
year 2017. The model incorporates meteorological variables
such as aerosol optical depth (AOD), temperature (TEMP),
precipitation (TP), wind speed (WS), wind direction (WD),
and elevation data (DEM).

3.2.1 Dataset initialization

Upon loading the dataset as a Pandas DataFrame, the
init_dataset function from the GNNWR package is uti-
lized to convert it into a suitable format for model input. This

https://doi.org/10.5194/gmd-17-8455-2024 Geosci. Model Dev., 17, 8455–8468, 2024



8460 Z. Yin et al.: GNNWR

Figure 3. Workflow diagram of the package. The dashed boxes denote the raw data, the solid boxes represent the code process modules, and
the arrows indicate the direction of the data flow.

function randomly divides the dataset into training, valida-
tion, and testing subsets according to the ratio specified in
the input parameters and computes the distance vectors for
each sample, which are crucial for both model training and
performance evaluation. In this specific experiment, 15 % of
the data are allocated to the testing set and, out of the remain-
ing 85 %, 10 % were used as the validation set and the rest as
the training set.

In this context, it is essential to specify the indepen-
dent variables, dependent variables, and spatial position vari-
ables, which correspond to the x_column, y_column, and
spatial_column parameters of the init_dataset
function.

When calculating the distance, the init_dataset
function, by default, uses Euclidean distance to compute
the spatial distances between feature points. This process
generates a spatial distance vector for each point, which
serves as input to the neural network component of the
model. To accommodate various research requirements, the
spatial_fun parameter enables users to provide a custom
method for calculating spatial distances.

To optimize the speed of model training and enhance the
precision of model outcomes, the function preprocesses the
independent and dependent variables by default. It typically
employs normalization for preprocessing; however, users
have the option of adjusting the process_fun parameter
to utilize standardization instead.

>>> from gnnwr.datasets import init_dataset
>>> train_set, val_set, test_set

= init_dataset(data=data,
... test_ratio=0.15,
... valid_ratio=0.1,
... x_column=x_column,
... y_column=y_column,
... spatial_column=spatial_column)

3.2.2 Model configuration and running

To continue, we need to create an instance of the
GNNWR model. After importing the gnnwr.models mod-
ule, we can do so by invoking the GNNWR class. The
dense_layers parameter allows us to specify the num-
ber of hidden layers in the model’s neural network, with
each layer consisting of a fully connected layer, a batch nor-
malization layer, a dropout layer, and an activation function.
These hyperparameters are closely linked to the neural net-
work’s architecture, encompassing aspects such as the use of
a batch normalization layer, the dropout rate, and the activa-
tion function’s type. In this specific example, we have con-
figured a neural network with a hidden layer that includes
three sublayers, each with 1024, 512, 256, and 128 nodes,
respectively. The activation function uses a parametric recti-
fied linear unit (PReLU) function with an initial value of 0.2,
while all the other settings are kept at their default values.

The GNNWR class uses Adadelta as its default optimizer,
with an initial learning rate of 0.6, and employs a cosine
annealing warm restart as its learning rate adjustment strat-
egy. The class also supports a range of optimizers, includ-
ing stochastic gradient descent (SGD), Adam, Adagrad, RM-
Sprop, and various learning rate adjustment strategies, such

Geosci. Model Dev., 17, 8455–8468, 2024 https://doi.org/10.5194/gmd-17-8455-2024



Z. Yin et al.: GNNWR 8461

as multistep and cosine annealing. These optimizers and
strategies contribute to improving a model’s training effi-
ciency and performance, thereby enabling it to better accom-
plish its tasks.

Additionally, GNNWR involves dropout and batch normal-
ization strategies to avoid overfitting and improve the gen-
eralizability and performance of the model. The default
dropout rate is 0.2 and can be altered through the drop_out
parameter. The model applies batch normalization by default,
which can be disabled by setting the batch_norm parame-
ter to False.

To streamline the model training, we can utilize the run
function to specify the number of iterations and the fre-
quency of printing training process information, allowing
us to monitor training progress and performance. Through-
out the training process, we will retain the best-performing
model within the validation set to prevent the GNNWR
model from overfitting. Selecting the optimal model helps
minimize the expected error and guarantees that the model
will possess superior generalization ability. For storage con-
venience, the model repository will only retain a file con-
taining the neural network components of the model. This
file encapsulates the structural configuration and parameter
information of the neural network.

>>> from gnnwr import models
>>> from torch import nn
>>> gnnwr = models.GNNWR(train_dataset = train_set,
... valid_dataset = val_set,
... test_dataset = test_set,
... dense_layers = [1024, 512, 256, 128],
... activate_func = nn.PReLU(init=0.2),
... start_lr = 0.6,
... optimizer = "Adadelta",
... drop_out = 0.2,
... batch_norm = True,
... model_name = "GNNWR_PM25")
>>> gnnwr.run(max_epoch = 2000, print_frequency = 500)

The GNNWR package uses TensorBoard to record the
model training process, including the loss and R2 scores on
the training and validation sets for each epoch as well as the
learning rate and best R2 scores obtained on the validation
set. By observing the changes in the model during the train-
ing process, targeted adjustments to the training method can
be made. To enhance users’ comprehension of the model ar-
chitecture, we have incorporated the add_graph function.
When utilized, this function enables users to visualize the
structure of the model within the “Graphs” section of Tensor-
Board. This functionality not only clarifies the model’s archi-
tecture but also facilitates the prompt identification of issues
during model debugging and optimization, thereby substan-
tially improving model performance.

3.2.3 Results and visualization

We can obtain the composition and results of the model
through the result method, which includes the model
structure, optimizer structure, and used variables as well as
the accuracy, complexity, and content of the statistical tests
performed on the model. Among them, the R2 and RMSE
(root mean square error) indicators summarize the model’s

fitting ability, while the Akaike information criterion (AIC)
and corrected AIC (AICc) indicators provide a deeper un-
derstanding of the model’s complexity. The F1, F2, and F3
statistical data are used as sample diagnostic measures (Wu
et al., 2019). The first two values indicate the presence of sig-
nificant spatiotemporal nonstationarity in the model, while
the last value evaluates the significance of spatiotemporal
nonstationarity in the regression parameters of each indepen-
dent variable.
>>> gnnwr.result()

--------------------Model Information-----------------
Model Name: | GNNWR_PM25
independent variable: | ['dem', 'w10', 'd10', 't2m', 'aod_sat', 'tp']
dependent variable: | ['PM2_5']

OLS coefficients:
x0: 7.12861
x1: -4.03670
x2: -1.90988
x3: 21.29951
x4: 36.57638
x5: -24.50677
Intercept: 19.16957

--------------------Result Information----------------
Test Loss: | 33.42091
Test R2 : | 0.84280
Train R2 : | 0.84762
Valid R2 : | 0.84541
RMSE: | 5.78108
AIC: | 1257.37056
AICc: | 1254.68787
F1: | 0.11974
F2: | 3.52673
f3_param_0: | 1.81630
f3_param_1: | 19.05118
f3_param_2: | 0.42682
f3_param_3: | 68.13538
f3_param_4: | 47.61187
f3_param_5: | 170.05663
f3_param_6: | 122.83797

The empirical results reveal that the model exhibits robust
performance in the reconstruction of PM2.5 distributions, and
the statistical analyses confirm the presence of significant
spatial heterogeneity in PM2.5 concentrations. In terms of
statistical indicators, the model achieved R2 scores of 0.848
for the training dataset, 0.845 for the validation dataset, and
0.843 for the test dataset, which are much higher than tra-
ditional models like OLS and GWR (implemented with the
mgwr package by Oshan et al., 2019, version 2.2.1). Also,
the residuals of GNNWR are generally smaller than those of
traditional models, with most residuals being close to zero
and rarely showing large deviations (Fig. 4). Such outstand-
ing performance reflects GNNWR’s ability to capture com-
plex patterns in spatiotemporal data, demonstrating the effec-
tiveness of introducing the nonlinear fitting ability of neural
networks when modeling spatial nonstationarity.

It is noteworthy that, as a deep-learning model, GNNWR
requires more time than traditional models to fit the given
dataset. For the above experiment on the PM2.5 dataset, it
takes 2000 epochs for GNNWR to optimize the network’s
parameters and minimize the loss, which is about 3 min
in a CPU (Intel Core i5-12400) environment. Nevertheless,
compared to the advantages in model performance, such
time consumption is acceptable, especially considering that
a CUDA-enabled GPU can further accelerate the process.

Owing to the intimate association between model analysis
and spatial aspects, GNNWR furnishes a range of spatial vi-
sualization functionalities grounded in the folium. By instan-

https://doi.org/10.5194/gmd-17-8455-2024 Geosci. Model Dev., 17, 8455–8468, 2024



8462 Z. Yin et al.: GNNWR

Figure 4. The residual distributions and R2 indicator for OLS,
GWR, and GNNWR in the PM2.5 dataset.

tiating the Visualize object, we can render various model
variables within a spatial context. The Visualize object
offers multiple visualization techniques encompassing the vi-
sualization of internal datasets within the model, heatmaps of
coefficients, and the visualization of spatial points. Figure 5
illustrates the spatial distribution of the dependent variable
PM2.5 across the dataset. Notably, PM2.5 concentrations are
elevated in the North China and Xinjiang regions, in con-
trast to the relatively lower levels observed in Yunnan and
the northern reaches of Inner Mongolia.
>>> import gnnwr.utils as utils
>>> visualizer = utils.Visualize(data=gnnwr,

lon_lat_columns=['lng','lat'])
>>> visualizer.display_dataset(name='all',y_column='PM2_5')

The coefs_heatmap function facilitates the visual rep-
resentation of the spatial distribution of independent variable
coefficients, thereby enriching our comprehension of the im-
pact of individual independent variables on the dependent
variable across varying geographical contexts. Figure 6 de-
picts the distinctive spatial distribution patterns of AOD co-
efficients.

>>> visualizer.coefs_heatmap('coef_aod_sat')

Through these visualization techniques, we can percep-
tively comprehend the analysis outcomes of the model. They
offer abundant functionality that enables us to better under-
stand the spatial behavior of the model and gain a more pro-
found insight into the model’s performance and spatial rela-
tionships.

Concurrently, the visualization output of the Visualize
object is in HTML format, permitting researchers to manipu-
late the map via zooming, panning, and rotation. During the
manipulation of the map, the visualization of the data will
change according to the scale of the map. When the map
scale is small, the points in the spatial distribution are dense,
necessitating the clustering and display of these points to pre-
serve clarity. Conversely, when the map scale is large, the

information of the points at specific locations will be dis-
played. This facilitates detailed inspection and analysis of
geographic data to cater to diverse research requirements.

3.2.4 Saving and reusing

Upon successful completion of model training, a frequent
need arises to reuse said model. To facilitate this process,
the model repository incorporates a dedicated load_model
function, which is specifically purposed to reload model
files that were automatically saved during the training pro-
gression. Notably, the repository only retains the neural-
network-related components, specifically the neural network
architecture and parameters, within the model. Consequently,
when reusing a model, the recommended sequence is as
follows: initially, construct an instance corresponding to
the model’s architectural design before subsequently call-
ing the load_model method to import the parameters and
weights.

3.2.5 Prediction

Ultimately, we can employ the prediction method to forecast
other datasets. Prior to generating predictions, it is essential
to transform the other datasets into the predictDataset
class, which is integrated within the GNNWR package.
This transformation can be accomplished by utilizing the
init_predict_dataset method. This method com-
putes the distance vectors between the features in the dataset
to be predicted and the reference points and applies the iden-
tical scaling transformation to the independent variables as
in the training dataset, guaranteeing that the input for the
model inference will follow the same statistical distribution
as the training data. The prediction method yields a Pandas
DataFrame comprising the original data and the predicted
results. Moreover, when employing the GNNWR model for
analysis, spatial weights are of paramount importance. These
weights signify the spatial variability of the influence of each
independent variable on the dependent variables. To acquire
spatial weights, the predict_weight method can be uti-
lized to output pertinent information. Figure 7 presents a ge-
ographical visualization of the GNNWR model’s predictive
outcomes.

>>> from gnnwr.datasets import init_predict_dataset
>>> pred_dataset = init_predict_dataset(data = pred_data,
... train_dataset = train_set,
... x_column=x_column,
... spatial_column=spatial_column)
>>> res = gnnwr.predict(pred_dataset)

3.3 Usage example for GTNNWR

The workflow of employing GTNNWR is largely akin to
that of the GNNWR model. We exemplify this by utiliz-
ing daily surface dissolved silicate (DSi) concentration data
from the offshore waters of Zhejiang. This study utilized the
GTNNWR approach to retrieve the distribution of coastal

Geosci. Model Dev., 17, 8455–8468, 2024 https://doi.org/10.5194/gmd-17-8455-2024



Z. Yin et al.: GNNWR 8463

Figure 5. Diagram of the spatial distribution of PM2.5. Redder points represent higher PM2.5 values. Map crafted using Python’s folium
library with the Gaode basemap. Publisher’s remark: please note that the above figure contains disputed territories.

Figure 6. Diagram of the AOD coefficient distribution. Darker areas highlight regions with strong positive correlations, indicating high
levels of particulate matter. Map crafted using Python’s folium library with the Gaode basemap. Publisher’s remark: please note that the
above figure contains disputed territories.

DSi concentrations, addressing the challenges posed by spa-
tiotemporal nonstationarity (Qi et al., 2023).

3.3.1 Dataset initialization

Similar to the GNNWR model, data preprocessing is es-
sential when utilizing the GTNNWR model to acquire

https://doi.org/10.5194/gmd-17-8455-2024 Geosci. Model Dev., 17, 8455–8468, 2024



8464 Z. Yin et al.: GNNWR

Figure 7. Geospatial visualization of GNNWR model predictions for PM2.5. The red points indicate higher PM2.5 predictions; the blue
points indicate lower PM2.5 predictions. Map crafted using Python’s folium library with the Gaode basemap. Publisher’s remark: please note
that the above figure contains disputed territories.

Figure 8. The residual distributions and R2 indicator for OLS,
GTWR, and GTNNWR in the DSi dataset.

a data format that the model can process as well. The
GTNNWR model is specifically tailored for spatiotemporal
data, wherein the regression coefficients perpetually vary in
both space and time. Consequently, the data processed by
the model must possess spatiotemporal attributes. When em-
ploying the init_dataset function, designating the time
data as the time dimension can generate valid input for the
GTNNWR model. This function computes the time distance
vectors based on the distance calculation method specified by
the temporal_fun parameter and subsequently employs

them as input features for each sampling point. The default
time distance calculation method is the Manhattan distance.

>>> train_set, val_set, test_set = init_dataset(data=data,
... test_ratio=0.15,
... valid_ratio=0.1,
... x_column=x_column,
... y_column=y_column,
... spatial_column=spatial_column,
... temp_column=temp_column)

3.3.2 Model configuration and running

GTNNWR is designed as a subclass incorporated within the
GNNWR package, inheriting from its foundational GNNWR
class. As a result, it retains the same set of methods in-
herent to its superclass. The instantiation process for the
GTNNWR model closely mirrors that of GNNWR, with the
primary difference lying in the input format for hidden lay-
ers – a two-element, two-dimensional list. This unique input
configuration stems from GTNNWR’s integration strategy,
which involves employing a STPNN to compute spatiotem-
poral proximities and then feeding these computations into a
STWNN to determine spatiotemporal weights. Specifically,
the first list in this input designates the hidden-layer structure
of STPNN, whereas the second list delineates the hidden-
layer architecture pertaining to STWNN.

The procedure for training an instantiated model with data,
together with the tasks of printing model metadata and ex-
hibiting the outcomes of the training, aligns with the method-
ologies employed in the previous example.

>>> optimizer_params = {
... "maxlr": 0.025,
... "minlr": 0.010,
... "upepoch": 1000,

Geosci. Model Dev., 17, 8455–8468, 2024 https://doi.org/10.5194/gmd-17-8455-2024



Z. Yin et al.: GNNWR 8465

Figure 9. Model coefficients in a 3D space–time coordinate system. The blue dots represent a greater positive effect of the variable on the
silicate concentration; the lighter dots represent a smaller effect.

... "decayepoch": 2000,

... "decayrate": 0.998,

... "stop_change_epoch": 5000,

... "stop_lr": 0.01,

... }
>>> Layers = [[3], [1024, 512, 256,128,64,32]]
>>> gtnnwr = models.GTNNWR(train_set, val_set, test_set,
... Layers,
... optimizer='SGD',
... optimizer_params=optimizer_params,
... # drop_out=0.3,
... model_name="GTNNWR_DSi",
... model_save_path="./demo_result/gtnnwr_models",
... log_path="./demo_result/gtnnwr_logs/",
... write_path="./tf-logs/gtnnwr_runs")
>>> gtnnwr.run(max_epoch = 4000)
>>> gtnnwr.result()

--------------------Model Information-----------------
Model Name: | GTNNWR_DSi
independent variable: | ['refl_b01', 'refl_b02', 'refl_b03', 'refl_b04',

'refl_b05', 'refl_b07']
dependent variable: | ['SiO3']

OLS coefficients:
x0: 6.84114
x1: 1.63606
x2: 0.11273
x3: -5.76276
x4: 1.62136
x5: -2.69205
Intercept: 1.05858

--------------------Result Information----------------
Test Loss: | 0.16574
Test R2 : | 0.68628
Train R2 : | 0.71628
Valid R2 : | 0.75261
RMSE: | 0.40711
AIC: | 460.66438
AICc: | 463.34515
F1: | 0.22449
F2: | -12.20421
f3_param_0: | 27.02276
f3_param_1: | 0.12710
f3_param_2: | 0.94117
f3_param_3: | 2.37350
f3_param_4: | 17.69786
f3_param_5: | 28.23304
f3_param_6: | 267.06781

According to various model indicators, utilizing neural
networks to estimate the spatiotemporal nonstationarity of
DSi is indeed effective. The model successfully achieved
R2 values of 0.716, 0.752, and 0.686 in the training, vali-
dation, and testing sets, respectively, effectively reconstruct-
ing the distribution of silicate in the offshore waters of Zhe-
jiang. As indicated by Fig. 8, such coefficients of determi-
nation are much higher than those of traditional models like
OLS and GTWR (implemented with the mgtwr package by
Sun, 2024, version 2.0.5); also, the residuals of GTNNWR
are generally smaller than those of OLS and GTWR. These
outstanding performances demonstrate GTNNWR’s superior
performance in capturing the spatiotemporal nonstationarity
of DSi concentrations.

3.3.3 Results and visualization

In order to investigate the variability of coefficients for dis-
tinct variables across different samples, one can leverage the
reg_result function. The function computes and system-
atically arranges each sample’s coefficient values into a Pan-
das DataFrame format, thereby outputting the results. With
the resulting coefficient matrix in hand, researchers can then
conduct targeted analyses pertinent to specific spatial pro-

https://doi.org/10.5194/gmd-17-8455-2024 Geosci. Model Dev., 17, 8455–8468, 2024



8466 Z. Yin et al.: GNNWR

cesses. For instance, we can visualize the coefficients of each
variable by employing time and space as three-dimensional
coordinate axes (Fig. 9). This enables us to directly observe
the relationship between the bands of remote sensing images
and silicate concentrations at different spatial locations. By
integrating relevant prior knowledge, we can interpret the
outcomes of the model.

4 Conclusions

This study introduces the GNNWR package, a Python-based
model repository designed to facilitate spatiotemporal intel-
ligent regression modeling. The package is constructed on
PyTorch, a widely employed deep-learning framework, and
affords a comprehensive workflow for simulating geograph-
ical processes characterized by spatiotemporal nonstationar-
ity. The GNNWR package optimizes intricate procedures en-
compassing data preprocessing, network architecture formu-
lation, model training, and result computation, thereby en-
hancing user accessibility. It enables individuals with limited
programming expertise to quickly master the application of
pertinent models such as GNNWR and GTNNWR for the es-
timation of spatiotemporal nonstationary processes. The inte-
grated visualization functionalities further augment the pack-
age’s utility, allowing users to interpret model outcomes and
their spatial relationships more effectively.

However, the GNNWR package is not without its limita-
tions. The GNNWR and GTNNWR models are computa-
tionally intensive, particularly for large datasets. Also, train-
ing neural networks requires substantial computational re-
sources, which may limit accessibility for some users. Fu-
ture works should focus on the following: optimizing com-
putational efficiency, implementing parallel processing tech-
niques, and optimizing model architectures are potential
methods that can significantly reduce computation times.
Data handling is another area that can be improved: incorpo-
rating techniques for spatiotemporal data augmentation and
preprocessing can make models more robust and applicable
to a wider range of datasets.

In addition, scholarly understanding of spatiotemporal
nonstationarity is progressing, driving the continual evolu-
tion of GNNWR-based models and the emergence of diverse
derivatives, such as geographically convolutional neural-
network-weighted regression (Dai et al., 2022) and direc-
tional geographically weighted neural network regression
(Wu et al., 2019). These model variants have substantially
augmented the functionalities of GNNWR across various di-
mensions. Moving forward, we are committed to enhanc-
ing the model library by leveraging the current framework
and integrating a variety of network and data architectures to
create novel extension models. This expansion will enhance
the package’s ability to incorporate a wide range of model-
ing techniques for addressing spatiotemporal nonstationarity.
Consequently, this broadening of capabilities will extend the

applicability of the models, encompassing a more compre-
hensive array of spatiotemporal analytical approaches.

Code and data availability. The GNNWR package version used in
this article is 0.1.11, which can be found at https://pypi.org/project/
gnnwr/0.1.11/ (Wu et al., 2024). The project’s hosting and devel-
opment are both ongoing at https://github.com/zjuwss/gnnwr (last
access: 26 November 2024). The code is also archived on Zen-
odo (https://doi.org/10.5281/zenodo.10890176, Yin et al., 2024a),
and the relevant documents can be found at https://gnnwr.github.io
(last access: 26 November 2024). All the examples mentioned in
this article, supported by research papers, can be retrieved from
Yin et al. (2024b) (https://doi.org/10.5281/zenodo.13270526). We
strongly encourage readers to replicate, adapt, and undertake addi-
tional experiments using this open-source package.

Author contributions. ZY, JD, YL, JQ, and SW initially developed
the package and spearheaded its subsequent evolution. Notably,
substantial code enhancements were made by ZY, JD, YL, RW, YW,
JQ, YC, SW, and ZD. Each author actively participated in the de-
sign discourse and offered critical feedback on the evolving code
base. The manuscript was primarily composed by ZY, JD, RW, and
YW, with substantive input from all the co-authors.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The GPU instances used in this research are
supported by the Deep-time Digital Earth (DDE) Big Science Pro-
gram and the Earth System Big Data Platform of the School of Earth
Sciences, Zhejiang University.

Financial support. This work was supported by the National Nat-
ural Science Foundation of China (grant nos. 42225605 and
423B1001), the National Key Research and Development Program
of China (grant no. 2021YFB3900902), the Provincial Key R&D
Program of Zhejiang (grant no. 2021C01031), and the Fundamental
Research Funds for the Central Universities (grant no. 226-2024-
00124).

Review statement. This paper was edited by Yongze Song and re-
viewed by four anonymous referees.

Geosci. Model Dev., 17, 8455–8468, 2024 https://doi.org/10.5194/gmd-17-8455-2024

https://pypi.org/project/gnnwr/0.1.11/
https://pypi.org/project/gnnwr/0.1.11/
https://github.com/zjuwss/gnnwr
https://doi.org/10.5281/zenodo.10890176
https://gnnwr.github.io
https://doi.org/10.5281/zenodo.13270526


Z. Yin et al.: GNNWR 8467

References

Ahadnejad Reveshty, M., Heydari, M. T., and Tahmasebimoghad-
dam, H.: Spatial Analysis of the Factors Impacting on the Spread
of Covid-19 in the Neighborhoods of Zanjan, Iran, Spatial Infor-
mation Research, 32, 151–164, https://doi.org/10.1007/s41324-
023-00550-0, 2023.

Bivand, R. and Yu, D.: spgwr: Geographically Weighted Regres-
sion, CRAN [code], https://cran.r-project.org/package=spgwr
(last access: 26 November 2024), 2023.

Brunsdon, C., Fotheringham, A. S., and Charlton, M. E.:
Geographically Weighted Regression: A Method for Ex-
ploring Spatial Nonstationarity, Geogr. Anal., 28, 281–298,
https://doi.org/10.1111/j.1538-4632.1996.tb00936.x, 1996.

Brunsdon, C., Fotheringham, A. S., and Charlton, M.: Some
Notes on Parametric Significance Tests for Geographi-
cally Weighted Regression, J. Regional Sci., 39, 497–524,
https://doi.org/10.1111/0022-4146.00146, 1999.

Chen, Y., Wu, S., Wang, Y., Zhang, F., Liu, R., and Du,
Z.: Satellite-Based Mapping of High-Resolution Ground-Level
PM2.5 with VIIRS IP AOD in China through Spatially Neu-
ral Network Weighted Regression, Remote Sens., 13, 1979,
https://doi.org/10.3390/rs13101979, 2021.

Dai, Z., Wu, S., Wang, Y., Zhou, H., Zhang, F., Huang,
B., and Du, Z.: Geographically Convolutional Neural Net-
work Weighted Regression: A Method for Modeling Spa-
tially Non-Stationary Relationships Based on a Global Spa-
tial Proximity Grid, Int. J. Geogr. Inf. Sci., 36, 2248–2269,
https://doi.org/10.1080/13658816.2022.2100892, 2022.

Du, Z.: GNNWR Code and Simulated Data, figshare [code and data
set], https://doi.org/10.6084/m9.figshare.11375826, 2019.

Du, Z., Wang, Z., Wu, S., Zhang, F., and Liu, R.: Geographi-
cally neural network weighted regression for the accurate estima-
tion of spatial non-stationarity, Int. J. Geogr. Inf. Sci., 34, 1–25,
https://doi.org/10.1080/13658816.2019.1707834, 2020a.

Du, Z., Wu, S., Wang, Z., Wang, Y., Zhang, F., and Liu,
R.: Estimating Ground-Level PM2.5 Concentrations Across
China Using Geographically Neural Network Weighted Re-
gression, Journal of Geo-information Science, 22, 122,
https://doi.org/10.12082/dqxxkx.2020.190533, 2020b.

Du, Z., Qi, J., Wu, S., Zhang, F., and Liu, R.: A Spatially Weighted
Neural Network Based Water Quality Assessment Method for
Large-Scale Coastal Areas, Environ. Sci. Technol., 55, 2553–
2563, https://doi.org/10.1021/acs.est.0c05928, 2021.

Fotheringham, A. S., Crespo, R., and Yao, J.: Geographical and
Temporal Weighted Regression (GTWR), Geogr. Anal., 47, 431–
452, https://doi.org/10.1111/gean.12071, 2015.

Fotheringham, A. S., Yang, W., and Kang, W.:
Multiscale Geographically Weighted Regression
(MGWR), Ann. Am. Assoc. Geogr., 107, 1247–1265,
https://doi.org/10.1080/24694452.2017.1352480, 2017.

Georganos, S. and Kalogirou, S.: A Forest of Forests: A Spa-
tially Weighted and Computationally Efficient Formulation of
Geographical Random Forests, ISPRS Int. J. Geo-Inf., 11, 471,
https://doi.org/10.3390/ijgi11090471, 2022.

Guo, B., Wang, X., Pei, L., Su, Y., Zhang, D., and Wang, Y.:
Identifying the Spatiotemporal Dynamic of PM2.5 Con-
centrations at Multiple Scales Using Geographically and
Temporally Weighted Regression Model Across China

During 2015–2018, Sci. Total Environ., 751, 141765,
https://doi.org/10.1016/j.scitotenv.2020.141765, 2021.

Hagenauer, J. and Helbich, M.: A Geographically Weighted Ar-
tificial Neural Network, Int. J. Geogr. Inf. Sci., 36, 215–235,
https://doi.org/10.1080/13658816.2021.1871618, 2022.

Han, L., Zhou, W., and Li, W.: Fine Particulate PM 2.5 Dynamics
During Rapid Urbanization in Beijing, 1973–2013, Sci. Rep., 6,
srep23604, https://doi.org/10.1038/srep23604, 2016.

He, J., Wei, Y., and Yu, B.: Geographically Weighted Regression
Based on a Network Weight Matrix: A Case Study Using Urban-
ization Driving Force Data in China, Int. J. Geogr. Inf. Sci., 37,
1209–1235, https://doi.org/10.1080/13658816.2023.2192122,
2023.

He, Q. and Huang, B.: Satellite-Based Mapping of Daily
High-Resolution Ground PM2.5 in China via Space-Time
Regression Modeling, Remote Sens. Environ., 206, 72–83,
https://doi.org/10.1016/j.rse.2017.12.018, 2018.

Huang, B., Wu, B., and Barry, M.: Geographically and Tempo-
rally Weighted Regression for Modeling Spatio-Temporal Vari-
ation in House Prices, Int. J. Geogr. Inf. Sci., 24, 383–401,
https://doi.org/10.1080/13658810802672469, 2010.

Leung, Y., Mei, C.-L., and Zhang, W.-X.: Statistical Tests
for Spatial Nonstationarity Based on the Geographically
Weighted Regression Model, Environ. Plan. A, 32, 9–32,
https://doi.org/10.1068/a3162, 2000.

Lewandowska-Gwarda, K.: Geographically Weighted Regression in
the Analysis of Unemployment in Poland, ISPRS Int. J. Geo-Inf.,
7, 17, https://doi.org/10.3390/ijgi7010017, 2018.

Liang, M., Zhang, L., Wu, S., Zhu, Y., Dai, Z., Wang, Y., Qi,
J., Chen, Y., and Du, Z.: A High-Resolution Land Surface
Temperature Downscaling Method Based on Geographically
Weighted Neural Network Regression, Remote Sens., 15, 1740,
https://doi.org/10.3390/rs15071740, 2023.

Liu, C., Wu, S., Dai, Z., Wang, Y., Du, Z., Liu, X., and Qiu, C.:
High-Resolution Daily Spatiotemporal Distribution and Evalu-
ation of Ground-Level Nitrogen Dioxide Concentration in the
Beijing–Tianjin–Hebei Region Based on TROPOMI Data, Re-
mote Sens., 15, 3878, https://doi.org/10.3390/rs15153878, 2023.

Lu, B., Charlton, M., Harris, P., and Fotheringham, A. S.:
Geographically Weighted Regression with a Non-
Euclidean Distance Metric: A Case Study Using Hedonic
House Price Data, Int. J. Geogr. Inf. Sci., 28, 660–681,
https://doi.org/10.1080/13658816.2013.865739, 2014.

Lu, B., Harris, P., Charlton, M., Brunsdon, C., Nakaya, T., Mu-
rakami, D., Gollini, I., Hu, Y., and Evans, F. H.: GWmodel:
Geographically-Weighted Models, http://gwr.nuim.ie/ (last ac-
cess: 26 November 2024), 2024.

Ma, X., Zhang, J., Ding, C., and Wang, Y.: A Geographically and
Temporally Weighted Regression Model to Explore the Spa-
tiotemporal Influence of Built Environment on Transit Rider-
ship, Computers, Environment and Urban Systems, 70, 113–124,
https://doi.org/10.1016/j.compenvurbsys.2018.03.001, 2018.

McKinney, W.: Data structures for statistical computing in python,
Proceedings of the Python in Science Conference, 56–61,
https://doi.org/10.25080/majora-92bf1922-00a, 2010.

Ni, S., Wang, Z., Wang, Y., Wang, M., Li, S., and Wang, N.: Spa-
tial and Attribute Neural Network Weighted Regression for the
Accurate Estimation of Spatial Non-Stationarity, ISPRS Int. J.
Geo-Inf., 11, 620, https://doi.org/10.3390/ijgi11120620, 2022.

https://doi.org/10.5194/gmd-17-8455-2024 Geosci. Model Dev., 17, 8455–8468, 2024

https://doi.org/10.1007/s41324-023-00550-0
https://doi.org/10.1007/s41324-023-00550-0
https://cran.r-project.org/package=spgwr
https://doi.org/10.1111/j.1538-4632.1996.tb00936.x
https://doi.org/10.1111/0022-4146.00146
https://doi.org/10.3390/rs13101979
https://doi.org/10.1080/13658816.2022.2100892
https://doi.org/10.6084/m9.figshare.11375826
https://doi.org/10.1080/13658816.2019.1707834
https://doi.org/10.12082/dqxxkx.2020.190533
https://doi.org/10.1021/acs.est.0c05928
https://doi.org/10.1111/gean.12071
https://doi.org/10.1080/24694452.2017.1352480
https://doi.org/10.3390/ijgi11090471
https://doi.org/10.1016/j.scitotenv.2020.141765
https://doi.org/10.1080/13658816.2021.1871618
https://doi.org/10.1038/srep23604
https://doi.org/10.1080/13658816.2023.2192122
https://doi.org/10.1016/j.rse.2017.12.018
https://doi.org/10.1080/13658810802672469
https://doi.org/10.1068/a3162
https://doi.org/10.3390/ijgi7010017
https://doi.org/10.3390/rs15071740
https://doi.org/10.3390/rs15153878
https://doi.org/10.1080/13658816.2013.865739
http://gwr.nuim.ie/
https://doi.org/10.1016/j.compenvurbsys.2018.03.001
https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.3390/ijgi11120620


8468 Z. Yin et al.: GNNWR

Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., and Fotheringham,
A. S.: mgwr: A Python Implementation of Multiscale Geo-
graphically Weighted Regression for Investigating Process Spa-
tial Heterogeneity and Scale, ISPRS Int. J. Geo-Inf., 8, 269,
https://doi.org/10.3390/ijgi8060269, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Des-
maison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,
J., and Chintala, S.: PyTorch: An Imperative Style, High-
Performance Deep Learning Library, in: Advances in Neu-
ral Information Processing Systems, vol. 32, Curran Asso-
ciates, Inc., https://papers.nips.cc/paper_files/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html (last access:
26 November 2024), 2019.

Qi, J., Du, Z., Wu, S., Chen, Y., and Wang, Y.: A Spa-
tiotemporally Weighted Intelligent Method for Explor-
ing Fine-Scale Distributions of Surface Dissolved Sili-
cate in Coastal Seas, Sci. Total Environ., 886, 163981,
https://doi.org/10.1016/j.scitotenv.2023.163981, 2023.

Shen, Y., de Hoogh, K., Schmitz, O., Clinton, N., Tuxen-
Bettman, K., Brandt, J., Christensen, J. H., Frohn, L. M., Geels,
C., Karssenberg, D., Vermeulen, R., and Hoek, G.: Europe-
Wide Air Pollution Modeling from 2000 to 2019 Using Ge-
ographically Weighted Regression, Environ. Int., 178, 107485,
https://doi.org/10.1016/j.envint.2023.108111, 2023.

Sisman, S. and Aydinoglu, A. C.: A Modelling Approach with
Geographically Weighted Regression Methods for Determin-
ing Geographic Variation and Influencing Factors in Hous-
ing Price: A Case in Istanbul, Land Use Policy, 119, 106183,
https://doi.org/10.1016/j.landusepol.2022.106183, 2022.

Stein, R. E., Conley, J. F., and Davis, C.: The Differential Impact
of Physical Disorder and Collective Efficacy: A Geographically
Weighted Regression on Violent Crime, GeoJournal, 81, 351–
365, https://doi.org/10.1007/s10708-015-9626-6, 2015.

Sun, K.: mgtwr, PyPI [code], https://pypi.org/project/mgtwr (last
access: 26 November 2024), 2024.

Wang, Y., Niu, Y., Li, M., Yu, Q., and Chen, W.: Spatial Structure
and Carbon Emission of Urban Agglomerations: Spatiotempo-
ral Characteristics and Driving Forces, Sustain. Cities Soc., 78,
103600, https://doi.org/10.1016/j.scs.2021.103600, 2022.

Wheeler, D.: Fits Geographically Weighted Regression Models
with Diagnostic Tools, CRAN [code], https://cran.r-project.org/
package=gwrr (last access: 26 November 2024), 2022.

Wu, J., Xia, L., Chan, T., Awange, J., and Zhong, B.: Down-
scaling Land Surface Temperature: A Framework Based on
Geographically and Temporally Neural Network Weighted
Autoregressive Model with Spatio-Temporal Fused Scaling
Factors, ISPRS J. Photogramm. Remote, 187, 259–272,
https://doi.org/10.1016/j.isprsjprs.2022.03.009, 2022.

Wu, S.: Simulated datasets and codes of GTNNWR, figshare [code
and data set], https://doi.org/10.6084/m9.figshare.12355472.v1,
2020.

Wu, S., Du, Z., Wang, Y., Lin, T., and Liu, R.: Modeling Spa-
tially Anisotropic Nonstationary Processes in Coastal Envi-
ronments Based on a Directional Geographically Neural Net-
work Weighted Regression, Sci. Total Environ., 709, 136097,
https://doi.org/10.1016/j.scitotenv.2019.136097, 2019.

Wu, S., Wang, Z., Du, Z., Huang, B., Zhang, F., and
Liu, R.: Geographically and Temporally Neural Network
Weighted Regression for Modeling Spatiotemporal Non-
stationary Relationships, Int. J. Geogr. Inf. Sci., 35, 582–608,
https://doi.org/10.1080/13658816.2020.1775836, 2021.

Wu, S., Yin, Z., Ding, J., and Liu, Y.: gnnwr 0.1.11, PyPi [code],
https://pypi.org/project/gnnwr/0.1.11/, last access: 26 Novem-
ber 2024.

Yang, Q., Yuan, Q., Yue, L., Li, T., Shen, H., and Zhang,
L.: The Relationships Between PM2.5 and Aerosol Optical
Depth (AOD) in Mainland China: About and Behind the
Spatio-Temporal Variations, Environ. Pollut., 248, 526–535,
https://doi.org/10.1016/j.envpol.2019.02.071, 2019.

Yang, Y., Wang, H., Qin, S., Li, X., Zhu, Y., and Wang, Y.: Analysis
of Urban Vitality in Nanjing Based on a Plot Boundary-Based
Neural Network Weighted Regression Model, ISPRS Int. J. Geo-
Inf., 11, 624, https://doi.org/10.3390/ijgi11120624, 2022.

Yin, Z., Ding, J., Liu, Y., Wang, R., Wang, Y., Qi, J., Chen,
Y., Wu, S., and Du, Z.: GNNWR v0.1.11: A Python package
for modeling spatial temporal non-stationary, Zenodo [code],
https://doi.org/10.5281/zenodo.10890176, 2024a.

Yin, Z., Ding, J., Liu, Y., Wang, R., Wang, Y., Qi, J.,
Chen, Y., Wu, S., and Du, Z.: Replication package for
GNNWR v0.1.11: A Python package for modeling spa-
tial temporal non- stationary, Zenodo [code and data set],
https://doi.org/10.5281/zenodo.13270526, 2024b.

Geosci. Model Dev., 17, 8455–8468, 2024 https://doi.org/10.5194/gmd-17-8455-2024

https://doi.org/10.3390/ijgi8060269
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1016/j.scitotenv.2023.163981
https://doi.org/10.1016/j.envint.2023.108111
https://doi.org/10.1016/j.landusepol.2022.106183
https://doi.org/10.1007/s10708-015-9626-6
https://pypi.org/project/mgtwr
https://doi.org/10.1016/j.scs.2021.103600
https://cran.r-project.org/package=gwrr
https://cran.r-project.org/package=gwrr
https://doi.org/10.1016/j.isprsjprs.2022.03.009
https://doi.org/10.6084/m9.figshare.12355472.v1
https://doi.org/10.1016/j.scitotenv.2019.136097
https://doi.org/10.1080/13658816.2020.1775836
https://pypi.org/project/gnnwr/0.1.11/
https://doi.org/10.1016/j.envpol.2019.02.071
https://doi.org/10.3390/ijgi11120624
https://doi.org/10.5281/zenodo.10890176
https://doi.org/10.5281/zenodo.13270526

	Abstract
	Introduction
	Model review
	OLR and GWR
	GNNWR
	GTNNWR

	Package descriptions
	Package architecture
	Dataset
	Network
	Utils
	Model

	Usage example for GNNWR
	Dataset initialization
	Model configuration and running
	Results and visualization
	Saving and reusing
	Prediction

	Usage example for GTNNWR
	Dataset initialization
	Model configuration and running
	Results and visualization


	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

