Articles | Volume 17, issue 7
https://doi.org/10.5194/gmd-17-2987-2024
https://doi.org/10.5194/gmd-17-2987-2024
Model description paper
 | 
16 Apr 2024
Model description paper |  | 16 Apr 2024

Focal-TSMP: deep learning for vegetation health prediction and agricultural drought assessment from a regional climate simulation

Mohamad Hakam Shams Eddin and Juergen Gall

Related subject area

Earth and space science informatics
Tomofast-x 2.0: an open-source parallel code for inversion of potential field data with topography using wavelet compression
Vitaliy Ogarko, Kim Frankcombe, Taige Liu, Jeremie Giraud, Roland Martin, and Mark Jessell
Geosci. Model Dev., 17, 2325–2345, https://doi.org/10.5194/gmd-17-2325-2024,https://doi.org/10.5194/gmd-17-2325-2024, 2024
Short summary
Functional analysis of variance (ANOVA) for carbon flux estimates from remote sensing data
Jonathan Hobbs, Matthias Katzfuss, Hai Nguyen, Vineet Yadav, and Junjie Liu
Geosci. Model Dev., 17, 1133–1151, https://doi.org/10.5194/gmd-17-1133-2024,https://doi.org/10.5194/gmd-17-1133-2024, 2024
Short summary
The 4D reconstruction of dynamic geological evolution processes for renowned geological features
Jiateng Guo, Zhibin Liu, Xulei Wang, Lixin Wu, Shanjun Liu, and Yunqiang Li
Geosci. Model Dev., 17, 847–864, https://doi.org/10.5194/gmd-17-847-2024,https://doi.org/10.5194/gmd-17-847-2024, 2024
Short summary
Accelerating Lagrangian transport simulations on graphics processing units: performance optimizations of MPTRAC v2.6
Lars Hoffmann, Kaveh Haghighi Mood, Andreas Herten, Markus Hrywniak, Jiri Kraus, Jan Clemens, and Mingzhao Liu
EGUsphere, https://doi.org/10.5194/egusphere-2023-2547,https://doi.org/10.5194/egusphere-2023-2547, 2024
Short summary
Machine learning for numerical weather and climate modelling: a review
Catherine O. de Burgh-Day and Tennessee Leeuwenburg
Geosci. Model Dev., 16, 6433–6477, https://doi.org/10.5194/gmd-16-6433-2023,https://doi.org/10.5194/gmd-16-6433-2023, 2023
Short summary

Cited articles

Adede, C., Oboko, R., Wagacha, P. W., and Atzberger, C.: A Mixed Model Approach to Vegetation Condition Prediction Using Artificial Neural Networks (ANN): Case of Kenya’s Operational Drought Monitoring, Remote Sens., 11, 1099, https://doi.org/10.3390/rs11091099, 2019. a
Aleissaee, A. A., Kumar, A., Anwer, R. M., Khan, S., Cholakkal, H., Xia, G.-S., and Khan, F. S.: Transformers in Remote Sensing: A Survey, Remote Sens., 15, 1860, https://doi.org/10.3390/rs15071860, 2023. a
Ba, J. L., Kiros, J. R., and Hinton, G. E.: Layer normalization, arXiv [preprint], https://doi.org/10.48550/arXiv.1607.06450, 2016. a
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. a
Baur, F., Scheck, L., Stumpf, C., Köpken-Watts, C., and Potthast, R.: A neural-network-based method for generating synthetic 1.6 µm near-infrared satellite images, Atmos. Meas. Tech., 16, 5305–5326, https://doi.org/10.5194/amt-16-5305-2023, 2023. a
Download
Short summary
In this study, we use deep learning and a climate simulation to predict the vegetation health as it would be observed from satellites. We found that the developed model can help to identify regions with a high risk of agricultural drought. The main applications of this study are to estimate vegetation products for periods where no satellite data are available and to forecast the future vegetation response to climate change based on climate scenarios.