Articles | Volume 17, issue 4
https://doi.org/10.5194/gmd-17-1749-2024
https://doi.org/10.5194/gmd-17-1749-2024
Model description paper
 | 
28 Feb 2024
Model description paper |  | 28 Feb 2024

MQGeometry-1.0: a multi-layer quasi-geostrophic solver on non-rectangular geometries

Louis Thiry, Long Li, Guillaume Roullet, and Etienne Mémin

Related authors

Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022,https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Meanders and eddy formation by a buoyant coastal current flowing over a sloping topography
Laura Cimoli, Alexandre Stegner, and Guillaume Roullet
Ocean Sci., 13, 905–923, https://doi.org/10.5194/os-13-905-2017,https://doi.org/10.5194/os-13-905-2017, 2017
Short summary
Dissipation of the energy imparted by mid-latitude storms in the Southern Ocean
Julien Jouanno, Xavier Capet, Gurvan Madec, Guillaume Roullet, and Patrice Klein
Ocean Sci., 12, 743–769, https://doi.org/10.5194/os-12-743-2016,https://doi.org/10.5194/os-12-743-2016, 2016
Short summary
Monte Carlo fixed-lag smoothing in state-space models
A. Cuzol and E. Mémin
Nonlin. Processes Geophys., 21, 633–643, https://doi.org/10.5194/npg-21-633-2014,https://doi.org/10.5194/npg-21-633-2014, 2014

Related subject area

Oceanography
LIGHT-bgcArgo-1.0: using synthetic float capabilities in E3SMv2 to assess spatiotemporal variability in ocean physics and biogeochemistry
Cara Nissen, Nicole S. Lovenduski, Mathew Maltrud, Alison R. Gray, Yohei Takano, Kristen Falcinelli, Jade Sauvé, and Katherine Smith
Geosci. Model Dev., 17, 6415–6435, https://doi.org/10.5194/gmd-17-6415-2024,https://doi.org/10.5194/gmd-17-6415-2024, 2024
Short summary
Towards a real-time modeling of global ocean waves by the fully GPU-accelerated spectral wave model WAM6-GPU v1.0
Ye Yuan, Fujiang Yu, Zhi Chen, Xueding Li, Fang Hou, Yuanyong Gao, Zhiyi Gao, and Renbo Pang
Geosci. Model Dev., 17, 6123–6136, https://doi.org/10.5194/gmd-17-6123-2024,https://doi.org/10.5194/gmd-17-6123-2024, 2024
Short summary
A simple approach to represent precipitation-derived freshwater fluxes into nearshore ocean models: an FVCOM4.1 case study of Quatsino Sound, British Columbia
Krysten Rutherford, Laura Bianucci, and William Floyd
Geosci. Model Dev., 17, 6083–6104, https://doi.org/10.5194/gmd-17-6083-2024,https://doi.org/10.5194/gmd-17-6083-2024, 2024
Short summary
An optimal transformation method applied to diagnose the ocean carbon budget
Neill Mackay, Taimoor Sohail, Jan David Zika, Richard G. Williams, Oliver Andrews, and Andrew James Watson
Geosci. Model Dev., 17, 5987–6005, https://doi.org/10.5194/gmd-17-5987-2024,https://doi.org/10.5194/gmd-17-5987-2024, 2024
Short summary
Implementation and assessment of a model including mixotrophs and the carbonate cycle (Eco3M_MIX-CarbOx v1.0) in a highly dynamic Mediterranean coastal environment (Bay of Marseille, France) – Part 2: Towards a better representation of total alkalinity when modeling the carbonate system and air–sea CO2 fluxes
Lucille Barré, Frédéric Diaz, Thibaut Wagener, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 17, 5851–5882, https://doi.org/10.5194/gmd-17-5851-2024,https://doi.org/10.5194/gmd-17-5851-2024, 2024
Short summary

Cited articles

Arakawa, A. and Lamb, V. R.: A potential enstrophy and energy conserving scheme for the shallow water equations, Mon. Weather Rev., 109, 18–36, 1981. a, b
Blayo, E. and LeProvost, C.: Performance of the Capacitance Matrix Method for Solving Helmhotz-Type Equations in Ocean Modelling, J. Comput. Phys., 104, 347–360, 1993. a
Borges, R., Carmona, M., Costa, B., and Don, W. S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys., 227, 3191–3211, 2008. a, b, c, d
Boris, J. P., Grinstein, F. F., Oran, E. S., and Kolbe, R. L.: New insights into large eddy simulation, Fluid Dynam. Res., 10, 199, https://doi.org/10.1016/0169-5983(92)90023-P, 1992. a
Brown, N.: A comparison of techniques for solving the Poisson equation in CFD, arXiv [preprint], https://doi.org/10.48550/arXiv.2010.14132, 2020. a
Download
Short summary
We present a new way of solving the quasi-geostrophic (QG) equations, a simple set of equations describing ocean dynamics. Our method is solely based on the numerical methods used to solve the equations and requires no parameter tuning. Moreover, it can handle non-rectangular geometries, opening the way to study QG equations on realistic domains. We release a PyTorch implementation to ease future machine-learning developments on top of the presented method.