
Geosci. Model Dev., 17, 1749–1764, 2024
https://doi.org/10.5194/gmd-17-1749-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperMQGeometry-1.0: a multi-layer quasi-geostrophic solver
on non-rectangular geometries
Louis Thiry1, Long Li1, Guillaume Roullet2, and Etienne Mémin1

1ODYSSEY, INRIA Rennes, IRMAR Rennes, Université de Rennes 1, Rennes, France
2Université de Bretagne Occidentale, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale (LOPS),
IUEM, Brest, France

Correspondence: Louis Thiry (louis.thiry@inria.fr)

Received: 25 July 2023 – Discussion started: 27 September 2023
Revised: 7 December 2023 – Accepted: 6 January 2024 – Published: 28 February 2024

Abstract. This paper presents MQGeometry, a multi-layer
quasi-geostrophic (QG) equation solver for non-rectangular
geometries. We advect the potential vorticity (PV) with fi-
nite volumes to ensure global PV conservation using a stag-
gered discretization of the PV and stream function (SF).
Thanks to this staggering, the PV is defined inside the do-
main, removing the need to define the PV on the domain
boundary. We compute PV fluxes with upwind-biased in-
terpolations whose implicit dissipation replaces the usual
explicit (hyper-)viscous dissipation. The discretization pre-
sented here does not require tuning of any additional param-
eter, e.g., additional eddy viscosity. We solve the QG elliptic
equation with a fast discrete sine transform spectral solver
on rectangular geometry. We extend this fast solver to non-
rectangular geometries using the capacitance matrix method.
Subsequently, we validate our solver on a vortex-shear insta-
bility test case in a circular domain, on a vortex–wall interac-
tion test case, and on an idealized wind-driven double-gyre
configuration in an octagonal domain at an eddy-permitting
resolution. Finally, we release a concise, efficient, and auto-
differentiable PyTorch implementation of our method to fa-
cilitate future developments on this new discretization, e.g.,
machine-learning parameterization or data-assimilation tech-
niques.

1 Introduction

Ocean fluid dynamics offers a hierarchy of models with a
trade-off between the richness of the physical phenomena
and the dimensionality of the system. On the one end of

this hierarchy are the Boussinesq non-hydrostatic equations.
These equations describe the evolution of the stratification
via temperature and salinity; they model explicitly convec-
tive phenomena but they require the evolution of six prog-
nostic variables: the three components of the velocity u,v,w;
temperature T and salinity s; and the free surface η.

On the other end of this hierarchy are the multi-layer
quasi-geostrophic equations. These equations are based on
strong hypotheses: static background stratification as well as
hydrostatic and geostrophic balances. In a multi-layer quasi-
geostrophic (QG) model, the stream function (SF) ψ and po-
tential vorticity (PV) q are stacked inN isopycnal layers with
density ρi and reference thickness Hi :

ψ = [ψ1, . . .,ψN]
T ,

q = [q1, . . .,qN]
T .

The governing equations read

∂tq +

(
u

v

)
· ∇hq = 0,

(
u

v

)
=∇

⊥

h ψ, (1a)

1hψ − f
2
0 Aψ = q −βy, (1b)

A=

1

H1g
′

0
+

1
H1g

′

1

−1
H1g

′

1
· ·

−1
H2g

′

1

1
H2g

′

1
+

1
H2g

′

2

−1
H2g

′

2
·

·

· ·
−1

Hng
′

n−1

1
Hng

′

n−1

 . (1c)

∇
⊥

h = [−∂y,∂x]
T stands for the horizontal orthogonal gra-

dient, and 1h = ∂
2
xx + ∂

2
yy denotes the horizontal Laplacian.

f0+β(y−y0) is the Coriolis parameter under beta-plane ap-
proximation with the meridional axis center; y0, g′0 = g is the

Published by Copernicus Publications on behalf of the European Geosciences Union.

1750 L. Thiry et al.: MQGeometry – QG solver on non-rectangular geometries

gravitational acceleration; and g′i = g(ρi+1−ρi)/ρi denotes
the reduced gravities. One can include bottom topography as
a constant term on the r.h.s. of the QG elliptic Eq. (1b) (Hogg
et al., 2014).

QG equations hence involve a single prognostic variable,
the potential vorticity (PV) q, which is advected (Eq. 1a).
Despite strong hypotheses, the multi-layer QG equations are
a robust approximation of ocean meso-scale non-linear dy-
namics. They offer a computationally efficient playground to
study the meso-scale ocean dynamics and to develop physi-
cal parameterizations of the unresolved eddy dynamics (e.g.,
Marshall et al., 2012; Fox-Kemper et al., 2014; Zanna et al.,
2017; Ryzhov et al., 2020; Uchida et al., 2022).

Solving the QG equations requires solving an elliptic
equation (Eq. 1b) which relates the SF ψ and the poten-
tial vorticity q. On a rectangular domain, it can be easily
achieved using a fast spectral solver based on discrete Fourier
transform (DFT) for periodic boundary conditions or discrete
sine transform (DST) for no-flow boundary conditions. Most
of the available open-source QG solvers such as Geophys-
icalFlows (Constantinou et al., 2021), PyQG, or Q-GCM
(Hogg et al., 2014) use such spectral solvers and are there-
fore limited to rectangular geometries.

There are two major issues when implementing QG mod-
els on non-rectangular geometries. The first issue is the fact
that spectral elliptic solvers do not apply to non-rectangular
domains. In ocean models, one typically uses conjugate gra-
dient (CG) iterative solvers such as BiCGSTAB (Van der
Vorst, 1992) to solve elliptic equations on non-rectangular
domains, for example, when solving the Poisson equations
associated with a rigid-lid constraint (Häfner et al., 2021)
or for implicit free-surface computations (Kevlahan and
Lemarié, 2022) in primitive equation solvers. These CG it-
erative solvers are significantly slower than spectral solvers
for solving Poisson or Helmholtz equations on evenly spaced
rectangular grids (Brown, 2020). Using them in a QG solver
would reduce significantly the computational efficiency that
makes QG appealing compared to shallow-water (SW) mod-
els.

The second issue is the definition of the potential vortic-
ity (PV) on the boundaries. If we discretize the PV q on the
same locations as the SF ψ , we have to define the PV on
the boundaries. This requires using a partial free-slip/no-slip
condition (see, e.g., Hogg et al., 2014) to define ghost points
in order to compute the Laplacian of the SF.

In this paper, we present MQGeometry, a new multi-
layer QG equation solver that addresses these two issues.
This solver uses a new discretization of the multi-layer QG
equations based on two main choices. The first choice is to
discretize the potential vorticity (PV) and the stream func-
tion (SF) on two staggered grids. When doing so, the PV is
not defined on the boundary of the domain but in its inte-
rior. This solves the issue of defining the PV on the domain
boundaries. Moreover, this choice makes it possible to use a
finite-volume scheme for the PV advection. It guarantees the

global conservation of the PV and leverages a fine control
on the PV fluxes. The second choice is to solve the ellip-
tic equation using a fast spectral DST solver combined with
the capacitance matrix method (Proskurowski and Widlund,
1976) to handle non-rectangular geometries.

In addition to these two choices, we decide to compute PV
fluxes with upwind-biased stencil interpolation to remove the
additional (hyper-)viscosity used in most discrete QG mod-
els. Doing so, we explore a different approach that is comple-
mentary to physical parameterizations of the horizontal mo-
mentum closure: a careful choice of the numerical schemes
used to discretize the continuous equations. This idea has
been initially developed by Boris et al. (1992) in the con-
text of large eddy simulation (LES) models and made pop-
ular as implicit LES by Grinstein et al. (2007). It has been
successfully tested by Von Hardenberg et al. (2000) to study
vortex merging in a single-layer QG model and by Roullet
et al. (2012) to study the forced-dissipated three-dimensional
QG turbulence in a channel configuration. While Von Hard-
enberg et al. (2000) and Roullet et al. (2012) used only linear
upwind-biased reconstruction, we implement here linear and
non-linear weighted essentially non-oscillatory (WENO) re-
constructions (Jiang and Shu, 1996; Borges et al., 2008) that
are tailored to remove spurious numerical oscillations created
by linear reconstructions (Liu et al., 1994).

We implement the proposed discretizations in a concise
Python PyTorch code that enables seamless GPU accelera-
tion. It benefits from built-in automatic differentiation to fa-
cilitate future development in machine learning or data as-
similation. We validate our solver on a vortex-shear instabil-
ity test case in a closed squared domain, an inviscid vortex–
wall interaction, and an idealized wind-driven double-gyre
configuration in a non-rectangular configuration.

This paper is organized as follows. In Sect. 2, we de-
scribe the resolution of the PV advection equation with finite
volume. In Sect. 3, we present our elliptic solver based on
discrete sine transform and the capacitance matrix method
(Proskurowski and Widlund, 1976). In Sect. 4, we detail the
solver implementation. In Sect. 5, we describe the experi-
mental settings to validate our discretization. We conclude
and evoke further perspectives in Sect. 6.

2 PV advection with finite volumes

2.1 Staggered discretization of PV and SF

The first ingredient of our method is to use finite volumes to
solve PV advection (Eq. 1a). This leads naturally to a stag-
gered discretization for the PV and the SF (see right panel of
Fig. 1). With this choice, the PV advection (1a) can be inte-
grated over the whole domain as a transported tracer with a
finite-volume formulation. Indeed, if ψ is discretized at the
cell vertices, the orthogonal gradient of ψ computed with the

Geosci. Model Dev., 17, 1749–1764, 2024 https://doi.org/10.5194/gmd-17-1749-2024

L. Thiry et al.: MQGeometry – QG solver on non-rectangular geometries 1751

Figure 1. Usual (left) and proposed (right) staggered discretization
(bottom) of the prognostic variables (q, ψ , u, v) for the QG sys-
tem (1).

standard second-order discretization

∇
⊥

h fi,j =

(
fi,j−fi,j+1

δy
fi+1,j−fi,j

δx

)

lies in the middle of the cell edges. The horizontal velocity
u lives in the middle of the vertical edges while the vertical
velocity v lives in the middle of the vertical edges. We thus
have to discretize the PV q at the cell centers to solve its
advection with finite volumes.

At the boundary which passes along the cell edges, the
condition is simply the non-flux of PV across the walls. This
staggering clearly separates the boundary condition associ-
ated with the transport of PV from the boundary condition
associated with optional friction (partial free-slip or no-slip).
The global conservation of PV during advection is ensured
up to numerical precision with finite volumes.

In the usual discretization (see Appendix A), the PV must
be defined on the boundary, which requires definition of the
Laplacian operator 1h there. This is problematic since it
forces blending of the slip boundary conditions into the def-
inition of the Laplacian, rather than having a slip boundary
condition clearly separated from the definition of PV. More-
over, depending on this choice, the material conservation
of the PV might not be ensured even though the advection
scheme, e.g., Arakawa–Lamb (Arakawa and Lamb, 1981),
conserves the PV inside the domain.

2.2 Upwinding of PV fluxes

In a finite-volume formulation, we rewrite the PV advec-
tion (1a) as the divergence of a flux:

∂tq =−∇h ·

((
u

v

)
q

)
. (2)

The divergence is discretized with the usual second-order
finite-difference operator

∇h ·

(
ui,j
vi,j

)
=
ui+1,j − ui,j

δx
+
vi,j+1− vi,j

δy
.

Figure 2. Illustration of the upwind-biased reconstruction. Away
from boundaries we use a five-point stencil for reconstruction, while
close to boundaries, we use a three-point stencil when possible (top-
left). At distance 1 from the boundary when the velocity moves
away from the boundary (bottom-right), we use a second-order re-
construction with a two-point centered stencil rather than upwind-1
reconstruction to have a reconstruction of the order of 2 at least.
For linear reconstructions, the weights ci are fixed. For non-linear
reconstruction, the weights ci depend on the solution.

Figure 3. One-dimensional advection with constant velocity on
a periodic domain over one period. We compare three finite-
volume methods using linear, WENO-JS (Jiang and Shu, 1996), and
WENO-Z (Borges et al., 2008) five-point upwind reconstructions.

We hence need to interpolate q on the u and v grid points
to compute these PV fluxes. In the context of finite-volume
methods, we call these interpolations reconstructions.

For a good trade-off between stability and accuracy, we
use a five-point upwind-biased stencil for reconstruction.
Near the boundary we use a three-point upwind-biased sten-
cil or a two-point centered stencil as illustrated in Fig. 2. The
ordering of the stencil is given by the sign of the velocity. For
instance, qi =

∑5
s=1csqs when the velocity is positive, and

we have the reverse order when the velocity is negative. Us-
ing upwind-biased stencils for reconstruction allows us to re-
move additional ad hoc (hyper-)viscosity, which is necessary
when using centered reconstructions (Lemarié et al., 2015).
We decide here to rely solely on the upwinding to handle the
potential enstrophy dissipation, which is done implicitly.

https://doi.org/10.5194/gmd-17-1749-2024 Geosci. Model Dev., 17, 1749–1764, 2024

1752 L. Thiry et al.: MQGeometry – QG solver on non-rectangular geometries

We offer two possibilities for reconstructions: lin-
ear reconstructions or weighted essentially non-oscillatory
(WENO) reconstructions (Liu et al., 1994). The weights cs
are fixed for the linear reconstruction. However, flux com-
puted with linear reconstructions tends to produce spurious
numerical oscillations when the field q is not smooth (see
Fig. 3).

WENO reconstructions benefit from the essentially non-
oscillatory property (Harten, 1984): they are designed to
prevent spurious numerical oscillations that occur with lin-
ear reconstructions (see Fig. 3). With a WENO scheme, the
weights cs are not fixed: they depend on the value of q on
the five-point stencil via smoothness indicators, e.g., first-
and second-order derivatives computed with finite difference
(Jiang and Shu, 1996). The smoother the q on the stencil, the
closer the weights cs are to the linear weights. One can find a
detailed explanation of these non-linear weight computations
in Borges et al. (2008).

2.3 Time integration

The convergence and stability properties of WENO schemes
derived in Jiang and Shu (1996) require the use of a total
variation diminishing (TVD) Runge–Kutta scheme of the or-
der of 3 at least (Shu and Osher, 1988). Here we use a TVD
Runge–Kutta scheme of the order of 3 (TVD RK3) for time
integration with finite time step δt .

Given the time ordinary differential equation

∂tf = Lf,

one can write the TVD RK3 scheme with the following three
stages:

f (1) = f (0)+ δtLf (0) ,

f (2) = f (1)+
δt

4

(
Lf (1)− 3Lf (0)

)
,

f (3) = f (2)+
δt

12

(
8Lf (2)−Lf (1)−Lf (0)

)
.

This low-memory version requires only the storage of the
intermediate time derivatives Lf (i).

3 Spectral elliptic solver on non-rectangular domain

3.1 Staggering of PV and SF

After having solved PV advection equation (Eq. 1a), one has
to solve the elliptic Eq. (1b) to compute the SF. The SFψ sat-
isfies the homogeneous Dirichlet boundary condition; hence
we have to compute the r.h.s. terms inside the domain. Due
to the staggered discretization, we need to interpolate them
between the two grids. A natural way to proceed is to use a
four-point linear interpolation to interpolate q on the ψ grid
(see Fig. 4).

Figure 4. Illustration of the four-point interpolation to interpolate q
on the ψ grid.

3.2 DST solver on rectangular geometry

To solve the elliptic Eq. (1b), we use a vertical transform and
a fast spectral solver with discrete sine transform (DST). One
can diagonalize the matrix A (defined in Eq. 1c) as follows:

A= Cm2l3Cl2m ,

where the layer-to-mode matrix Cl2m is the inverse of the
mode-to-layer matrix Cm2l, and 3 is a diagonal matrix con-
taining A eigenvalues. One can then perform the following
layer-to-mode transform:

ψ̃, q̃ = Cl2mψ, Cl2mq .

With this transform, the elliptic Eq. (1b) becomes a stack of
N two-dimensional Helmholtz equations

1hψ̃ − f
2
03ψ̃ = q̃ −βy, (3)

with homogeneous Dirichlet boundary conditions. To solve
these N two-dimensional Helmholtz equations, we use fast
diagonalization with type-I discrete sine transform (DST-I)
since the usual five-point Laplacian operator

1hfi,j =
fi+1,j − 2fi,j + fi−1,j

δx2 +
fi,j+1− 2fi,j + fi,j+1

δy2

becomes a diagonal operator in the type-I sine basis (Press
and Teukolsky, 2007, Chap. 20.4, p. 1055). After having
solved these N Helmholtz equations, we transform back ψ
from mode to layers:

ψ = Cm2lψ̃ .

Geosci. Model Dev., 17, 1749–1764, 2024 https://doi.org/10.5194/gmd-17-1749-2024

L. Thiry et al.: MQGeometry – QG solver on non-rectangular geometries 1753

Figure 5. Domain � included in a rectangular domain �R and the
set I = ∂�r ∂�R of non-rectangular boundary indices.

3.3 Capacitance matrix method for non-rectangular
geometry

To handle non-rectangular domains, we use the capacitance
matrix method (Proskurowski and Widlund, 1976). We have

a non-rectangular domain �= ∂�∪
◦

�, where ∂� is the do-

main boundary and
◦

� is the interior of the domain. Our non-
rectangular domain � is embedded in a rectangular domain

�R = ∂�R∪
◦

�R. We denote by I = ∂�r∂�R the set of non-
rectangular boundary indices (see Fig. 5). We assume that we
have K non-rectangular boundary points Ik ∈ I.

We now explain how to solve the following non-
rectangular Helmholtz equation:

1hf − λf = r in
◦

�, λ ∈ R+, f = 0 on ∂�. (4)

One can find a more detailed explanation in Blayo and LeP-
rovost (1993), as this is our inspiration for using the capaci-
tance matrix method.

3.3.1 Precomputations

For each non-rectangular boundary point Ik ∈ I, a Green
function gk is defined as the solution of the following rect-
angular Helmholtz equation:

1hgk − λgk =

{
1 on Ik

0 in
◦

�R r {Ik}
,

gk = 0 on ∂�R ,

solved using DST-I fast diagonalization. With these Green
functions, we compute the square matrix M with coefficients

mk,l = gl(Ik) .

We compute this matrix inverse to get the so-called capaci-
tance matrix C=M−1.

3.3.2 First step

In the first step, we solve the following rectangular
Helmholtz equation:

1hf
(1)
− λf (1) =

r in
◦

�

0 in
◦

�R r
◦

�

f (1) = 0 on ∂�R,

using DST-I fast diagonalization. We then compute the vector
s coefficients

sk = f
(1)(Ik),

and we deduce the vector

α =−Cs .

3.3.3 Second step

In the second step, we solve the following rectangular
Helmholtz equation:

1hf
(2)
− λf (2) =

r in

◦

�

αk on Ik

0 in
◦

�R r�,

f (2) = 0 on ∂�R,

using DST-I fast diagonalization. This function f (2) is such
that

1hf
(2)
− λf (2) = r in

◦

�

f (2)(Ik)= 0 ∀Ik ∈ I
f (2) = 0 on ∂�r I.

The restriction of f (2) over our non-rectangular domain � is
therefore the solution of the Helmholtz Eq. (4).

3.3.4 Numerical cost

The capacitance matrix method involves solving a dense
linear problem with K unknowns, K being the number of
boundary irregular points I. The capacitance matrix is hence
a K ×K matrix, and its inversions require O(K3) computa-
tions.

In practice, the inversion is the most computationally ex-
pensive operation, but it is precomputed a single time. The
major limitation of this method is in terms of memory, i.e.,
to store theK×K matrix especially on GPUs whose memory
capacity is usually smaller than CPUs. On the laptop utilized,
we were able to use up toK = 10000, allowing us to run sim-
ulations akin to the North Atlantic at a resolution of 6 km. At
this resolution, the ageostrophic effects become significant,
and the QG hypothesis might no longer be relevant.

https://doi.org/10.5194/gmd-17-1749-2024 Geosci. Model Dev., 17, 1749–1764, 2024

1754 L. Thiry et al.: MQGeometry – QG solver on non-rectangular geometries

4 Implementation

4.1 Programming language and library

One can implement the above discretization using any pro-
gramming language. To anticipate later applications in data
assimilation and machine learning, and to benefit easily from
GPU acceleration, we have decided to use the PyTorch li-
brary (Paszke et al., 2019). This library contains the usual lin-
ear algebra routines, and the computations can be easily vec-
torized. It offers a built-in automatic differentiation to com-
pute gradients or adjoints. This can be beneficial for future
machine-learning and data-assimilation developments.

4.2 Upwind flux computation

Upwind flux computations require splitting the velocity into
a positive and a negative part. This can be achieved very ef-
ficiently using the ReLU function

ReLU(x)=max(x,0),

whose PyTorch implementation is highly optimized since
this function is widely use in neural networks. The positive
part u+ and negative part u− of the velocity are given by

u+ = ReLU(u) ,
u− = u− u+ .

4.3 WENO reconstructions

Weighted essentially non-oscillatory (WENO; Liu et al.,
1994) is a large class of reconstruction methods. We imple-
ment two of the most widely used WENO reconstructions:
WENO-JS (Jiang and Shu, 1996) and WENO-Z (Borges
et al., 2008). Implementing these methods requires only a
few lines of Python code (shown in Listing B1 in Appendix
B).

4.4 Masks

For the non-rectangular domain, one has to provide a binary
mask for the PV grid with ones inside the domain and ze-
ros outside. Given this mask, we automatically compute the
masks for the other variable, i.e., the SF ψ and the two com-
ponents of the velocity u and v, and we deduce the non-
rectangular boundary set I involved in the capacitance ma-
trix computations. We also compute specific masks that spec-
ify the stencil for PV reconstruction on u and v points for PV
fluxes computations. This is illustrated in Fig. 6.

4.5 Elliptic solver

Our elliptic solver is based on fast diagonalization using dis-
crete sine transform. Since PyTorch implements FFT but not
DST, we implement DST-I using FFTs with specific pre- and

Figure 6. Illustration of the different masks. The label “u ic2”
means that one uses two-point centered stencils to reconstruct q
on these u points for computations of PV fluxes. The label “v iup5”
means that one uses five-point upwind-biased stencils to reconstruct
q on these v points for computations of vertical PV fluxes.

post-processing operations. Notably, our DST-I implemen-
tation is faster than SciPy’s implementation on Intel CPUs
thanks to PyTorch bindings to MKL FFT.

The capacitance matrix method implementation is
straightforward following the equations in Sect. 3. Ca-
pacitance matrices are precomputed given the set of non-
rectangular boundary indices I. The method solves the
Helmholtz equation with machine precision accuracy. Fig-
ure 7 illustrates this point on a circular domain at resolution
2562. From a prescribed stream function f , taken as Gaus-
sian white noise and vanishing along the boundary, we ap-
ply the Helmholtz operator to get a r.h.s. We then solve the
Helmholtz equation with this r.h.s. to get finv. Figure 7 shows
that finv−f is of the order of machine precision. The method
is independent of the domain shape. The numerical experi-
ments below explore various domain shapes.

Our spectral solver cannot handle curvilinear coordinates
or non-constant metric terms. Solving the QG equations on
a grid with non-constant metric terms requires an iterative
elliptic solver, e.g., a multigrid solver (Fulton et al., 1986).
Iterative solvers can be sped up with a good initial guess. One
can still use the solver presented here to provide an initial
guess assuming that the metric terms dx and dy are constant,
e.g., equal to the mean dx and dy.

4.6 Compilation

PyTorch embeds a compiler which enables a significant
speed-up for computationally intense routines. We com-
pile the flux computations and finite-difference routines.
We get a 2.2× speed-up thanks to this compilation with
torch.compile.

Geosci. Model Dev., 17, 1749–1764, 2024 https://doi.org/10.5194/gmd-17-1749-2024

L. Thiry et al.: MQGeometry – QG solver on non-rectangular geometries 1755

Figure 7. Example of Helmholtz equation solved with our solver
on a circular domain embedded in a 2562 square domain. The true
function f is initialized with spatially uncorrelated Gaussian white
noise. The inverted function finv is computed using our solver. The
difference between f and finv is of the order of machine precision.
CMM stands for capacitance matrix method.

4.7 Ensemble simulations

Thanks to PyTorch vectorized operations, our implementa-
tion allows us to run ensemble simulations, i.e., parallel sim-
ulations starting from different initial conditions. This is a
promising possibility for later developments of ensemble-
based data assimilation or for stochastic extensions such as
Li et al. (2023).

4.8 Architecture

The code is divided into six Python scripts:

– helmholtz.py, which contains the Helmholtz
solvers based on DST-I and the capacitance matrix
method

– fd.py, which contains the finite-difference functions

– reconstruction.py, which contains the recon-
struction (i.e., interpolations in the context of finite vol-
umes) routines

– masks.py, which contains the mask utility module

– flux.py, which contains the flux computation rou-
tines

– qgm.py, which contains the Python class implement-
ing the multi-layer QG model.

We end up with a concise PyTorch implementation (∼ 750
lines of code) which is as close as possible to the equations.
It can run seamlessly on CPUs and GPUs with CUDA com-
patibility.

4.9 Performance

To assess the performance of our solver, we ran the double-
gyre experiment (see below) on a Dell Precision 7560 laptop

equipped with an Intel Core i9-11950H CPU and an NVIDIA
RTX A3000 laptop GPU. We measure the number of seconds
per grid point per time step as well as the power consumption
of the devices using the commands nvidia-smi for GPU
and turbostat for CPU.

Using the GPU, we get an execution time of 2.5× 10−8 s
per grid point per time step with a power consumption of
75 W. Using the CPU with a single core, we get an execution
time of 1.9×10−7 s per grid point per time step with a power
consumption of 22 W. Using the full CPU with 16 cores, we
get an execution time of 7.0× 10−8 s per grid point per time
step with a power consumption of 67 W.

As expected, the GPU has a better power efficiency than
the CPU (Häfner et al., 2021). There is still room for im-
provement for CPU parallelization in our code, as the native
parallelism of PyTorch is not fully efficient in our case.

4.10 Accuracy

Despite the high-order WENO reconstruction used to solve
the PV transport, our solver is formally second-order accu-
rate due to the staggering and the use of a second-order per-
pendicular and divergence operator. This calls for a discus-
sion.

The perpendicular gradient operator is applied to the SF,
which is the smoothest field that we resolve. The benefits
of using higher-order schemes for this operator are less ob-
vious. The second-order divergence operator used in finite-
volume advection ensures the global conservation of PV up
to numerical precision. Higher-order schemes might discard
this conservation property. For the PV advection, low-order
reconstruction schemes suffer from higher numerical diffu-
sion (Lemarié et al., 2015) while linear reconstructions tend
to create more oscillations for non-smooth fields. These two
considerations motivate the use of high-order non-linear re-
construction on the PV field, which is non-smooth since QG
flows contain boundary currents, eddies, and filaments.

5 Numerical validation

We run three numerical experiments involving meso-scale
vortices (20–200 km diameters) to validate our solver. The
first one is a vortex-shear instability, the second is a vortex–
wall interaction, and the third is an idealized double-gyre ex-
periment, which is a usual toy model for western boundary
currents. With our solver, multi-layer QG equations deliver
on their promise of a computationally efficient playground
to study meso-scale non-linear dynamics. Indeed, the three
experiments presented here ran on a laptop and took a few
to 50 min to run. We provide the Python scripts to reproduce
these experiments and the figures.

https://doi.org/10.5194/gmd-17-1749-2024 Geosci. Model Dev., 17, 1749–1764, 2024

1756 L. Thiry et al.: MQGeometry – QG solver on non-rectangular geometries

Figure 8. Vortex-shear instability experiment. Evolution of potential vorticity q at initial time t = 0; at intermediate times
5τ,7.5τ,9τ,13τ,18τ , and 24τ ; and at final simulation time 30τ .

5.1 Vortex-shear instability

The first validation of our method consists of a vortex-
shear instability. We consider a rotating fluid in a circular
domain with diameter D = 100 km embedded in a square
domain of size Lx ×Ly =100 km× 100 km on an f plane
with a Coriolis parameter f0, whose value is deduced from
the Burger number below. There is a single layer of fluid
with reference thickness H = 1 km. We assume no-flow and
free-slip boundary conditions. The gravity constant is set to
g = 10 m s−2.

We study the shear instability of a meso-scale shielded
Rankine vortex, which has piece-wise constant PV. In the ini-
tial state, the vortex is composed of a core vortex surrounded
by a ring of opposite-sign PV to the core such that the total
sum of the PV is 0. This system is shear unstable and gener-
ates multipoles (Morel and Carton, 1994). We focus here on
the tripole formation regime.

The core of the vortex has a radius r0 = 10 km and posi-
tive vorticity. The surrounding ring has an inner radius r0 =
10 km and r1 = 14 km. The remaining parameters of the sim-
ulation are set via the Rossby and Burger numbers defined as
follows:

Ro=
umax

f0r0
, (5)

Bu=
gH

(f0r0)2
, (6)

where umax is the maximum velocity of the initial condition.
Given the Burger number, we compute the Coriolis param-

eter using f0 =

√
gH

Bu r2
0

. Then given the Rossby number, we

rescale the velocity field of the initial condition such that the
maximum velocity is umax = Rof0r0.

The quasi-geostrophic equations are valid for Bu≤ 1 and
Ro� 1. We perform the experiment with Ro= 0.01 and
Bu= 1. The equations are integrated over a period of 30τ ,
with τ = ‖q init‖

−1
2 the eddy-turnover time and q init the initial

condition, shown at the top left of Fig. 8. At initial time the
PV contours of the core and the ring r = ri are slightly per-
turbed by means of a mode-3 azimuthal perturbation defined
in polar coordinates (r,θ) by

(1+ ε cos(3θ))r = ri ,

where ε� 1 is a small parameter, typically ε = 0.001. This
perturbation favors the growth of the most unstable mode
which, given the ratio r1/r0, evolves non-linearly into a
tripole (Morel and Carton, 1994).

We use WENO-Z reconstructions for this experi-
ment. This experiment can be reproduced with script
vortex_shear.py. We run the reference experiment at
a resolution of 10242.

We see in Fig. 8 the evolution of the vortex PV q at differ-
ent times between the beginning and the end of the simula-
tion at time t = 30τ . At time t = 5τ the result of the instabil-
ity is visible and the core vortex which was initially circular
has a triangular shape. At time t = 7.5τ the outer positive
PV ring has become the expected tripole (Morel and Carton,
1994). At time t = 9τ the core vortex recovers a triangular
shape with negative PV filaments ranging from the triangle
vertices to the three positive vortices. At time t = 13τ , the
core vortex keeps a triangular shape and the vorticity fila-
ments become thinner. At time t = 18τ , the filament thick-
ness reaches the grid scale and the filaments start being dis-
sipated by WENO-Z implicit dissipation. At time t = 24τ ,
the filaments are progressively dissipated and have a smaller
amplitude. The core vortex shape becomes more circular, and
the three positive vortices are surrounded by a smaller nega-
tive vortex. At final time t = 30τ , the filament amplitude has

Geosci. Model Dev., 17, 1749–1764, 2024 https://doi.org/10.5194/gmd-17-1749-2024

L. Thiry et al.: MQGeometry – QG solver on non-rectangular geometries 1757

lowered, and small vorticity dipoles appear. The order-3 sym-
metry, which was injected by the initial perturbation, starts to
be lost only at time t = 30τ . For later times (not shown), the
system evolves into a chaotic system. This chaotic evolution
is expected as the system is sensitive to initial conditions.

To measure the sensitivity of our solver to the resolu-
tion and the order of the reconstruction scheme (3 or 5), we
compare the solutions produced by our solver at resolutions
10242, 5122, and 2562 using third-order WENO (WENO-3)
and fifth-order WENO (WENO-5) reconstructions. In Fig. 9
we plot the evolution of the total enstrophy at the three dif-
ferent resolutions. The results show that the enstrophy dissi-
pation decreases as the resolution increases, indicating that a
higher resolution better preserves the PV variance, and that
low-resolution simulations suffer from an excessive dissipa-
tion.

We also note that WENO-3 leads to excessive numerical
dissipation compared to WENO-5. Moreover, the enstrophy
is better preserved with WENO-5 at resolution 5122 than
with WENO-3 at resolution 10242. We plot in Fig. C1 in
the Appendix the final state of the simulation at resolutions
5122 and 10242 with WENO-3 and WENO-5. This indicates
that WENO-5 increases the effective resolution. In terms of
computation cost, the simulation runtime is 1 min 2 s with
WENO-5 at resolution 5122 and 5 min 52 s with WENO-3 at
resolution 10242 with the NVIDIA RTX A3000 laptop GPU.
This illustrates the benefits of using high-order reconstruc-
tions despite the fact that our code is globally second-order
accurate.

5.2 Vortex–wall interaction

To challenge the numerics we now study the propagation of
a single meso-scale vortex along a solid boundary, with a
free-slip boundary condition. The domain is square with a
thin-wall obstacle. Because the flow is inviscid, up to nu-
merical errors, the vortex is expected to follow the boundary
according to the mirror effect. In particular the vortex should
slip around the obstacle and circumvent it, without detach-
ing from it and without producing filaments (Deremble et al.,
2016). The challenge is thus to have a solution that is as in-
viscid as possible and to enforce as much as possible both the
no-flow and the free-slip boundary conditions.

The setup is as follows. The domain size is Lx ×

Ly =100 km× 100 km on an f plane with a Coriolis param-
eter f0. The thin-wall obstacle is vertical, starting from the
middle of the domain south boundary, and of length Ly/4
(see Fig. 10) and has a two-cell width. There is a single layer
of fluid with reference thickness H = 1 km. We assume no-
flow and free-slip boundary conditions. The gravity constant
is set to g = 10 m s−2. In the initial state, the vortex is a circle
of radius r0 = 10 km with constant PV and is at the bottom
of the domain and at the left of the wall. The circular shape
differs from the oval shape a vortex has when moving along a
rectilinear wall. The remaining parameters of the simulation

Table 1. Parameters of the idealized double-gyre configuration.

Parameters Value Description

Lx ×Ly (5120× 5120) km Domain size
nx × ny 256× 256 Grid dimension
dx× dy 20× 20 km Spatial resolution
Hk (400,1100,2600) m Layer thickness
g′
k

(0.025,0.0125) m s−2 Reduced gravity
δ 1.43× 10−5 s−1 Bottom drag coef.
τ0 0.08 N m−2 Wind stress magnitude
ρ0 1000 kg m−3 Ocean density
f0 9.375× 10−5 s−1 Mean Coriolis
β 1.754× 10−11 (m s)−1 Coriolis gradient
Ld (41,25) km Rossby radii
dt 4000 s Time step

are set via the Rossby and Burger numbers with Ro= 0.01,
and Bu= 1.

Figure 10 shows PV snapshots at various times, superim-
posed with the SF. The vortex behaves according to the invis-
cid regime. It clearly follows the wall and the obstacle elasti-
cally, without any sign of dissipative process such as filament
detachment. The vortex at t = 22τ has recovered the char-
acteristic oval shape. Between t = 9.4τ and t = 12.6τ , the
vortex circumvents the edge, which causes it to experience
its maximal deformation, but the solution remains smooth.
The SF is clearly constant along the boundary, as a direct
consequence of the capacitance matrix method. During the
circumvention, it remains so, despite the thin wall imposing
a strong curvature at the edge.

This experiment shows that the numerics has very good
conservation properties on inviscid flows. This may come as
a surprise since the upwinding does induce a numerical dis-
sipation. In practice, the dissipation seems to self-adjust to
the minimum required to prevent noise at the grid scale. This
way of discretizing, in line with the ILES approach, turns out
to be a viable alternative to conservative discretization com-
bined with an explicit dissipation term.

At the bottom of Fig. 10 we plot the evolution of the to-
tal enstrophy at the three different resolutions. Once again,
we note that the enstrophy dissipation decreases as the res-
olution increases: higher resolutions better preserve the PV
variance, while low-resolution simulations suffer from more
dissipation.

5.3 Double-gyre configuration

Our third numerical experiment to validate our solver is an
idealized double-gyre configuration. Double-gyre configura-
tions are a natural test for QG implementation or parameter-
ization (e.g., Zanna et al., 2017; Ryzhov et al., 2020; Uchida
et al., 2022). We consider here an octagonal ocean basin to
illustrate the ability of our solver to handle non-square ge-
ometries. This octagon has maximal dimensions Lx ×Ly .

https://doi.org/10.5194/gmd-17-1749-2024 Geosci. Model Dev., 17, 1749–1764, 2024

1758 L. Thiry et al.: MQGeometry – QG solver on non-rectangular geometries

Figure 9. Evolution of the total enstrophy for the vortex-shear at resolutions 10242, 5122, and 2562 using WENO-3 or WENO-5 for PV
reconstruction.

Figure 10. Vortex–wall interaction experiment. (a) Vortex potential vorticity q and stream function ψ contours at initial time t = 0; at inter-
mediate times 3.1τ,6.3τ,9.4τ,12.6τ,15.7τ , and 18.9τ ; and at final simulation time 22τ . (b) Evolution of the total enstrophy at resolutions
10242, 5122, and 2562.

We assume free-slip boundary conditions on the boundaries.
We consider N = 3 layers on the vertical. We use an ide-
alized stationary and symmetric wind stress (τx,τy) with
τx =−(τ0/ρ0)cos(2πy/Ly) and τy = 0 on the top and linear

drag at the bottom drag coefficient δ. The parameter values
are given in Table 1.

We study this configuration in an eddy-permitting reso-
lution of 20 km; the eddy-resolving meaning that the spa-
tial resolution (20 km) is half of the larger baroclinic Rossby

Geosci. Model Dev., 17, 1749–1764, 2024 https://doi.org/10.5194/gmd-17-1749-2024

L. Thiry et al.: MQGeometry – QG solver on non-rectangular geometries 1759

Figure 11. (a, b) Upper-layer stream function ψ and relative vorticity (i.e., 1ψ) after 50 years of spin-up. (c, d, e) Upper-layer mean stream
function, mean kinetic energy density, and eddy kinetic energy density computed over 40 years after 10 years of spin-up.

radius (41 km). Already at such eddy-permitting resolution,
multi-layer QG solvers do not necessarily produce a well-
pronounced eastward jet and usually require additional eddy
parameterization (Uchida et al., 2022).

We plot at the top of Fig. 11 a snapshot of upper-layer
SF and relative vorticity (i.e., 1ψ) after 30 years of spin-up.
As expected, our solver produces a strong western bound-
ary current on the vertical and non-vertical boundaries. In
the middle of this boundary starts a well-extended eastward
jet whose length is qualitatively comparable with the Gulf
Stream length in the North Atlantic basin. This jet is sur-
rounded by a recirculation zone with several meso-scale ed-
dies, which appears coherent with eddy-resolving-resolution
simulations. We notice large-scale Rossby waves that are
emerging near the eastern boundary and that propagate west-
ward.

Since this system is chaotic, showing a snapshot is not
very representative of the dynamical behavior of the system.
We plot statistics of our solution at the bottom of Fig. 11:
the mean SF, the mean kinetic energy (i.e., the kinetic en-
ergy of the mean velocity), and the eddy kinetic energy (i.e.,
the kinetic energy of the velocity standard deviation). These
statistics were computed over 40 years after 10 years of spin-
up, saving one snapshot every 15 years. These statistics are
symmetric, which is expected since the domain shape and
the wind forcing are symmetric. They confirm the presence

of a strong western boundary current and fluctuating east-
ward jet whose length is roughly three-quarters of the do-
main. These results seem to confirm the relevance of implicit
dissipation provided by upwinding, since usual multi-layer
QG solvers require additional eddy parameterization (Uchida
et al., 2022) to produce a well-pronounced eastward jet.

To assess the influence of the resolution on the solution
produced by our solver, we run the same double-gyre exper-
iment at lower resolutions: 27, 40, and 53 km. We plot the
mean SF as well as the mean and eddy kinetic energy statis-
tics in Fig. 12. We note that the eastward jet progressively
diminishes as the resolution decreases: at resolution 27 km, it
barely reaches the middle of the domain, while at resolutions
40 and 53 km, it almost disappears. At these two coarsest res-
olutions that are comparable to the largest baroclinic Rossby
radius, 41 km in our configuration, meso-scale eddies cannot
be resolved properly by our solver, and one would require an
additional eddy parameterization to produce the eastward jet
(Zanna et al., 2017).

6 Conclusions

We presented MQGeometry, a multi-layer quasi-
geostrophic equation solver for non-rectangular geometries.
This solver has three original aspects compared to usual
solvers such as Q-GCM, PyQG, or PEQUOD: the use of

https://doi.org/10.5194/gmd-17-1749-2024 Geosci. Model Dev., 17, 1749–1764, 2024

1760 L. Thiry et al.: MQGeometry – QG solver on non-rectangular geometries

Figure 12. Upper-layer mean stream function, mean kinetic energy density, and eddy kinetic energy density computed over 40 years after
10 years of spin-up at resolutions (top to bottom) 27, 40, and 53 km.

finite volume for advection via staggering of the PV and SF,
the non-linear WENO upwind-biased reconstructions with
implicit dissipation, and the ability to handle non-square
geometry with a fast spectral DST solver combined with
the capacitance matrix method. Running a simulation with
this solver does not require the tuning of any additional
parameter, e.g., additional hyper-viscosity.

This multi-layer QG solver delivers a computationally effi-
cient playground for studying meso-scale non-linear dynam-
ics. It opens the way to study QG dynamics in basins with
a realistic coastline, e.g., Mediterranean or North Atlantic
basins. Moreover, with PyTorch automatic differentiation,
one can easily build upon this implementation to develop
new machine-learning parameterizations of the QG sub-grid
scales or new data-assimilation techniques using QG.

We believe that more complex modeling systems can be
implemented in high-level languages like Python without

sacrificing performance, as demonstrated by Häfner et al.
(2021). The QG system that we implemented in this solver is
fairly simple, and the present solver should be seen as a proof
of concept. Our plan is to extend the presented approach to
shallow-water equations and subsequently to primitive equa-
tions. Major advantages are the seamless parallelism offered
by GPUs, enabling us to write code that closely aligns with
the continuous equations, and the automatic differentiation,
allowing us to learn vertical parameterization in an end-to-
end fashion (Kochkov et al., 2023).

Geosci. Model Dev., 17, 1749–1764, 2024 https://doi.org/10.5194/gmd-17-1749-2024

L. Thiry et al.: MQGeometry – QG solver on non-rectangular geometries 1761

Appendix A: Usual discretization of multi-layer QG
equations

One typically solves multi-layer QG equations using the
strategy that follows (e.g., Hogg et al., 2014).

1. Use an evenly spaced Arakawa-C grid with the PV and
the SF discretized on the same location, namely, the cell
vertices (see left panel of Fig. 1).

2. Solve the PV advection Eq. (1a) using the energy–
enstrophy-conservative Arakawa–Lamb scheme
(Arakawa and Lamb, 1981) in the interior domain (i.e.,
not on the boundaries).

3. Since the scheme is energy conserving, use an addi-
tional (hyper-)viscosity scheme to dissipate the energy
fueled by the wind forcing.

4. Given the matrix A diagonalization

A= Cm2l3Cl2m ,

where the layer-to-mode matrix Cl2m is the inverse of
the mode-to-layer matrix Cm2l, and 3 is a diagonal ma-
trix containing A eigenvalues, perform the following
layer-to-mode transform:

ψ̃, q̃ = Cl2mψ, Cl2mq .

With this transform, the elliptic Eq. (1b) becomes a
stack of N two-dimensional Helmholtz equations

1hψ̃ − f
2
03ψ̃ = q̃ −βy (A1)

with homogeneous Dirichlet boundary conditions.

5. Solve these N two-dimensional Helmholtz equations,
using, e.g., fast diagonalization with type-I discrete sine
transform (DST-I):

DST-I[x]k =
L∑
l=1

xl sin
[
πlk

L+ 1

]
, k = 1, . . ., L .

6. Transform back from mode to layers

ψ, q = Cm2lψ̃, Cm2lq̃ .

7. Update the PV boundary values using the elliptic
Eq. (1b). This requires definition of the Laplacian on the
boundaries and possibly involves partial free-slip/no-
slip boundary conditions.

Appendix B: WENO implementation

Listing B1. Python implementation of WENO-JS and WENO-Z re-
constructions.

https://doi.org/10.5194/gmd-17-1749-2024 Geosci. Model Dev., 17, 1749–1764, 2024

1762 L. Thiry et al.: MQGeometry – QG solver on non-rectangular geometries

Appendix C: Vortex-shear instability

Figure C1. Vortex-shear instability final state (t = 30τ) with resolution 5122 and WENO-5 and with resolution 10242 and WENO-3/WENO-
5.

Geosci. Model Dev., 17, 1749–1764, 2024 https://doi.org/10.5194/gmd-17-1749-2024

L. Thiry et al.: MQGeometry – QG solver on non-rectangular geometries 1763

Code and data availability. The Python source code to
reproduce the results is accessible on-line at https:
//github.com/louity/MQGeometry (last access: 26 February 2024)
and https://doi.org/10.5281/zenodo.8364234 (Thiry, 2023). It
contains a readme file with the instructions to run the code and a
script to compute statistics and reproduce the figures. No data sets
were used in this article.

Author contributions. LT implemented the PyTorch software, con-
ducted the numerical experiments, and wrote the paper. GR gave the
original idea of the staggering and the use of WENO, supervised the
numerical experiments, and corrected the paper. LL helped with nu-
merical experiments and paper revision. EM supervised the project.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors acknowledge the support of the
ERC EU project 856408-STUOD. We would like to express our
warm thanks to Laurent Debreu for pointing us to the capacitance
matrix method. We also thank Nicolas Crouseilles, Pierre Navaro,
Erwan Faou, and Georges-Henri Cottet for the amicable exchanges
and interesting discussions.

Financial support. This research has been supported by the Euro-
pean Research Council, H2020 European Research Council (grant
no. 856408-STUOD).

Review statement. This paper was edited by Deepak Subramani
and reviewed by two anonymous referees.

References

Arakawa, A. and Lamb, V. R.: A potential enstrophy and en-
ergy conserving scheme for the shallow water equations, Mon.
Weather Rev., 109, 18–36, 1981.

Blayo, E. and LeProvost, C.: Performance of the Capacitance Ma-
trix Method for Solving Helmhotz-Type Equations in Ocean
Modelling, J. Comput. Phys., 104, 347–360, 1993.

Borges, R., Carmona, M., Costa, B., and Don, W. S.: An improved
weighted essentially non-oscillatory scheme for hyperbolic con-
servation laws, J. Comput. Phys., 227, 3191–3211, 2008.

Boris, J. P., Grinstein, F. F., Oran, E. S., and Kolbe, R. L.: New
insights into large eddy simulation, Fluid Dynam. Res., 10, 199,
https://doi.org/10.1016/0169-5983(92)90023-P, 1992.

Brown, N.: A comparison of techniques for solv-
ing the Poisson equation in CFD, arXiv [preprint],
https://doi.org/10.48550/arXiv.2010.14132, 2020.

Constantinou, N. C., Wagner, G. L., Siegelman, L., Pear-
son, B. C., and Palóczy, A.: GeophysicalFlows.jl: Solvers
for geophysical fluid dynamics problems in periodic do-
mains on CPUs & GPUs, J. Open Source Softw., 6, 3053,
https://doi.org/10.21105/joss.03053, 2021.

Deremble, B., Dewar, W. K., and Chassignet, E. P.: Vorticity dy-
namics near sharp topographic features, J. Mar. Res., 74, 249–
276, 2016.

Fox-Kemper, B., Bachman, S., Pearson, B., and Reckinger, S.: Prin-
ciples and advances in subgrid modelling for eddy-rich simula-
tions, Clivar Exchanges, 19, 42–46, 2014.

Fulton, S. R., Ciesielski, P. E., and Schubert, W. H.: Multigrid meth-
ods for elliptic problems: A review, Mon. Weather Rev., 114,
943–959, 1986.

Grinstein, F. F., Margolin, L. G., and Rider, W. J.: Implicit large
eddy simulation, vol. 10, Cambridge university press Cambridge,
https://doi.org/10.1017/CBO9780511618604. 2007.

Häfner, D., Nuterman, R., and Jochum, M.: Fast, cheap, and
turbulent – Global ocean modeling with GPU acceleration
in python, J. Adv. Model. Earth Sy., 13, e2021MS002717,
https://doi.org/10.1029/2021MS002717, 2021.

Harten, A.: On a class of high resolution total-variation-stable finite-
difference schemes, SIAM J. Numer. Anal., 21, 1–23, 1984.

Hogg, A. M. C., Dewar, W. K., Killworth, P. D., and Blun-
dell, J. R.: Formulation and users’ guide for Q-GCM, Mon.
Weather Rev., 131, 2261–2278, https://doi.org/10.1175/1520-
0493(2003)131<2261:AQCMQ>2.0.CO;2, 2014.

Jiang, G.-S. and Shu, C.-W.: Efficient implementation of weighted
ENO schemes, J. Comput. Phys., 126, 202–228, 1996.

Kevlahan, N. K.-R. and Lemarié, F.: wavetrisk-2.1: an adaptive
dynamical core for ocean modelling, Geosci. Model Dev., 15,
6521–6539, https://doi.org/10.5194/gmd-15-6521-2022, 2022.

Kochkov, D., Yuval, J., Langmore, I., Norgaard, P., Smith, J., Moo-
ers, G., Lottes, J., Rasp, S., Düben, P., Klöwer, M., Hatfield,
S., Battaglia, P., Sanchez-Gonzalez, A., Willson, M., Brenner,
M. P.,and Hoyer, S.: Neural General Circulation Models, arXiv
[preprint], https://doi.org/10.48550/arXiv.2311.07222, 2023.

Lemarié, F., Debreu, L., Madec, G., Demange, J., Molines, J.-M.,
and Honnorat, M.: Stability constraints for oceanic numerical
models: implications for the formulation of time and space dis-
cretizations, Ocean Model., 92, 124–148, 2015.

Li, L., Deremble, B., Lahaye, N., and Mémin, E.: Stochastic
Data-Driven Parameterization of Unresolved Eddy Effects in a
Baroclinic Quasi-Geostrophic Model, J. Adv. Model. Earth Sy.,
15, e2022MS003297, https://doi.org/10.1029/2022MS003297,
2023.

Liu, X.-D., Osher, S., and Chan, T.: Weighted essentially non-
oscillatory schemes, J. Comput. Phys., 115, 200–212, 1994.

Marshall, D. P., Maddison, J. R., and Berloff, P. S.: A frame-
work for parameterizing eddy potential vorticity fluxes, J. Phys.
Oceanogr., 42, 539–557, 2012.

https://doi.org/10.5194/gmd-17-1749-2024 Geosci. Model Dev., 17, 1749–1764, 2024

https://github.com/louity/MQGeometry
https://github.com/louity/MQGeometry
https://doi.org/10.5281/zenodo.8364234
https://doi.org/10.1016/0169-5983(92)90023-P
https://doi.org/10.48550/arXiv.2010.14132
https://doi.org/10.21105/joss.03053
https://doi.org/10.1017/CBO9780511618604
https://doi.org/10.1029/2021MS002717
https://doi.org/10.1175/1520-0493(2003)131<2261:AQCMQ>2.0.CO;2
https://doi.org/10.1175/1520-0493(2003)131<2261:AQCMQ>2.0.CO;2
https://doi.org/10.5194/gmd-15-6521-2022
https://doi.org/10.48550/arXiv.2311.07222
https://doi.org/10.1029/2022MS003297

1764 L. Thiry et al.: MQGeometry – QG solver on non-rectangular geometries

Morel, Y. G. and Carton, X. J.: Multipolar vortices in two-
dimensional incompressible flows, J. Fluid Mech., 267, 23–51,
1994.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S.: Pytorch: An imperative style,
high-performance deep learning library, arXiv [preprint],
https://doi.org/10.48550/arXiv.1912.01703, 2019.

Press, W. H. and Teukolsky, S. A.: Numerical recipes 3rd edi-
tion: The art of scientific computing, Cambridge university press,
ISBN 9780521880688, 2007.

Proskurowski, W. and Widlund, O.: On the numerical solution of
Helmholtz’s equation by the capacitance matrix method, Math.
Comput., 30, 433–468, 1976.

Roullet, G., Mcwilliams, J. C., Capet, X., and Molemaker, M. J.:
Properties of steady geostrophic turbulence with isopycnal out-
cropping, J. Phys. Oceanogr., 42, 18–38, 2012.

Ryzhov, E., Kondrashov, D., Agarwal, N., McWilliams, J., and
Berloff, P.: On data-driven induction of the low-frequency vari-
ability in a coarse-resolution ocean model, Ocean Model., 153,
101664, https://doi.org/10.1016/j.ocemod.2020.101664, 2020.

Shu, C.-W. and Osher, S.: Efficient implementation of essentially
non-oscillatory shock-capturing schemes, J. Comput. Phys., 77,
439–471, 1988.

Thiry, L.: MQGeometry-1.0: a multi-layer quasi-geostrophic
solver on non-rectangular geometries, Zenodo [code],
https://doi.org/10.5281/zenodo.8364235, 2023.

Uchida, T., Deremble, B., and Popinet, S.: Deterministic model
of the eddy dynamics for a midlatitude ocean model, J. Phys.
Oceanogr., 52, 1133–1154, 2022.

Van der Vorst, H. A.: Bi-CGSTAB: A fast and smoothly converging
variant of Bi-CG for the solution of nonsymmetric linear sys-
tems, SIAM J. Sci. Stat. Comput., 13, 631–644, 1992.

Von Hardenberg, J., McWilliams, J., Provenzale, A., Shchepetkin,
A., and Weiss, J.: Vortex merging in quasi-geostrophic flows, J.
Fluid Mech., 412, 331–353, 2000.

Zanna, L., Mana, P. P., Anstey, J., David, T., and Bolton, T.: Scale-
aware deterministic and stochastic parametrizations of eddy-
mean flow interaction, Ocean Model., 111, 66–80, 2017.

Geosci. Model Dev., 17, 1749–1764, 2024 https://doi.org/10.5194/gmd-17-1749-2024

https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1016/j.ocemod.2020.101664
https://doi.org/10.5281/zenodo.8364235

	Abstract
	Introduction
	PV advection with finite volumes
	Staggered discretization of PV and SF
	Upwinding of PV fluxes
	Time integration

	Spectral elliptic solver on non-rectangular domain
	Staggering of PV and SF
	DST solver on rectangular geometry
	Capacitance matrix method for non-rectangular geometry
	Precomputations
	First step
	Second step
	Numerical cost

	Implementation
	Programming language and library
	Upwind flux computation
	WENO reconstructions
	Masks
	Elliptic solver
	Compilation
	Ensemble simulations
	Architecture
	Performance
	Accuracy

	Numerical validation
	Vortex-shear instability
	Vortex–wall interaction
	Double-gyre configuration

	Conclusions
	Appendix A: Usual discretization of multi-layer QG equations
	Appendix B: WENO implementation
	Appendix C: Vortex-shear instability
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

