Articles | Volume 16, issue 1
https://doi.org/10.5194/gmd-16-95-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-95-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
FABM-NflexPD 2.0: testing an instantaneous acclimation approach for modeling the implications of phytoplankton eco-physiology for the carbon and nutrient cycles
Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
Markus Pahlow
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Prima Anugerahanti
Earth SURFACE Research Center, Research Institute for Global Change, JAMSTEC, Yokosuka, Japan
present address: Dept. of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, UK
Sherwood Lan Smith
Earth SURFACE Research Center, Research Institute for Global Change, JAMSTEC, Yokosuka, Japan
Related authors
Onur Kerimoglu, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 14, 6025–6047, https://doi.org/10.5194/gmd-14-6025-2021, https://doi.org/10.5194/gmd-14-6025-2021, 2021
Short summary
Short summary
In large-scale models, variations in cellular composition of phytoplankton are often insufficiently represented. Detailed modeling approaches exist, but they require additional state variables that increase the computational costs. In this study, we test an instantaneous acclimation model in a spatially explicit setup and show that its behavior is mostly similar to that of a variant with an additional state variable but different from that of a fixed composition variant.
Prima Anugerahanti, Julien Palmieri, Chelsey A. Baker, Ekaterina Popova, and Andrew Yool
EGUsphere, https://doi.org/10.5194/egusphere-2025-5360, https://doi.org/10.5194/egusphere-2025-5360, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We used an ocean biogeochemistry model to investigate carbon removal potential of large-scale seaweed cultivation with multiple operational strategies and how it impacts the natural ocean biogeochemistry. Our results show that cultivation can increase atmospheric CO2 uptake, but at the expense of decreasing nutrients, phytoplankton production, and deoxygenation. These trade-offs need to be assessed before considering large-scale seaweed cultivation for CDR.
Chia-Te Chien, Markus Pahlow, Christopher J. Somes, Markus Schartau, and Andreas Oschlies
EGUsphere, https://doi.org/10.5194/egusphere-2025-4907, https://doi.org/10.5194/egusphere-2025-4907, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
We aim to investigate the variability and drivers of atmospheric pCO2 drawdown during the Last Glacial Maximum using an ensemble of model simulations. Our ensemble explores the effects of parameter uncertainty and different forcing scenarios on marine biogeochemistry and pCO2. We show that changes in ocean circulation, nutrient utilization, and iron availability regulate the efficiency of the biological carbon pump, accounting for a substantial portion of the glacial–interglacial pCO2 change.
Na Li, Christopher J. Somes, Angela Landolfi, Chia-Te Chien, Markus Pahlow, and Andreas Oschlies
Biogeosciences, 21, 4361–4380, https://doi.org/10.5194/bg-21-4361-2024, https://doi.org/10.5194/bg-21-4361-2024, 2024
Short summary
Short summary
N is a crucial nutrient that limits phytoplankton growth in large ocean areas. The amount of oceanic N is governed by the balance of N2 fixation and denitrification. Here we incorporate benthic denitrification into an Earth system model with variable particulate stoichiometry. Our model compares better to the observed surface nutrient distributions, marine N2 fixation, and primary production. Benthic denitrification plays an important role in marine N and C cycling and hence the global climate.
Yoshikazu Sasai, Sherwood Lan Smith, Eko Siswanto, Hideharu Sasaki, and Masami Nonaka
Biogeosciences, 19, 4865–4882, https://doi.org/10.5194/bg-19-4865-2022, https://doi.org/10.5194/bg-19-4865-2022, 2022
Short summary
Short summary
We have investigated the adaptive response of phytoplankton growth to changing light, nutrients, and temperature over the North Pacific using two physical-biological models. We compare modeled chlorophyll and primary production from an inflexible control model (InFlexPFT), which assumes fixed carbon (C):nitrogen (N):chlorophyll (Chl) ratios, to a recently developed flexible phytoplankton functional type model (FlexPFT), which incorporates photoacclimation and variable C:N:Chl ratios.
Onur Kerimoglu, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 14, 6025–6047, https://doi.org/10.5194/gmd-14-6025-2021, https://doi.org/10.5194/gmd-14-6025-2021, 2021
Short summary
Short summary
In large-scale models, variations in cellular composition of phytoplankton are often insufficiently represented. Detailed modeling approaches exist, but they require additional state variables that increase the computational costs. In this study, we test an instantaneous acclimation model in a spatially explicit setup and show that its behavior is mostly similar to that of a variant with an additional state variable but different from that of a fixed composition variant.
Guillaume Le Gland, Sergio M. Vallina, S. Lan Smith, and Pedro Cermeño
Geosci. Model Dev., 14, 1949–1985, https://doi.org/10.5194/gmd-14-1949-2021, https://doi.org/10.5194/gmd-14-1949-2021, 2021
Short summary
Short summary
We present an ecological model called SPEAD wherein various phytoplankton compete for nutrients. Phytoplankton in SPEAD are characterized by two continuously distributed traits: optimal temperature and nutrient half-saturation. Trait diversity is sustained by allowing the traits to mutate at each generation. We show that SPEAD agrees well with a more classical discrete model for only a fraction of the cost. We also identify realistic values for the mutation rates to be used in future models.
Cited articles
Anugerahanti, P., Kerimoglu, O., and Smith, S. L.: Enhancing Ocean
Biogeochemical Models With Phytoplankton Variable Composition,
Front. Mar. Sci., 8, 675428, https://doi.org/10.3389/fmars.2021.675428, 2021. a
Arrigo, K. R.: Marine microorganisms and global nutrient cycles, Nature, 437,
343–348, https://doi.org/10.1038/nature04158, 2005. a
Ayata, S. D., Lévy, M., Aumont, O., Sciandra, A., Sainte-Marie, J.,
Tagliabue, A., and Bernard, O.: Phytoplankton growth formulation in marine
ecosystem models: Should we take into account photo-acclimation and variable
stoichiometry in oligotrophic areas?, J. Marine Syst., 125,
29–40, https://doi.org/10.1016/j.jmarsys.2012.12.010, 2013. a
Bonachela, J. A., Allison, S. D., Martiny, A. C., and Levin, S. A.: A model for variable phytoplankton stoichiometry based on cell protein regulation, Biogeosciences, 10, 4341–4356, https://doi.org/10.5194/bg-10-4341-2013, 2013. a
Bonachela, J. A., Klausmeier, C. A., Edwards, K. F., Litchman, E., and Levin,
S. A.: The role of phytoplankton diversity in the emergent oceanic
stoichiometry, J. Plankton Res., 38, 1021–1035,
https://doi.org/10.1093/plankt/fbv087, 2016. a
Bruggeman, J. and Bolding, K.: A general framework for aquatic biogeochemical
models, Environ. Modell. Softw., 61, 249–265,
https://doi.org/10.1016/j.envsoft.2014.04.002, 2014. a, b, c, d
Burchard, H., Bolding, K., Kühn, W., Meister, A., Neumann, T., and
Umlauf, L.: Description of a flexible and extendable physical-biogeochemical
model system for the water column, J. Marine Syst., 61, 180–211,
https://doi.org/10.1016/j.jmarsys.2005.04.011, 2006. a
Burmaster, D. E.: The Continuous Culture of Phytoplankton: Mathematical
Equivalence Among Three Steady-State Models, Am. Nat., 113,
123–134, https://doi.org/10.1086/283368, 1979. a
Burson, A., Stomp, M., Akil, L., Brussaard, C. P. D., and Huisman, J.:
Unbalanced reduction of nutrient loads has created an offshore gradient from
phosphorus to nitrogen limitation in the North Sea,
Limnol. Oceanogr., 61, 869–888, https://doi.org/10.1002/lno.10257, 2016. a
Caperon, J.: Population growth response of Isochrysis Galbana to nitrate
variation at limiting concentrations, Ecology, 49, 866–872, 1968. a
Chen, B. and Smith, S. L.: Optimality-based approach for computationally
efficient modeling of phytoplankton growth, chlorophyll-to-carbon, and
nitrogen-to-carbon ratios, Ecol. Model., 385, 197–212,
https://doi.org/10.1016/j.ecolmodel.2018.08.001, 2018. a
Droop, M.: Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth
and inhibition in Monochrysis lutheri,
J. Mar. Biol. Assoc. UK, 48, 689–733, 1968. a
Dutkiewicz, S., Cermeno, P., Jahn, O., Follows, M. J., Hickman, A. E., Taniguchi, D. A. A., and Ward, B. A.: Dimensions of marine phytoplankton diversity, Biogeosciences, 17, 609–634, https://doi.org/10.5194/bg-17-609-2020, 2020. a
Edwards, K. F., Thomas, M. K., Klausmeier, C. A., and Litchman, E.: Allometric
scaling and taxonomic variation in nutrient utilization traits and maximum
growth rate of phytoplankton, Limnol. Oceanogr, 57, 554–566,
https://doi.org/10.4319/lo.2012.57.2.0554, 2012. a
Fernández-Castro, B., Pahlow, M., Mouriño-Carballido, B., Marañón, E., and
Oschlies, A.: Optimality-based Trichodesmium Diazotrophy in the North
Atlantic Subtropical Gyre, J. Plankton Res., 38, 946–963,
https://doi.org/10.1093/plankt/fbw047, 2016. a
Flynn, K. J.: Do we need complex mechanistic photoacclimation models for
phytoplankton?, Limnol. Oceanogr., 48, 2243–2249, 2003. a
Follows, M. J., Dutkiewicz, S., Grant, S., and Chisholm, S. W.: Emergent
Biogeography of Microbial Communities in a Model Ocean, Science, 315,
1843–1846, https://doi.org/10.1126/science.1138544, 2007. a
Forsythe, W. C., Rykiel, E. J., Stahl, R. S., Wu, H.-I., and Schoolfield,
R. M.: A model comparison for daylength as a function of latitude and day of
year, Ecol. Model., 80, 87–95, 1995. a
Fulton, E. A., Smith, A. D., and Johnson, C. R.: Effect of complexity on
marine ecosystem models, Mar. Ecol. Prog. Ser., 253, 1–16,
https://doi.org/10.3354/meps253001, 2003. a
Garcia, N. S., Bonachela, J. A., and Martiny, A. C.: Interactions between
growth-dependent changes in cell size, nutrient supply and cellular elemental
stoichiometry of marine Synechococcus, ISME J., 10, 2715–2724,
https://doi.org/10.1038/ismej.2016.50, 2016. a
Geider, R. and La Roche, J.: Redfield revisited: variability of C:N:P in
marine microalgae and its biochemical basis,
Eur. J. Phycol.,
37, 1–17, https://doi.org/10.1017/S0967026201003456, 2002. a
Geider, R., Maclntyre, H., and Kana, T.: A dynamic regulatory model of
phytoplanktonic acclimation to light, nutrients, and temperature, Limnol.
Oceanogr., 43, 679–694, https://doi.org/10.4319/lo.1998.43.4.0679, 1998. a
Grover, J.: Resource competition in a variable environment: phytoplankton
growing according to the variable-internal-stores model, Am. Nat., 138, 811–835,
1991. a
Inomura, K., Omta, A. W., Talmy, D., Bragg, J., Deutsch, C., and Follows,
M. J.: A Mechanistic Model of Macromolecular Allocation, Elemental
Stoichiometry, and Growth Rate in Phytoplankton, Front. Microbiol.,
11, 1–22, https://doi.org/10.3389/fmicb.2020.00086, 2020. a
Kerimoglu, O.: OnurKerimoglu/fabm-nflexpd: FABM-NflexPD Version 2.0 release candidate 0 (v2.0-rc0), Zenodo [code], https://doi.org/10.5281/zenodo.6600755, 2022. a
Kerimoglu, O., Hofmeister, R., Maerz, J., Riethmüller, R., and Wirtz, K. W.: The acclimative biogeochemical model of the southern North Sea, Biogeosciences, 14, 4499–4531, https://doi.org/10.5194/bg-14-4499-2017, 2017. a
Kerimoglu, O., Große, F., Kreus, M., Lenhart, H.-J., and van Beusekom,
J. E.: A model-based projection of historical state of a coastal ecosystem:
relevance of phytoplankton stoichiometry, Sci. Total Environ.,
639, 1311–1323, https://doi.org/10.1016/j.scitotenv.2018.05.215, 2018. a
Klausmeier, C., Litchman, E., Daufresne, T., and Levin, S.: Optimal
nitrogen-to-phosphorus stoichiometry of phytoplankton, Nature, 429,
171–174, https://doi.org/10.1038/nature02454, 2004. a
Kwiatkowski, L., Aumont, O., Bopp, L., and Ciais, P.: The Impact of Variable
Phytoplankton Stoichiometry on Projections of Primary Production, Food
Quality, and Carbon Uptake in the Global Ocean, Global Biogeochem.
Cy., 32, 516–528, https://doi.org/10.1002/2017GB005799, 2018. a
Lenton, T. M. and Klausmeier, C. A.: Biotic stoichiometric controls on the deep ocean N:P ratio, Biogeosciences, 4, 353–367, https://doi.org/10.5194/bg-4-353-2007, 2007. a
Litchman, E., Klausmeier, C. A., and Yoshiyama, K.: Contrasting size evolution
in marine and freshwater diatoms, P. Natl. Acad.
Sci. USA, 106, 2665–2670, 2009. a
Marañón, E., Cermeño, P., López-Sandoval, D. C.,
Rodriguez-Ramos, T., Sobrino, C., Huete-Ortega, M., Blanco, J., and
Rodriguez, J.: Unimodal size scaling of phytoplankton growth and the size
dependence of nutrient uptake and use, Ecol. Lett., 16, 371–379,
https://doi.org/10.1111/ele.12052, 2013. a
Menden-Deuer, S. and Lessard, E.: Carbon to volume relationships for
dinoflagellates, diatoms, and other protist plankton, Limnol. Oceanogr., 45, 569–579, 2000. a
Moreno, A. R. and Martiny, A. C.: Ecological Stoichiometry of Ocean Plankton,
Annu. Rev. Mar. Sci., 10, 43–69,
https://doi.org/10.1146/annurev-marine-121916-063126, 2018. a
Pahlow, M., Dietze, H., and Oschlies, A.: Optimality-based model of
phytoplankton growth and diazotrophy, Mar. Ecol. Prog. Ser., 489,
1–16, https://doi.org/10.3354/meps10449, 2013. a, b
Pahlow, M., Chien, C.-T., Arteaga, L. A., and Oschlies, A.: Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 1: Implementation and model behaviour, Geosci. Model Dev., 13, 4663–4690, https://doi.org/10.5194/gmd-13-4663-2020, 2020. a
Redfield, A.: On the proportions of organic derivatives in sea water and their
relation to the composition of plankton, in: James Johnstone Memorial
Volume, edited by: Daniel, R., 177–192, University Press of Liverpool,
1934. a
Redfield, A.: The biological control of chemical factors in the environment,
Am. Sci., 46, 205–221, 1958. a
Smith, S. L., Merico, A., Hohn, S., and Brandt, G.: Sizing-up nutrient uptake
kinetics: combining a physiological trade-off with size-scaling of
phytoplankton traits, Mar. Ecol. Prog. Ser., 511, 33–39,
https://doi.org/10.3354/meps10903, 2014. a
Smith, S. L., Pahlow, M., Merico, A., Acevedo-Trejos, E., Sasai, Y., Yoshikawa,
C., Sasaoka, K., Fujiki, T., Matsumoto, K., and Honda, M. C.: Flexible
phytoplankton functional type (FlexPFT) model: size-scaling of traits and
optimal growth, J. Plankton Res., 38, 977–992,
https://doi.org/10.1093/plankt/fbv038, 2016. a, b, c, d, e, f, g, h
Taherzadeh, N., Kerimoglu, O., and Wirtz, K. W.: Can we predict phytoplankton
community size structure using size scalings of eco-physiological traits?,
Ecol. Model., 360, 279–289, https://doi.org/10.1016/j.ecolmodel.2017.07.008,
2017. a
Ward, B. A.: Assessing an efficient “Instant Acclimation” approximation of
dynamic phytoplankton stoichiometry, J. Plankton Res., 39, 803–814,
https://doi.org/10.1093/plankt/fbx040, 2017. a, b, c
Wirtz, K. W. and Kerimoglu, O.: Autotrophic Stoichiometry Emerging from
Optimality and Variable Co-limitation, Frontiers in Ecology and Evolution,
4, 131, https://doi.org/10.3389/fevo.2016.00131, 2016. a
Short summary
In classical models that track the changes in the elemental composition of phytoplankton, additional state variables are required for each element resolved. In this study, we show how the behavior of such an explicit model can be approximated using an
instantaneous acclimationapproach, in which the elemental composition of the phytoplankton is assumed to adjust to an optimal value instantaneously. Through rigorous tests, we evaluate the consistency of this scheme.
In classical models that track the changes in the elemental composition of phytoplankton,...