Articles | Volume 16, issue 10
https://doi.org/10.5194/gmd-16-2777-2023
https://doi.org/10.5194/gmd-16-2777-2023
Development and technical paper
 | 
24 May 2023
Development and technical paper |  | 24 May 2023

A generalized spatial autoregressive neural network method for three-dimensional spatial interpolation

Junda Zhan, Sensen Wu, Jin Qi, Jindi Zeng, Mengjiao Qin, Yuanyuan Wang, and Zhenhong Du

Related authors

GNNWR: an open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev., 17, 8455–8468, https://doi.org/10.5194/gmd-17-8455-2024,https://doi.org/10.5194/gmd-17-8455-2024, 2024
Short summary
A dynamic informed deep learning method for future estimation of laboratory stick-slip
Enjiang Yue, Mengjiao Qin, Linshu Hu, Sensen Wu, and Zhenhong Du
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-46,https://doi.org/10.5194/gmd-2024-46, 2024
Preprint under review for GMD
Short summary

Related subject area

Earth and space science informatics
Moving beyond post hoc explainable artificial intelligence: a perspective paper on lessons learned from dynamical climate modeling
Ryan J. O'Loughlin, Dan Li, Richard Neale, and Travis A. O'Brien
Geosci. Model Dev., 18, 787–802, https://doi.org/10.5194/gmd-18-787-2025,https://doi.org/10.5194/gmd-18-787-2025, 2025
Short summary
Remote-sensing-based forest canopy height mapping: some models are useful, but might they provide us with even more insights when combined?
Nikola Besic, Nicolas Picard, Cédric Vega, Jean-Daniel Bontemps, Lionel Hertzog, Jean-Pierre Renaud, Fajwel Fogel, Martin Schwartz, Agnès Pellissier-Tanon, Gabriel Destouet, Frédéric Mortier, Milena Planells-Rodriguez, and Philippe Ciais
Geosci. Model Dev., 18, 337–359, https://doi.org/10.5194/gmd-18-337-2025,https://doi.org/10.5194/gmd-18-337-2025, 2025
Short summary
Checking the consistency of 3D geological models
Marion N. Parquer, Eric A. de Kemp, Boyan Brodaric, and Michael J. Hillier
Geosci. Model Dev., 18, 71–100, https://doi.org/10.5194/gmd-18-71-2025,https://doi.org/10.5194/gmd-18-71-2025, 2025
Short summary
The effect of lossy compression of numerical weather prediction data on data analysis: a case study using enstools-compression 2023.11
Oriol Tintó Prims, Robert Redl, Marc Rautenhaus, Tobias Selz, Takumi Matsunobu, Kameswar Rao Modali, and George Craig
Geosci. Model Dev., 17, 8909–8925, https://doi.org/10.5194/gmd-17-8909-2024,https://doi.org/10.5194/gmd-17-8909-2024, 2024
Short summary
GNNWR: an open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev., 17, 8455–8468, https://doi.org/10.5194/gmd-17-8455-2024,https://doi.org/10.5194/gmd-17-8455-2024, 2024
Short summary

Cited articles

Abd El-Hady, A. E.-N. M., Abdelaty, E. F., and Salama, A. E.: GIS-mapping of soil available plant nutrients (potentiality, gradient, anisotropy), OJSS, 8, 315–329, https://doi.org/10.4236/ojss.2018.812023, 2018. 
Adhikary, S. K., Muttil, N., and Yilmaz, A. G.: Cokriging for enhanced spatial interpolation of rainfall in two Australian catchments, Hydrol. Process., 31, 2143–2161, https://doi.org/10.1002/hyp.11163, 2017. 
Allard, D., Senoussi, R., and Porcu, E.: Anisotropy models for spatial data, Math. Geosci., 48, 305–328, https://doi.org/10.1007/s11004-015-9594-x, 2016. 
Arowolo, A. O., Bhowmik, A. K., Qi, W., and Deng, X.: Comparison of spatial interpolation techniques to generate high-resolution climate surfaces for Nigeria, Int. J. Climatol, 37, 179–192, https://doi.org/10.1002/joc.4990, 2017. 
Aumond, P., Can, A., Mallet, V., De Coensel, B., Ribeiro, C., Botteldooren, D., and Lavandier, C.: Kriging-based spatial interpolation from measurements for sound level mapping in urban areas, J. Acoust. Soc. Am., 143, 2847–2857, https://doi.org/10.1121/1.5034799, 2018. 
Download
Short summary
We develop a generalized spatial autoregressive neural network model used for three-dimensional spatial interpolation. Taking the different changing trend of geographic elements along various directions into consideration, the model defines spatial distance in a generalized way and integrates it into the process of spatial interpolation with the theories of spatial autoregression and neural network. Compared with traditional methods, the model achieves better performance and is more adaptable.
Share