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Abstract. Spatial interpolation, a fundamental spatial anal-
ysis method, predicts unsampled spatial data from the val-
ues of sampled points. Generally, the core of spatial inter-
polation is fitting spatial weights via spatial correlation. Tra-
ditional methods express spatial distances in a conventional
Euclidean way and conduct relatively simple spatial weight
calculation processes, limiting their ability to fit complex
spatial nonlinear characteristics in multidimensional space.
To tackle these problems, we developed a generalized spa-
tial distance neural network (GSDNN) unit to generally
and adaptively express spatial distances in complex feature
space. By combining the spatial autoregressive neural net-
work (SARNN) with the GSDNN unit, we constructed a gen-
eralized spatial autoregressive neural network (GSARNN)
to perform spatial interpolation in three-dimensional space.
The GSARNN model was examined and compared with tra-
ditional methods using two three-dimensional cases: a sim-
ulated case and a real Argo case. The experiment results
demonstrated that exploiting the feature extraction ability of
neural networks, the GSARNN achieved superior interpola-
tion performance and was more adaptable than inverse dis-
tance weighted, ordinary Kriging, and SARNN methods.

1 Introduction

Due to the difficulties of establishing abundant observation
stations and the existence of unobservable positions in space,
research areas in geospatial subjects typically contain many

unsampled data points. Estimating unknown data based on
sampled point values and expanding discrete and sparse data
into continuous field are the main goals of spatial interpola-
tion models. Spatial interpolation is widely applied in many
research fields, including air quality (Tang et al., 2017), cli-
mate and hydrology (Arowolo et al., 2017; Adhikary et al.,
2017; Cheng et al., 2017), marine environment (Gao et al.,
2020; Zhang et al., 2021), ecosystem (Pan et al., 2021), city
(Hu et al., 2013; Szczepańska et al., 2020; Ma et al., 2019;
Aumond et al., 2018), and agriculture (da Silva Júnior et
al., 2019). Therefore, accurately fitting the spatial correla-
tion between elements and improving model spatial interpo-
lation abilities are important for exploring spatial distribution
patterns and change trends and solving myriad problems en-
countered in nature and society.

According to Tobler’s first law of geography, “everything
is related to everything else, but near things are more related
to each other” (Tobler, 1970). It proposes the existence of
spatial correlation, which is a general feature of geospatial
data as well as a core theory supporting spatial interpolation
modeling. Following spatial correlation theory, most spatial
interpolation methods define the value of an unknown point
as the weighted sum of the values of surrounding sample
points. In the spatial weight calculation process, spatial dis-
tance is the most fundamental and direct data used to mea-
sure spatial correlation. Therefore, (i) the expression of spa-
tial distance and (ii) the solution method and precision of
spatial correlation weights are the key to spatial interpola-
tion modeling and determine the reliability of interpolation
prediction. In fact, interpolation can be regarded as the prob-
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lem of mining complicated nonlinear relationships between
spatial distances and spatial weights.

Since the 1950s, scholars have proposed various classical
spatial interpolation methods through extensive practical ex-
plorations, including inverse distance weighted (IDW), Krig-
ing, natural neighbor, spline, trend surface, and radial basis
function, and they can use sampled points to model and re-
store spatial feature fields to a certain extent. Many studies
have been conducted to improve and reform the traditional
methods from the following perspectives: design search strat-
egy of adjacent sampled points (Babak and Deutsch, 2009;
Sun et al., 2020), change the measuring method of spatial dis-
tance (Greenberg et al., 2011; Aumond et al., 2018), change
the calculation method of spatial weights based on data dis-
tribution characteristics (Lu and Wong, 2008; Li et al., 2020),
incorporate other variables and information (Kumar et al.,
2012; Adhikary et al., 2017), and improve the efficiency of
interpolation calculation (Liang et al., 2018; Wang, 2015).
However, most methods are still based on simple mathe-
matical formulas and parameter calculations and have diffi-
culty describing nonlinear and complex relationships in spa-
tial processes. These limitations prevent these interpolation
approaches from accurately reflecting the relevant character-
istics of geographical elements, restricting their spatial inter-
polation abilities.

In recent years, machine learning theories have developed
rapidly, which has provided new solutions for accurate spa-
tial interpolation. A number of strategies and models of ma-
chine learning were introduced to solve interpolation prob-
lem, such as random forest (da Silva Júnior et al., 2019;
Sekulić et al., 2020), support vector machine (Li et al., 2018;
X. Zhang et al., 2017), and neural network (Rigol et al., 2001;
Kanevski et al., 2008; Tao et al., 2019; Zeng et al., 2020).
These models enable spatial interpolation methods to fit the
nonlinear features. In particular, Zeng et al. (2020) proposed
the spatial autoregressive neural network (SARNN) model
for two-dimensional spatial interpolation by integrating the
neural network with spatial autoregression theory, achieving
superior performance compared with traditional spatial in-
terpolation methods. However, these methods still lack con-
sideration for the sufficient expression of spatial distance
and their applicability in three-dimensional spaces with more
complex feature fields.

With regard to spatial distance expression, traditional
methods and the SARNN model employ Euclidean distances
calculated using a fixed formula, treating all directions in
space equivalently. However, spatial anisotropy, the univer-
sal feature of spatial element distribution and change, should
be considered for accurate spatial interpolation, especially
in three-dimensional space (Wu et al., 2020). For example,
mineral resource distribution exhibits directional differences
affected by geological structures (Samal et al., 2011), soil
nutrient content gradients have specific orientation patterns
(Abd El-Hady et al., 2018), and climate elements such as sur-
face temperature and precipitation can be strongly direction-

dependent on spatial scales (Chen et al., 2016; Y. Zhang et
al., 2017; Wang et al., 2018). In three-dimensional spatial in-
terpolation, spatial isotropic distance expression implies that
any point with the same distance from a target point will ex-
ert the same effect on it, even if they are from different di-
rections. It ignores the effects of differences and the complex
coupling of various spatial axes on spatial weights, resulting
in insufficient spatial correlation mining.

To address these limitations, we propose a generalized spa-
tial distance neural network (GSDNN) unit to express dis-
tances in multidimensional space with nonlinear characteris-
tics. In the GSDNN, generalized spatial distances between
elements are fitted using multidirectional distance compo-
nents. Furthermore, by combining the GSDNN unit with the
SARNN, we integrated generalized distances into the spa-
tial interpolation method and developed a generalized spatial
autoregressive neural network (GSARNN) model to realize
complex nonlinear spatial interpolation modeling in three-
dimensional space, improving spatial interpolation predic-
tion and fitting abilities.

The remaining sections of this paper are organized as
follows. Section 2 briefly introduces two traditional inter-
polation methods; defines the SARNN model and GSDNN
unit; and describes the overall GSARNN model framework,
training strategy, and evaluation method. In Sect. 3, we per-
form interpolation experiments on two cases and compare
the IDW, Kriging, SARNN, and GSARNN model results.
The discussion and conclusion are given in Sects. 4 and 5,
respectively.

2 Generalized spatial autoregressive neural network

2.1 Traditional spatial interpolation

Interpolation methods can be divided into deterministic inter-
polation and geostatistical interpolation approaches, accord-
ing to their mathematical principles. Deterministic interpola-
tion, such as IDW, spline, and trend surface methods, builds
the fitting surface according to the smoothness of the whole
spatial surface or the similarities of spatial information ele-
ments to predict data in unknown regions. Geostatistical in-
terpolation, such as the Kriging method, builds the sample
point spatial structure by analyzing the distribution laws and
relevant features of the sample points in space and predicting
the change trend of the whole spatial area.

2.1.1 IDW interpolation

IDW interpolation (Shepard, 1968) is a deterministic inter-
polation method (Watson and Philip, 1985). IDW regards
the value at an unsampled location as the distance-weighted
average of the sampled point values (Longley et al., 2011).
For an unsampled point, the closer the sampled point is, the
greater an influence it exerts; the influence is inversely pro-
portional to the distance. IDW can be expressed as
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ẑi =

n∑
j=1

1
(dij )

p

n∑
j=1

1
(dij )

p
zj , i = 1,2, · · ·,m, (1)

where ẑi is the predicted value at the unsampled point i, zj
is the observed value of point j , dij is the Euclidean dis-
tance between point i and point j , and p is the power param-
eter that defines the weight decline rate as the distance in-
creases. By defining a larger p, the influence of closer points
is strengthened, affecting the smoothness of the interpolation
results.

Due to the simplicity, convenience, and intuitiveness of the
IDW method, it has been widely used in many fields, includ-
ing geography, agriculture, oceanography, and environmental
studies; however, extreme values among the sampled points
can have a substantial impact on IDW spatial prediction re-
sults.

2.1.2 Kriging interpolation

Kriging methods, such as ordinary Kriging (OK), universal
Kriging, and co-Kriging, are spatial interpolation methods
designed to solve the problems of mineral deposit predication
and error estimation (Krige, 1952; Matheron, 1963). These
methods generate unbiased optimal variable estimations in a
finite area using the variation function to perform moving av-
erage interpolation according to the differences of the sample
points’ positions and spatial correlation degree. Among the
Kriging methods, OK is the most commonly used.

Kriging can be expressed as

z∗ (x0)=

n∑
i=1

λiz(xi), (2)

where z∗ (x0) is the predicted value, and λi and z(xi) are, re-
spectively, the weight coefficient and observed value of point
i.

Kriging methods involve the calculation of the weight co-
efficient λi , for which the key is to satisfy the unbiasedness
and optimality. Unbiasedness means that z∗ (x0) is the unbi-
ased estimate of z(x), that is

E[z∗ (x0)− z(x)] = 0, (3)

which can derive the following constraints on λi :

n∑
i=1

λi = 1. (4)

Optimality means that z∗ (x0) is the optimal estimate of z(xi),
and the variance between the predicted value of the unsam-
pled points and the estimated value of the observed points is
the smallest, that is

Var(z∗ (x0)− z(x)). (5)

Define the cost function and try to figure out a set of
weights λi that satisfy unbiasedness and minimize the cost
function. Finally, the following equation set can be derived:

n∑
i=1
rijλi = rj0,j = 1,2, . . .,n

n∑
i=1
λi = 1

, (6)

where rij is the semi-variogram between point i and point j ,
which can be expressed as

rij = σ
2
−Cov

(
zi,zj

)
=

1
2
E[(zi − zj )

2
], (7)

where σ 2 is the variance of z(x), which is a constant in OK.
rij can be simply determined by zi and zj . Kriging assumes
that there is a functional relationship between rij and dij (the
distance between point i and point j ). By taking any two
sampled points from the dataset, a total of n(n−1)

2 (r,d) pairs
can be generated. We can use a linear, Gaussian, spherical, or
exponential model to fit the relationship between rij and dij .
Using the fitted function, we can calculate rj0 through dj0.
Thereby, the optimal weight set λi for Eq. (2) can be solved
through Eq. (6).

2.2 SARNN model

Summarizing the principles of most traditional interpolation
methods, it can be found that they are modeled following
the core concept of fitting the relationship between spatial
distance and spatial weight, a relationship that is often com-
plicated, containing nonlinear characteristics. Thus, achiev-
ing accurate fitting using only simple mathematical functions
is difficult. Establishing a nonlinear expression between the
spatial distance dij and the weight coefficient wij is neces-
sary to interpolate unsampled points from observed points.
The spatial weight of sampled points to point i is defined as

wi = (wi1,wi2, · · ·win)= f (d
s
i1,d

s
i2, · · ·,d

s
in), (8)

where wi represents the spatial weight vector of point i, wij
is the spatial weight of point j to point i, and ds

ij is the spatial
distance between point i and point j .

To characterize complex nonlinear relationships in space,
Zeng et al. (2020) designed the SARNN model, exploiting
the powerful modeling and nonlinear fitting capabilities of
neural networks to fit the spatial weight wi .

It should be noted that there is a weight wii in the vector
wi which represents the spatial weight of point i to itself. To
avoid overfitting, this weight should be set to 0:

wij =

{
f
(
ds
i1,d

s
i2, · · ·,d

s
in

)
j

i 6= j

0, i = j
. (9)

The spatial weights of all sampled point pairs can be ex-
pressed by an n·nweight matrix W. According to Eq. (9), the
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weights on the diagonal of W should be reset to 0. Therefore,
W can be defined as

W= ρ ◦K, (10)

where ρ is the spatial weight component, and K is the stan-
dard weight component, which ensures that the neural net-
work weight is independent of the point itself in the training
process. kij in K can be expressed as

kij =

{
1, i 6= j

0, i = j
. (11)

Next, the problem of solving the spatial weight can be
transformed into the problem of constructing and training the
neural network. The distance from the point to be interpo-
lated to the observed point is the network input, the hidden
layers are defined, and the spatial weight vector ρi is the out-
put, that is

ρi = (ρi1,ρi2, · · ·,ρin)= SARNN
([
ds
i1,d

s
i2, · · ·,d

s
in

]T)
, (12)

where
[
ds
i1,d

s
i2, · · ·,d

s
in

]T represents the vector of distances
from point i to other sample points, and ρij represents the
spatial weight of point j to point i. ρij is correspondingly
multiplied by kij to obtain the weight coefficient wij . The
matrix form is as follows:

W= ρ ◦K=
ρ11 ρ12 · · · ρ1n
ρ21 ρ22 · · · ρ2n
...

...
. . .

...

ρn1 ρn2 · · · ρnn

 ◦


0 1 · · · 1
1 0 · · · 1
...

...
. . .

...

1 1 · · · 0



=


0 ρ12 · · · ρ1n
ρ21 0 · · · ρ2n
...

...
. . .

...

ρn1 ρn2 · · · 0

 . (13)

The product of the final spatial weight matrix W and the
sampled value vector y is the unsampled point estimation
results. ŷ can be expressed as

ŷ =


0 ρ12 · · · ρ1n
ρ21 0 · · · ρ2n
...

...
. . .

...

ρn1 ρn2 · · · 0



y1
y2
...

yn

=W · y. (14)

2.3 GSARNN model

2.3.1 Model definition

Spatial distance is the most important indicator of the rela-
tionship between two objects as well as the basis of spatial
weight fitting. The essence of spatial interpolation is estab-
lishing a distance-based mapping relationship between the
sampled region and the unsampled region.

For any two vectors α, β in the n-dimensional linear space
V , there are a pair of coordinates α = (x1,x2, · · ·xn)

T and
β = (y1,y2, · · ·yn)

T under the orthonormal basis. There are
many ways to define spatial distances, such as the Manhattan
distance, Euclidean distance, and Minkowski distance, which
can be expressed as

dManhattan = |x1− y1| + |x2− y2| + · · · + |xn− yn| , (15)

dEuclidean =

√
(x1− y1)2+ (x2− y2)2+ ·· ·+ (xn− yn)2, (16)

dMinkowski =
k

√
(x1− y1)k + (x2− y2)k + ·· ·+ (xn− yn)k. (17)

The traditional two-dimensional spatial interpolation
methods always use Euclidean spatial distance as the basis
for expressing spatial correlation, treating different spatial
relative positions equivalently. However, in geographic space
– especially in three-dimensional and higher-dimensional
spaces – the changing trend and rate of elements often dif-
fer along various axes, and there is local variability in the
data. Using Euclidean distance for three-dimensional spatial
interpolation is an isotropic solution (Allard et al., 2016) that
reduces the dimensionality of the raw data, discards a large
amount of relative position information between points, and
cannot adequately reflect the complicated nonlinear charac-
teristics of data change, restricting the accuracy of interpola-
tion in multidimensional linear space.

To solve these problems, we propose a generalized expres-
sion of spatial distance. The generalized spatial distance dG

ij

of α and β in n-dimensional linear space is defined as the
function of the coordinate difference under the orthonormal
basis, which can be expressed as

dG
ij = F (x1− y1,x2− y2, · · ·,xn− yn)

= F(11,12, · · ·,1n). (18)

The distance components of the point to be interpolated
(x,y,z) and the known sample point (xi,yi,zi) under the
three-dimensional orthonormal basis are

(dx, dy,dz)= (x− xi,y− yi,z− zi). (19)

To fully and adaptively capture the nonlinear effect of the
elements’ changing trend in three-dimensional space, we de-
signed a GSDNN unit that generates generalized spatial dis-
tances considering anisotropy based on the distance compo-
nents of each axis. It can be simply expressed as

dG
ij = F

(
1x,1y,1z

)
= GSDNN(dx,dy,dz) . (20)

Through network training, the generalized spatial distance
automatically output by this network unit will reflect the
complex characteristics of the specific spatial elements. The
GSDNN structure is shown in the dashed box in Fig. 1.
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Figure 1. The GSARNN model structure.

By replacing the input of the SARNN model with the GS-
DNN unit, Eq. (12) can be refined as

ρi = (ρi1,ρi2, · · ·,ρin)= GSARNN
([
dG
i1,d

G
i2, · · ·,d

G
in

]T)
= SARNN

([
GSDNN(dx1,dy1,dz1), · · ·,

GSDNN(dxn,dyn,dzn)
]T )

. (21)

The refined model is the GSARNN model, and the overall
model structure is shown in Fig. 1.

In the modeling process, the distance components from the
unknown point to the sampled points in three-dimensional
space are input into the GSDNN, and all GSDNN units share
network weights and biases. Through the training process,
the generalized spatial distance between the two points un-
der the specific spatial context of the interpolation element is
output and simultaneously becomes the input of GSARNN.
After the hidden layer calculations, the output layer finally
outputs the spatial weight component, which is multiplied by
the standard weight component and the observed values of
the sampled points. The sum of the output tensor is the inter-
polated value of the unsampled point. Note that since there
is no recognized true value of generalized spatial distance
for training process, the GSDNN unit can only be embed-
ded in the neural-network-based method and participates in
its overall training and calculation process. In other words,
the generalized spatial distance is determined by the spatial
characteristics of the elements to be interpolated, owning a
specific connotation based on specific context of spatial ele-
ments.

2.3.2 Model design and estimation

To improve the transferability and adaptability of the
GSARNN and solve the problems of overfitting and gra-
dient vanishing in neural network training, we design a
set of model training strategy based on the cross-validation
method, including the overall training framework, parame-
ter initialization method, activation function definition, and
training optimization algorithms. A complete set of training
processes is established to improve training quality and in-
terpolation accuracy, as shown in Fig. 2.

We employ several neural network structure design and
model optimization techniques to improve training effi-
ciency. For each hidden layer, we first use the robust pa-
rameter initialization method proposed by He et al. (2015).
Second, the batch normalization method of Ioffe and
Szegedy (2015) is adopted to accelerate the model training
convergence speed and improve the training process stability.
Third, the PReLU (parametric rectified linear unit) proposed
by He et al. (2015) is used as the activation function to im-
prove model performance. Finally, the dropout strategy de-
veloped by Srivastava et al. (2014) is integrated to strengthen
the generalizability of the model.

2.3.3 Model training and validation

We use the 10-fold cross-validation method for model train-
ing. The dataset is randomly divided into 10 equal portions,
among which 9 portions serve as the training set, and the
remaining portion is used as the validation set in turn. The
training set is used to fit the data characteristics, and the vali-
dation set is used to verify the generalization performance of
the model. The cross-validation method averages the training
results of each group, reduces the sensitivity to data division,

https://doi.org/10.5194/gmd-16-2777-2023 Geosci. Model Dev., 16, 2777–2794, 2023



2782 J. Zhan et al.: A GSARNN method for 3D spatial interpolation

Figure 2. The network training framework of the GSARNN model.

avoids overfitting to a certain extent, and extracts more effec-
tive features from the data.

Learning rate selection is critical in network training. An
excessive learning rate will lead to an oscillation of the loss
and unavailability of the optimal solution. Conversely, an
insufficient learning rate will result in slow convergence or
even gradient vanishing. In view of the characteristics of the
GSARNN model, we adopt a custom variable learning rate
in the training process. The formula is as follows:

α =
αstart+ k1epoch,
αmax,

k
epoch
2 αmax,

epoch< epochup

epoch ∈
[
epochup,epochdown

]
epoch> epochdown

, (22)

where αstart is the initial learning rate, which increases grad-
ually at the rate of k1 until αmax. A relatively small initial
learning rate can prevent an excessive fluctuation and con-
vergence obstacle, and the following increment of the leaning
rate can avoid the convergence rate at the early stage of the
training process being too low. The maximum learning rate is
maintained for n epochs. At this stage, the model can stably
learn the spatial characteristics of the elements. The learn-
ing rate then gradually decreases exponentially at the rate of
k2, ensuring that the model can sufficiently converge near the
optimal position. The change of the learning rate throughout
the training process is shown in Fig. 3.

The GSARNN model takes the mean square error (MSE)
as the loss function in the training process:

loss=MSE=
(ŷ− y)2

n
. (23)

Figure 3. The variable learning rate change line.

2.4 Evaluation method

To quantitatively measure the performance of the IDW, OK,
SARNN model, and GSARNN model methods, we use
the determination coefficient (R2), root mean square error
(RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE) as evaluation indicators. The for-
mulas are as follows:

R2
= 1−

n∑
i=1

(
yi − ŷi

)2
n∑
i=1
(yi − ȳi)

2
, (24)
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RMSE=

√√√√√ n∑
i=1

(
yi − ŷi

)2
n

, (25)

MAE=

n∑
i=1

∣∣yi − ŷi∣∣
n

, (26)

MAPE=
1
n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣× 100%. (27)

R2 is a relative indicator that compares the model with the
baseline using the average value as the interpolation result.
The RMSE, MAE, and MAPE are absolute indicators that
reflect the interpolation error; smaller values indicate higher
model accuracy.

3 Experiments and results

We use two three-dimensional datasets with distinct char-
acteristics to test the interpolation performance of the
GSARNN model in different scenarios, comparing it with the
traditional IDW and OK methods and the SARNN model. In
case one, we conduct experiments using a simulated dataset,
which can be generated arbitrarily and controllably. By sim-
ulating a dataset with complex features and conducting a
quantitative cross-validation interpolation experiment on it,
we can fully test the feature extraction and fitting ability of
the GSARNN model. In case two, we experiment on a mea-
sured Argo temperature dataset in the western Pacific area,
which reflects the authentic natural characteristics. In this
case, in addition to the cross-validation interpolation, we se-
lect several spatial sections for interpolation prediction. By
qualitatively analyzing the section interpolation results, the
GSARNN model’s ability to restore spatial element field pat-
terns in practical interpolation applications is examined.

3.1 Case one: simulated dataset

To examine the ability of the GSARNN model to handle data
with complex characteristics in three-dimensional space, we
combine trends of gradual change and sudden variation to
simulate a dataset in the three-dimensional spatial field, re-
peating the simulation and interpolation for 100 times.

3.1.1 Dataset

Defining the three-dimensional area of a cube with the unit
length, the side length of the cube is 6, and the distance be-
tween adjacent data points is defined as 0.5. Therefore, the
three-dimensional spatial research area contains 12 ·12 ·12=
1728 data points, and the spatial coordinates (xi,yi,zi) of
each point are generated according to the following formu-
las:

xi =
1
2

mod(i/12) , (28)

yi =
1
2

int(mod(i/(12 · 12))/12), (29)

zi =
1
2

int(i/(12 · 12)) . (30)

The simulated value V is defined as

V = V1+
V2

3
+ ε. (31)

V1 is a three-dimensional spatial data item with a gradual
change trend, calculated as follows:

V1 = 1+
1
2
(xi + yi + zi), (32)

where (xi,yi,zi) are the coordinates of the sample point i in
the three-dimensional spatial field. V1 has a gradual gradient
along the z= y = x direction, as shown in Fig. 4a.
V2 is a three-dimensional spatial data item with local spa-

tial variability, calculated as follows:

V2 =
1− 1

36

(
9− (3− xi)2

)(
9− (3− yi)2

)(
9− (3− zi)2

)
,

dist
[
(xi ,yi ,zi) , (3,3,3)

]
∈ [1.5,3]

1+ 1
36

(
9− (3− xi)2

)(
9− (3− yi)2

)(
9− (3− zi)2

)
,

dist
[
(xi ,yi ,zi) , (3,3,3)

]
6∈ [1.5,3]

. (33)

V2 has a spatial mutation at the two spherical surfaces 1.5
and 3 units away from the center of the three-dimensional
space. The values of the entire dataset appear to diffuse from
the center of the sphere to the surroundings, as shown in
Fig. 4b. V2 possesses high local spatial variability, which im-
poses certain challenges to the interpolation work.

The term ε is a random item that brings some uncertainty
to the simulated dataset and can be expressed as

ε ∼
1
2
N(0,1). (34)

The final three-dimensional spatial simulated dataset V is
generated by adding V1, V2, and ε, as shown in Fig. 4c. The
figure shows that the simulated data have both the gradient
feature from V1 and the mutation feature from V2.

This case compares the interpolation abilities of the
GSARNN model and the other three models in three-
dimensional space using the simulated dataset above.

3.1.2 Experiment implementation

According to the data division method, the simulated dataset
is randomly divided into 10 equal parts for the cross-
validation experiments. Each experiment has 1555 data
points in the training set and 173 data points in the valida-
tion set. The validation set interpolation results of each fold
are merged to obtain the complete interpolated dataset.

Considering that the four-layered feedforward network is a
simple but efficient network structure (Tamura and Tateishi,
1997), we design the GSARNN architecture with one input
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Figure 4. An example of a simulated dataset. (a) Component V1 with a gradual change trend; (b) component V2 with a mutation; (c) the
simulated dataset combining V1, V2, and ε.

layer, two hidden layers, and one output layer. The number
of neurons in the input layer and output layer is equal to the
number of sample points in the training set. There is no stan-
dard method to determine the optimal number of neurons in
two hidden layers. Instead, we determine the optimal num-
ber using a simple combination strategy proposed by Du et
al. (2020). Table 1 lists the optimal network structure set-
tings and hyper-parameters of the GSARNN model in this
case. Besides, the power parameter of the IDW method is 4,
and in the Kriging method we adopt the Gaussian model to fit
the functional relationship between the semi-variogram and
the spatial distance, which turns out to be the optimal vari-
ation function model among linear, Gaussian, spherical, and
exponential models. The generalized spatial distance output
by the GSDNN unit serves as the input for the GSARNN
model, while the three-dimensional spatial Euclidean dis-
tance serves as the input for the three comparison methods.
The GSARNN and SARNN models are implemented using
TensorFlow-GPU 1.13.0 and Python 3.5.4.

3.1.3 Results

Under the same conditions, interpolation experiments are
conducted on the three-dimensional simulated dataset 100
times using the IDW and OK methods and the SARNN
and GSARNN models. The mean statistical indicator results
of the cross-validation experiments are shown in Table 2.
Compared with the traditional IDW and OK methods, the
two neural network methods show significant improvements
on all statistical indicators. The R2 value of the SARNN
model (0.8804) is 19.62 % higher than that of the OK method
(0.7360). After integrating the GSDNN unit, theR2 increases
by 5.95 % to 0.9328 for the GSARNN, for an overall in-
crease of 26.74 %. In addition, the RMSE, MAE, and MAPE
values of the OK method are 1.4466, 1.0040, and 92.69 %,
respectively, decreasing to 0.7298, 0.5280, and 40.99 %, re-
spectively, for the GSARNN. Among the four models, the
GSARNN model achieves the best performance in all indi-
cators.

Figure 5 shows the three-dimensional diagrams of the sim-
ulated dataset example in Fig. 4 and its corresponding cross-

validation interpolation results generated by the four meth-
ods. Taking the simulated dataset as a reference, all four
methods express the overall change trend, but the IDW and
OK methods perform poorly in the mutation area, which
presents as the weakening of the mutation trend and the exis-
tence of an obvious interpolation transition zone. The inter-
polation results of the SARNN and GSARNN models cap-
ture and display the mutation characteristics well, and the
overall pattern is basically consistent with the simulated data.

Figure 6 shows the detailed interpolation results of Fig. 5
in the form of section images, which are cut along the X–Y
plane. In the IDW and OK method results, the low values of
the mutation area are obviously overestimated, and the high
values are underestimated. Moreover, under the influence of
the central high value, unexpected imprints appear in the 4th
and 10th layers, which reflects the limitations of traditional
interpolation methods in handling mutation. The SARNN
and GSARNN models largely restore the data characteris-
tics of the simulated dataset, and the mutation is properly in-
terpolated. Furthermore, the GSARNN model achieves more
accurate results at the mutation interface.

The real value and the cross-validation interpolation result
values of the four models in Fig. 5 are drawn in line charts in
Fig. 7. To evaluate the model performance in different value
ranges, the line charts are drawn in ascending order of the
real value, which is shown as a rising blue curve. The red
line is connected by the model interpolation result points cor-
responding to the points in the simulated dataset, shown as a
fluctuating broken line. In the median value area, the interpo-
lation results of the four methods fluctuate relatively slightly
near the real value. The IDW and OK method results show
obvious low-value overestimation and high-value underesti-
mation in a large range of low and high values, correspond-
ing to both sides of the mutation interface. Limited by the
interpolation mechanism and simplicity of traditional meth-
ods, it is difficult for them to interpolate elements containing
mutation characteristics. However, the fluctuation amplitude
and deviation degree of the OK method result are slightly
smaller than those of the IDW method. The interpolation per-
formance of the SARNN and GSARNN models in each value
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Table 1. Network structure settings and hyper-parameters of the GSARNN model in case one.

GSDNN Input Hidden 1 Hidden 2 Output

3 5 3 1

GSARNN Input Hidden 1 Hidden 2 Output

1555 512 512 1555

Hyper-parameters αstart αmax Max epoch Batch size Dropout

0.01 0.02 40 000 64 0.75

Figure 5. Three-dimensional diagrams of the simulated dataset example in Fig. 4 and its corresponding cross-validation interpolation results.

Table 2. The mean statistical evaluation results of 100 experi-
ments on the simulated dataset using the IDW, OK, SARNN, and
GSARNN methods.

Model R2 RMSE MAE MAPE

IDW 0.7048 1.5295 1.0213 90.59 %
OK 0.7360 1.4466 1.0040 92.69 %
SARNN 0.8804 0.9736 0.6291 48.33 %
GSARNN 0.9328 0.7298 0.5280 40.99 %

range is comparatively stable. Only a slight overestimation is
observed in the low-value area, but there are individual points
with large deviations in the high-value area. By contrast, the
interpolating capacity of the GSARNN for mutant elements
is significantly better than that of the SARNN.

In addition, compared with multifarious models in the
fields of deep learning, the structure of GSARNN is rela-
tively lightweight, so its training and calculation efficiency
can be quite high. Taking advantage of mighty parallel com-
puting capabilities of GPU units and distributed computing

structures to accelerate the training process, the GSARNN
model usually converges to the optimal state within 15–
20 min in our cases. Although the efficiency of the Kriging
method is better than the GSARNN model, under the same
condition, it still takes about 10 min to fit the functional rela-
tionship between the semi-variogram and the distance.

3.2 Case two: Argo dataset

3.2.1 Study area and dataset

The second case uses the measured Argo ocean dataset. The
study area is in the northern part of the western Pacific, which
is located near the Equator, and is one of the main sources of
atmospheric water vapor. The sea–atmosphere interaction in
this area is strong and exerts certain influences on natural
phenomena such as El Niño (Jian and Jin, 2008); therefore,
it is of practical significance to conduct research in this re-
gion. Water temperature is one of the most important oceano-
graphic elements. Because the western Pacific is the diver-
gent center of three major monsoon circulations and multi-
ple ocean currents converge here, the seawater temperature in
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Figure 6. Section images cut along the X–Y plane of Fig. 5.

this area has a substantial impact on the natural environment.
This case uses the sea temperature in the western Pacific as
the interpolation object.

Three-dimensional temperature data were obtained from
the Argo (Array for Real-time Geostrophic Oceanography)
project, which was initiated to study global oceanic climate
change. The Argo observation network has launched 3000
profile buoys that measure the ocean temperature and salin-
ity in the depth range of 2000 m (Riser et al., 2016). Argo
data have become the main source of marine climate infor-

mation and are widely used in marine and climate research
(Liu et al., 2017). However, the Argo buoys are sparsely dis-
tributed, and the practical applications of the discrete data
they collect are limited. Therefore, interpolating Argo data is
necessary for generating a continuous data field and enhanc-
ing the practicability of the data products.

The data used in this case were obtained from China’s
Argo Real-time Data Center (http://www.argo.org.cn/, last
access: 6 May 2022). The data collection time is early August
2018; the space range is 0–34◦ N, 115–160◦ E; and the depth
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Figure 7. Line charts of real and interpolated values of the four models in Fig. 5.

Figure 8. Distribution map of Argo buoy stations represented by
blue points, 144 stations in total (the base map is from ESRI maps).

range is 0 to 1000 m below the sea surface. The data include
measurements from 144 buoy stations and 1944 monitoring
items. The distribution of buoy stations on the sea surface is
relatively uniform, as shown in Fig. 8.

A three-dimensional visualization of the Argo dataset is
shown in Fig. 9. The temperature field data in the west-
ern Pacific region are distributed regularly, with obvious and
uniform variation trends and strong spatial correlation. Lit-
tle temperature variation is observed in the longitudinal di-

rection. In the latitudinal direction, the boundary between
the low-temperature region and the high-temperature region
sinks obviously, and the overall temperature increases with
increasing latitude from 0 to 35◦ N. In the vertical direction,
the temperature decreases gradually with increasing water
depth. The mean, minimum, maximum, and standard devi-
ation of the Argo temperature dataset are shown in Table 3.

This case compares the interpolation abilities of the
GSARNN model and the other three models in three-
dimensional space using real temperature data collected by
Argo buoys.

3.2.2 Experiment implementation

The model details are determined in a similar way to case
one. The optimum network structure settings and hyper-
parameters of the GSARNN model for case two are listed
in Table 4.

3.2.3 Results

Under the same conditions, interpolation experiments are
conducted on the three-dimensional measured Argo dataset
using the IDW, OK, SARNN model, and GSARNN model
methods. The statistical indicators for the cross-validation
experiments are shown in Table 5. In contrast to the sim-
ulated dataset of case one, the values of the Argo dataset
mainly change in a gradual manner, which is relatively sim-
ple. Therefore, all four methods achieve satisfying interpo-
lation experimental results on the whole. However, we no-
tice that certain differences of interpolation accuracy exist in
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Figure 9. Three-dimensional visualization of the Argo temperature dataset.

Table 3. Basic statistics of the Argo temperature dataset with 1944 monitoring points in total.

Statistics Mean Minimum Maximum Standard deviation

V (◦ C) 12.1958 3.6230 29.9890 7.6791

Table 4. Network structure settings and hyper-parameters of the GSARNN model in case two.

GSDNN Input Hidden 1 Hidden 2 Output

3 5 3 1

GSARNN Input Hidden 1 Hidden 2 Output

1749 512 256 1749

Hyper-parameters αstart αmax Max epoch Batch size Dropout

0.005 0.01 30 000 64 0.75

the local high-value region (V ≥ 20◦). From OK to SARNN
to GSARNN, local R2 increases from 0.7928 to 0.8784
to 0.8949, representing increases of 10.80 % and 12.88 %,
respectively. The RMSE, MAE, and MAPE values of the
SARNN are slightly lower than those of the traditional meth-
ods. After integrating the GSDNN unit, the three indica-
tors decrease significantly from 0.9282, 0.6056, and 5.80 %
for the SARNN to 0.7169, 0.4653, and 4.62 % using the
GSARNN. Among the four methods, the GSARNN model
achieves the best performance in all indicators.

Figure 10 shows three-dimensional diagrams of the cross-
validation interpolation results generated by the four meth-
ods and their corresponding interpolation errors. In interpo-
lation error diagrams, red represents overestimation and blue
represents underestimation. Taking the real dataset in Fig. 9
as a reference, the four models restore the data features in
most areas, which is consistent with the statistical indica-
tor results, with small differences in some details. The IDW
method evidently underestimates the temperature at shallow
depths, which may be because its interpolation mechanism
can produce large errors at the edge points of a given space.
In the OK results, the coexistence of underestimation and

overestimation around the sea surface is observed, indicating
that the OK method also has some limitations in edge-area
interpolation. The SARNN and GSARNN models slightly
overestimate the temperature of the bottom area. The error
of GSARNN is generally smaller than that of SARNN. Fur-
ther quantitative analysis is needed to elucidate more details
of the interpolation experiment results.

The cross-validation interpolation result values of the four
models and the real values are respectively drawn as line
charts and scatter diagrams, as shown in Fig. 11a and b. In
the low-value area, the fluctuations of the four models are
generally small. Several points with large errors are in sim-
ilar positions for all models, indicating the presence of po-
tential outliers in the dataset; however, the GSARNN model
has the strongest ability to minimize these errors. In addi-
tion, the IDW, SARNN, and GSARNN methods marginally
overestimate the lowest value. Entering the median area, the
fluctuation of the four models begins to increase gradually;
IDW produces the highest amplitude, followed in descend-
ing order by the OK, SARNN, and GSARNN methods. The
GSARNN method avoids potential large errors in several po-
sitions to the greatest extent. In the high-value area, there
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Table 5. The statistical evaluation results of the Argo temperature dataset experiments using the IDW, OK, SARNN, and GSARNN methods.

Model Local R2 Global RMSE MAE MAPE
(region where V ≥ 20◦) R2

IDW 0.5986 0.9743 1.2316 0.7725 6.70 %
OK 0.7928 0.9815 1.0442 0.6496 5.55 %
SARNN 0.8784 0.9854 0.9282 0.6056 5.80 %
GSARNN 0.8949 0.9913 0.7169 0.4653 4.62 %

Figure 10. Three-dimensional diagrams of the cross-validation interpolation results and interpolation errors.

are significant performance differences among the four mod-
els. The IDW method underestimates the high values across a
large range, the SARNN model slightly underestimates them,
the OK method fluctuates around the real values, and the
GSARNN model hovers within a narrow range. The infor-
mation conveyed by the scatter diagrams is consistent with
the line charts. The scatter diagrams show that the scatter
points of all four methods are concentrated around the diag-
onal, and the trend lines almost coincide with the standard
trend line. Among them, the performance of the GSARNN is
quantitatively best.

To compare the visual performance and effects of the four
methods for practical interpolation applications, we interpo-
late and render horizontal sections at 100 m depth intervals
in this area. Each method generates nine sections of 0–800 m
depth, as shown in Fig. 12. The four methods produce sim-
ilar interpolation results on the overall pattern, but there are
great differences in detail. Due to the sparsity of the sampled
points, the points closer to the section have a more promi-
nent impact than the distant points in the interpolation results
of the IDW method, producing many noticeable speckles on
the interpolation surface. The OK method uses the statistical
calculation process to fit the spatial features to a certain ex-
tent, alleviating the speckle problem; however, uneven color
bands with abrupt color changes can still be observed. The

SARNN and GSARNN models fit the continuous tempera-
ture field characteristics using the same set of sparse Argo
temperature data. The overall change trend of the interpo-
lated sections is consistent with the traditional methods but
is significantly smoother and more uniform, reflecting the
actual temperature field characteristics. Compared with the
SARNN, the GSARNN presents richer details on the basis
of smoothness, more exhaustively describing the ocean tem-
perature field characteristics, showing the qualitatively best
performance.

4 Discussion

In case one, the comparison between two traditional inter-
polation methods and two neural-network-based methods
demonstrates that introducing neural networks for power-
ful nonlinear fitting improves interpolation performance, en-
abling the adequate extraction and construction of complex
change characteristics of spatial elements such as mutation.
The comparison of the SARNN and GSARNN models shows
that deconstructing and remodeling the expression and solu-
tion of spatial distances, and subsequently applying the gen-
eralized expression in interpolation calculations, enables the
model to mine and restore the characteristics of the original
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Figure 11. The quantitative analysis results of the four models. (a) Line charts in ascending order of real value; (b) scatter diagrams with
trend lines.
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Figure 12. Comparisons of interpolated horizontal sections at 100 m depth intervals generated by the four methods.
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data to the greatest extent, effectively improving the interpo-
lation accuracy and optimizing the interpolation result.

In case two, the section interpolation prediction perfor-
mance of the four methods varies considerably. The spatial
distribution of the Argo buoys is sparse, uneven, and irregu-
lar, which is common in most practical interpolation scenar-
ios. When interpolating such datasets, the traditional meth-
ods tend to produce dominant weights on the points adjacent
to the point to be interpolated, which may lead to dispro-
portionate regional impacts of specific sample points around
them, resulting in uneven speckles and bands. Traditional
methods lack the global consideration of the comprehensive
effect of all sample points on the interpolation area. In con-
trast, neural-network-based models generate a smoother in-
terpolation surface than traditional methods. This indicates
that neural-network-based models can greatly reduce the in-
fluence of local extreme points on points to be interpolated
and acquire quite reasonable spatial patterns of geospatial el-
ements exploiting the non-linear fitting ability of neural net-
works. In particular, the GSARNN model incorporates the
raw coordinate vectors as the network input and fits the gen-
eralized spatial distances in the three-dimensional spatial ele-
ment field, extracting more detailed data features, generating
interpolation results that are more consistent with reality.

In summary, in case one, we test the quantitative interpola-
tion performance of the four methods on a dataset with com-
plex characteristics; in case two, we examine the qualitative
performance of the four methods in a practical interpolation
application. The experiment results indicate that traditional
methods are sensitive and dependent on the spatial distribu-
tion and data characteristics of the sampled points. By apply-
ing the concepts of neural networks, spatial autoregression,
and generalized spatial distances to three-dimensional spatial
interpolations, the GSARNN model can effectively optimize
the interpolation result and improve the adaptability of inter-
polation methods in various scenarios.

5 Conclusions

In this study, we focus on the integration of interpolation and
neural network model in three-dimensional space, in which
the spatial elements possess complex characteristics. To im-
prove the interpolation effect, we remodel the expression and
solution of spatial distances and spatial weights – two criti-
cal elements in spatial interpolation. For spatial distance, we
employ the generalized spatial distance expression and pro-
pose a GSDNN unit to adaptively generate the generalized
spatial distance, replacing the conventional Euclidean spa-
tial distance as the interpolation network input. For spatial
weight, we construct the GSARNN model by integrating the
GSDNN unit into the SARNN model. Exploiting the power-
ful feature extraction and nonlinear fitting abilities of neural
networks, we can realize accurate spatial weight calculations.

Experiments are conducted on two three-dimensional
cases: a simulated case and a real Argo temperature case.
The GSARNN model is compared with the traditional IDW
and OK methods and the advanced SARNN model. The ex-
periment results indicate that the GSARNN model achieves
the best interpolation performance among the four methods,
especially on the complex three-dimensional spatial dataset
with discontinuous features and sparse and irregular distri-
bution. The GSARNN model can effectively extract subtle
spatial correlation characteristics and accurately fit the spa-
tial weights, adapting well in three-dimensional space.

The GSARNN can perform spatial interpolation with high
accuracy at the cost of longer model training and calculation
time. Therefore, the GSARNN is more suitable for interpo-
lation scenarios with complex characteristics and strict de-
mands on the result quality. For interpolation tasks with rela-
tively simple spatial characteristics and specific requirements
for efficiency, traditional methods may be a better choice.

In the future, we plan to consider the time dimension in
addition to the spatial dimension to develop an accurate spa-
tiotemporal data interpolation model. Meanwhile, based on
the interpolation-dependent variable, the relevant regression
variable factors can be introduced for further interpolation
statistical analyses. In addition, as the number of sampled
points increases, the number of input neurons and output neu-
rons of the GSARNN will also increase, resulting in the ex-
pansion of network parameters and the extension of training
time inevitably. Therefore, how to maintain a stable and ac-
ceptable training time given different sample data volumes is
an important problem to be tackled in further research.
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Szczepańska, A., Gościewski, D., and Gerus-Gościewska,
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