Articles | Volume 16, issue 8
https://doi.org/10.5194/gmd-16-2235-2023
https://doi.org/10.5194/gmd-16-2235-2023
Development and technical paper
 | 
26 Apr 2023
Development and technical paper |  | 26 Apr 2023

The Common Community Physics Package (CCPP) Framework v6

Dominikus Heinzeller, Ligia Bernardet, Grant Firl, Man Zhang, Xia Sun, and Michael Ek

Related authors

The WASCAL high-resolution regional climate simulation ensemble for West Africa: concept, dissemination and assessment
Dominikus Heinzeller, Diarra Dieng, Gerhard Smiatek, Christiana Olusegun, Cornelia Klein, Ilse Hamann, Seyni Salack, Jan Bliefernicht, and Harald Kunstmann
Earth Syst. Sci. Data, 10, 815–835, https://doi.org/10.5194/essd-10-815-2018,https://doi.org/10.5194/essd-10-815-2018, 2018
Short summary
Towards convection-resolving, global atmospheric simulations with the Model for Prediction Across Scales (MPAS) v3.1: an extreme scaling experiment
D. Heinzeller, M. G. Duda, and H. Kunstmann
Geosci. Model Dev., 9, 77–110, https://doi.org/10.5194/gmd-9-77-2016,https://doi.org/10.5194/gmd-9-77-2016, 2016
Short summary

Related subject area

Earth and space science informatics
Hazard assessment modeling and software development of earthquake-triggered landslides in the Sichuan–Yunnan area, China
Xiaoyi Shao, Siyuan Ma, and Chong Xu
Geosci. Model Dev., 16, 5113–5129, https://doi.org/10.5194/gmd-16-5113-2023,https://doi.org/10.5194/gmd-16-5113-2023, 2023
Short summary
Ensemble of optimised machine learning algorithms for predicting surface soil moisture content at global scale
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-83,https://doi.org/10.5194/gmd-2023-83, 2023
Revised manuscript accepted for GMD
Short summary
A generalized spatial autoregressive neural network method for three-dimensional spatial interpolation
Junda Zhan, Sensen Wu, Jin Qi, Jindi Zeng, Mengjiao Qin, Yuanyuan Wang, and Zhenhong Du
Geosci. Model Dev., 16, 2777–2794, https://doi.org/10.5194/gmd-16-2777-2023,https://doi.org/10.5194/gmd-16-2777-2023, 2023
Short summary
Overcoming barriers to enable convergence research by integrating ecological and climate sciences: The NCAR-NEON system Version 1
Danica L. Lombardozzi, William R. Wieder, Negin Sobhani, Gordon B. Bonan, David Durden, Dawn Lenz, Michael SanClements, Samantha Weintraub-Leff, Edward Ayres, Christopher R. Florian, Kyla Dahlin, Sanjiv Kumar, Abigail L. S. Swann, Claire Zarakas, Charles Vardeman, and Valerio Pascucci
EGUsphere, https://doi.org/10.5194/egusphere-2023-271,https://doi.org/10.5194/egusphere-2023-271, 2023
Short summary
Causal deep learning models for studying the Earth system
Tobias Tesch, Stefan Kollet, and Jochen Garcke
Geosci. Model Dev., 16, 2149–2166, https://doi.org/10.5194/gmd-16-2149-2023,https://doi.org/10.5194/gmd-16-2149-2023, 2023
Short summary

Cited articles

Ahmadov, R., Grell, G., James, E., Csiszar, I., Tsidulko, M., Pierce, B., McKeen, S., Benjamin, S., Alexander, C., Pereira, G., Freitas, S., and Goldberg, M.: Using VIIRS fire radiative power data to simulate biomass burning emissions, plume rise and smoke transport in a real-time air quality modeling system, in: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2806–2808, IEEE, 23–28 July 2017, Fort Worth, TX, https://doi.org/10.1109/IGARSS.2017.8127581, 2017. a
American Meteorological Society: Parameterization, Glossary of Meteorology 2022, https://glossary.ametsoc.org/wiki/Parameterization (last access: 23 April 2023), 2022. a
Barnes, H. C., Grell, G., Freitas, S., Li, H., Henderson, J., and Sun, S.: Aerosol Impacts for Convective Parameterizations: Recent Changes to Grell-Freitas Convective Parameterization, AMS, https://ams.confex.com/ams/102ANNUAL/meetingapp.cgi/Paper/391989 (last access: 23 April 2023), 2022. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Bernardet, L. R., Kavulich, M., Firl, G., Heinzeller, D., Zhang, M., and Trahan, S.: CCPP v6.0.0 Technical Documentation, Zenodo [code], https://doi.org/10.5281/zenodo.6780447, 2022. a, b, c, d, e
Download
Short summary
The Common Community Physics Package is a collection of physical atmospheric parameterizations for use in Earth system models and a framework that couples the physics to a host model’s dynamical core. A primary goal for this effort is to facilitate research and development of physical parameterizations and physics–dynamics coupling methods while offering capabilities for numerical weather prediction operations, for example in the upcoming implementation of the Global Forecast System (GFS) v17.