Articles | Volume 16, issue 8
https://doi.org/10.5194/gmd-16-2235-2023
https://doi.org/10.5194/gmd-16-2235-2023
Development and technical paper
 | 
26 Apr 2023
Development and technical paper |  | 26 Apr 2023

The Common Community Physics Package (CCPP) Framework v6

Dominikus Heinzeller, Ligia Bernardet, Grant Firl, Man Zhang, Xia Sun, and Michael Ek

Related authors

The WASCAL high-resolution regional climate simulation ensemble for West Africa: concept, dissemination and assessment
Dominikus Heinzeller, Diarra Dieng, Gerhard Smiatek, Christiana Olusegun, Cornelia Klein, Ilse Hamann, Seyni Salack, Jan Bliefernicht, and Harald Kunstmann
Earth Syst. Sci. Data, 10, 815–835, https://doi.org/10.5194/essd-10-815-2018,https://doi.org/10.5194/essd-10-815-2018, 2018
Short summary
Towards convection-resolving, global atmospheric simulations with the Model for Prediction Across Scales (MPAS) v3.1: an extreme scaling experiment
D. Heinzeller, M. G. Duda, and H. Kunstmann
Geosci. Model Dev., 9, 77–110, https://doi.org/10.5194/gmd-9-77-2016,https://doi.org/10.5194/gmd-9-77-2016, 2016
Short summary

Related subject area

Earth and space science informatics
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024,https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors
Chunhua Jiang, Xiang Gao, Huizhong Zhu, Shuaimin Wang, Sixuan Liu, Shaoni Chen, and Guangsheng Liu
Geosci. Model Dev., 17, 5939–5959, https://doi.org/10.5194/gmd-17-5939-2024,https://doi.org/10.5194/gmd-17-5939-2024, 2024
Short summary
kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation
Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer
Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024,https://doi.org/10.5194/gmd-17-5897-2024, 2024
Short summary
Accelerating Lagrangian transport simulations on graphics processing units: performance optimizations of Massive-Parallel Trajectory Calculations (MPTRAC) v2.6
Lars Hoffmann, Kaveh Haghighi Mood, Andreas Herten, Markus Hrywniak, Jiri Kraus, Jan Clemens, and Mingzhao Liu
Geosci. Model Dev., 17, 4077–4094, https://doi.org/10.5194/gmd-17-4077-2024,https://doi.org/10.5194/gmd-17-4077-2024, 2024
Short summary
Focal-TSMP: deep learning for vegetation health prediction and agricultural drought assessment from a regional climate simulation
Mohamad Hakam Shams Eddin and Juergen Gall
Geosci. Model Dev., 17, 2987–3023, https://doi.org/10.5194/gmd-17-2987-2024,https://doi.org/10.5194/gmd-17-2987-2024, 2024
Short summary

Cited articles

Ahmadov, R., Grell, G., James, E., Csiszar, I., Tsidulko, M., Pierce, B., McKeen, S., Benjamin, S., Alexander, C., Pereira, G., Freitas, S., and Goldberg, M.: Using VIIRS fire radiative power data to simulate biomass burning emissions, plume rise and smoke transport in a real-time air quality modeling system, in: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2806–2808, IEEE, 23–28 July 2017, Fort Worth, TX, https://doi.org/10.1109/IGARSS.2017.8127581, 2017. a
American Meteorological Society: Parameterization, Glossary of Meteorology 2022, https://glossary.ametsoc.org/wiki/Parameterization (last access: 23 April 2023), 2022. a
Barnes, H. C., Grell, G., Freitas, S., Li, H., Henderson, J., and Sun, S.: Aerosol Impacts for Convective Parameterizations: Recent Changes to Grell-Freitas Convective Parameterization, AMS, https://ams.confex.com/ams/102ANNUAL/meetingapp.cgi/Paper/391989 (last access: 23 April 2023), 2022. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Bernardet, L. R., Kavulich, M., Firl, G., Heinzeller, D., Zhang, M., and Trahan, S.: CCPP v6.0.0 Technical Documentation, Zenodo [code], https://doi.org/10.5281/zenodo.6780447, 2022. a, b, c, d, e
Download
Short summary
The Common Community Physics Package is a collection of physical atmospheric parameterizations for use in Earth system models and a framework that couples the physics to a host model’s dynamical core. A primary goal for this effort is to facilitate research and development of physical parameterizations and physics–dynamics coupling methods while offering capabilities for numerical weather prediction operations, for example in the upcoming implementation of the Global Forecast System (GFS) v17.