Articles | Volume 15, issue 24
https://doi.org/10.5194/gmd-15-9177-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-9177-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
UniFHy v0.1.1: a community modelling framework for the terrestrial water cycle in Python
Thibault Hallouin
CORRESPONDING AUTHOR
National Centre for Atmospheric Science, Reading, UK
Department of Meteorology, University of Reading, Reading, UK
now at: HYCAR Research Unit, INRAE, Université Paris‐Saclay, Antony, France
Richard J. Ellis
UK Centre for Ecology & Hydrology, Wallingford, UK
Douglas B. Clark
UK Centre for Ecology & Hydrology, Wallingford, UK
Simon J. Dadson
UK Centre for Ecology & Hydrology, Wallingford, UK
School of Geography and the Environment, University of Oxford, Oxford, UK
Andrew G. Hughes
British Geological Survey, Keyworth, UK
Bryan N. Lawrence
National Centre for Atmospheric Science, Reading, UK
Department of Meteorology, University of Reading, Reading, UK
Department of Computer Science, University of Reading, Reading, UK
Grenville M. S. Lister
National Centre for Atmospheric Science, Reading, UK
Department of Meteorology, University of Reading, Reading, UK
Jan Polcher
Laboratoire de Météorologie Dynamique, IPSL, CNRS, Palaiseau, France
Related authors
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
Geosci. Model Dev., 17, 4561–4578, https://doi.org/10.5194/gmd-17-4561-2024, https://doi.org/10.5194/gmd-17-4561-2024, 2024
Short summary
Short summary
The evaluation of the quality of hydrological model outputs against streamflow observations is widespread in the hydrological literature. In order to improve on the reproducibility of published studies, a new evaluation tool dedicated to hydrological applications is presented. It is open source and usable in a variety of programming languages to make it as accessible as possible to the community. Thus, authors and readers alike can use the same tool to produce and reproduce the results.
Ezequiel Cimadevilla, Bryan N. Lawrence, and Antonio S. Cofiño
Geosci. Model Dev., 18, 2461–2478, https://doi.org/10.5194/gmd-18-2461-2025, https://doi.org/10.5194/gmd-18-2461-2025, 2025
Short summary
Short summary
The Earth System Grid Federation (ESGF) stores an enormous amount of climate data spread across millions of files in data centres all over the world. Accessing and working with this scientific information is quite complex. This work presents ESGF Virtual Aggregation, an approach that combines data from different sources into a format that is ready for analysis straightaway.
Paul J. Durack, Karl E. Taylor, Peter J. Gleckler, Gerald A. Meehl, Bryan N. Lawrence, Curt Covey, Ronald J. Stouffer, Guillaume Levavasseur, Atef Ben-Nasser, Sebastien Denvil, Martina Stockhause, Jonathan M. Gregory, Martin Juckes, Sasha K. Ames, Fabrizio Antonio, David C. Bader, John P. Dunne, Daniel Ellis, Veronika Eyring, Sandro L. Fiore, Sylvie Joussaume, Philip Kershaw, Jean-Francois Lamarque, Michael Lautenschlager, Jiwoo Lee, Chris F. Mauzey, Matthew Mizielinski, Paola Nassisi, Alessandra Nuzzo, Eleanor O’Rourke, Jeffrey Painter, Gerald L. Potter, Sven Rodriguez, and Dean N. Williams
EGUsphere, https://doi.org/10.5194/egusphere-2024-3729, https://doi.org/10.5194/egusphere-2024-3729, 2025
Short summary
Short summary
CMIP6 was the most expansive and ambitious Model Intercomparison Project (MIP), the latest in a history, extending four decades. CMIP engaged a growing community focused on improving climate understanding, and quantifying and attributing observed climate change being experienced today. The project's profound impact is due to the combining the latest climate science and technology, enabling the latest-generation climate simulations and increasing community attention in every successive phase.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
Geosci. Model Dev., 17, 4561–4578, https://doi.org/10.5194/gmd-17-4561-2024, https://doi.org/10.5194/gmd-17-4561-2024, 2024
Short summary
Short summary
The evaluation of the quality of hydrological model outputs against streamflow observations is widespread in the hydrological literature. In order to improve on the reproducibility of published studies, a new evaluation tool dedicated to hydrological applications is presented. It is open source and usable in a variety of programming languages to make it as accessible as possible to the community. Thus, authors and readers alike can use the same tool to produce and reproduce the results.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Mario C. Acosta, Sergi Palomas, Stella V. Paronuzzi Ticco, Gladys Utrera, Joachim Biercamp, Pierre-Antoine Bretonniere, Reinhard Budich, Miguel Castrillo, Arnaud Caubel, Francisco Doblas-Reyes, Italo Epicoco, Uwe Fladrich, Sylvie Joussaume, Alok Kumar Gupta, Bryan Lawrence, Philippe Le Sager, Grenville Lister, Marie-Pierre Moine, Jean-Christophe Rioual, Sophie Valcke, Niki Zadeh, and Venkatramani Balaji
Geosci. Model Dev., 17, 3081–3098, https://doi.org/10.5194/gmd-17-3081-2024, https://doi.org/10.5194/gmd-17-3081-2024, 2024
Short summary
Short summary
We present a collection of performance metrics gathered during the Coupled Model Intercomparison Project Phase 6 (CMIP6), a worldwide initiative to study climate change. We analyse the metrics that resulted from collaboration efforts among many partners and models and describe our findings to demonstrate the utility of our study for the scientific community. The research contributes to understanding climate modelling performance on the current high-performance computing (HPC) architectures.
Elizabeth Cooper, Rich Ellis, Eleanor Blyth, and Simon Dadson
EGUsphere, https://doi.org/10.5194/egusphere-2023-1596, https://doi.org/10.5194/egusphere-2023-1596, 2023
Preprint archived
Short summary
Short summary
We have tested a different way of simulating soil moisture and river flow. Instead of dividing the land up into over 10,000 squares to run our numerical model, we cluster the land into fewer, irregular areas with similar landscape characteristics. We show that different ways of clustering the landscape produce different patterns of soil moisture. We also show that with this method we can we match observations as well as our usual gridded approach for ten times less computational resource.
Leighton A. Regayre, Lucia Deaconu, Daniel P. Grosvenor, David M. H. Sexton, Christopher Symonds, Tom Langton, Duncan Watson-Paris, Jane P. Mulcahy, Kirsty J. Pringle, Mark Richardson, Jill S. Johnson, John W. Rostron, Hamish Gordon, Grenville Lister, Philip Stier, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 8749–8768, https://doi.org/10.5194/acp-23-8749-2023, https://doi.org/10.5194/acp-23-8749-2023, 2023
Short summary
Short summary
Aerosol forcing of Earth’s energy balance has persisted as a major cause of uncertainty in climate simulations over generations of climate model development. We show that structural deficiencies in a climate model are exposed by comprehensively exploring parametric uncertainty and that these deficiencies limit how much the model uncertainty can be reduced through observational constraint. This provides a future pathway towards building models with greater physical realism and lower uncertainty.
Camilla Mathison, Eleanor Burke, Andrew J. Hartley, Douglas I. Kelley, Chantelle Burton, Eddy Robertson, Nicola Gedney, Karina Williams, Andy Wiltshire, Richard J. Ellis, Alistair A. Sellar, and Chris D. Jones
Geosci. Model Dev., 16, 4249–4264, https://doi.org/10.5194/gmd-16-4249-2023, https://doi.org/10.5194/gmd-16-4249-2023, 2023
Short summary
Short summary
This paper describes and evaluates a new modelling methodology to quantify the impacts of climate change on water, biomes and the carbon cycle. We have created a new configuration and set-up for the JULES-ES land surface model, driven by bias-corrected historical and future climate model output provided by the Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP). This allows us to compare projections of the impacts of climate change across multiple impact models and multiple sectors.
Antoine Guion, Solène Turquety, Arineh Cholakian, Jan Polcher, Antoine Ehret, and Juliette Lathière
Atmos. Chem. Phys., 23, 1043–1071, https://doi.org/10.5194/acp-23-1043-2023, https://doi.org/10.5194/acp-23-1043-2023, 2023
Short summary
Short summary
At high concentrations, tropospheric ozone (O3) deteriorates air quality. Weather conditions are key to understanding the variability in O3 concentration, especially during extremes. We suggest that identifying the presence of combined heatwaves is essential to the study of droughts in canopy–troposphere interactions and O3 concentration. Even so, they are associated, on average, with an increase in O3, partly explained by an increase in precursor emissions and a decrease in dry deposition.
Robert J. Parker, Chris Wilson, Edward Comyn-Platt, Garry Hayman, Toby R. Marthews, A. Anthony Bloom, Mark F. Lunt, Nicola Gedney, Simon J. Dadson, Joe McNorton, Neil Humpage, Hartmut Boesch, Martyn P. Chipperfield, Paul I. Palmer, and Dai Yamazaki
Biogeosciences, 19, 5779–5805, https://doi.org/10.5194/bg-19-5779-2022, https://doi.org/10.5194/bg-19-5779-2022, 2022
Short summary
Short summary
Wetlands are the largest natural source of methane, one of the most important climate gases. The JULES land surface model simulates these emissions. We use satellite data to evaluate how well JULES reproduces the methane seasonal cycle over different tropical wetlands. It performs well for most regions; however, it struggles for some African wetlands influenced heavily by river flooding. We explain the reasons for these deficiencies and highlight how future development will improve these areas.
Leighton A. Regayre, Lucia Deaconu, Daniel P. Grosvenor, David Sexton, Christopher C. Symonds, Tom Langton, Duncan Watson-Paris, Jane P. Mulcahy, Kirsty J. Pringle, Mark Richardson, Jill S. Johnson, John Rostron, Hamish Gordon, Grenville Lister, Philip Stier, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2022-1330, https://doi.org/10.5194/egusphere-2022-1330, 2022
Preprint archived
Short summary
Short summary
We show that potential structural deficiencies in a climate model can be exposed by comprehensively exploring its parametric uncertainty, and that these deficiencies limit how much the model uncertainty can be reduced through observational constraint. Combined consideration of parametric and structural uncertainties provides a future pathway towards building models that have greater physical realism and lower uncertainty.
Rebecca J. Oliver, Lina M. Mercado, Doug B. Clark, Chris Huntingford, Christopher M. Taylor, Pier Luigi Vidale, Patrick C. McGuire, Markus Todt, Sonja Folwell, Valiyaveetil Shamsudheen Semeena, and Belinda E. Medlyn
Geosci. Model Dev., 15, 5567–5592, https://doi.org/10.5194/gmd-15-5567-2022, https://doi.org/10.5194/gmd-15-5567-2022, 2022
Short summary
Short summary
We introduce new representations of plant physiological processes into a land surface model. Including new biological understanding improves modelled carbon and water fluxes for the present in tropical and northern-latitude forests. Future climate simulations demonstrate the sensitivity of photosynthesis to temperature is important for modelling carbon cycle dynamics in a warming world. Accurate representation of these processes in models is necessary for robust predictions of climate change.
Mahdi André Nakhavali, Lina M. Mercado, Iain P. Hartley, Stephen Sitch, Fernanda V. Cunha, Raffaello di Ponzio, Laynara F. Lugli, Carlos A. Quesada, Kelly M. Andersen, Sarah E. Chadburn, Andy J. Wiltshire, Douglas B. Clark, Gyovanni Ribeiro, Lara Siebert, Anna C. M. Moraes, Jéssica Schmeisk Rosa, Rafael Assis, and José L. Camargo
Geosci. Model Dev., 15, 5241–5269, https://doi.org/10.5194/gmd-15-5241-2022, https://doi.org/10.5194/gmd-15-5241-2022, 2022
Short summary
Short summary
In tropical ecosystems, the availability of rock-derived elements such as P can be very low. Thus, without a representation of P cycling, tropical forest responses to rising atmospheric CO2 conditions in areas such as Amazonia remain highly uncertain. We introduced P dynamics and its interactions with the N and P cycles into the JULES model. Our results highlight the potential for high P limitation and therefore lower CO2 fertilization capacity in the Amazon forest with low-fertility soils.
Toby R. Marthews, Simon J. Dadson, Douglas B. Clark, Eleanor M. Blyth, Garry D. Hayman, Dai Yamazaki, Olivia R. E. Becher, Alberto Martínez-de la Torre, Catherine Prigent, and Carlos Jiménez
Hydrol. Earth Syst. Sci., 26, 3151–3175, https://doi.org/10.5194/hess-26-3151-2022, https://doi.org/10.5194/hess-26-3151-2022, 2022
Short summary
Short summary
Reliable data on global inundated areas remain uncertain. By matching a leading global data product on inundation extents (GIEMS) against predictions from a global hydrodynamic model (CaMa-Flood), we found small but consistent and non-random biases in well-known tropical wetlands (Sudd, Pantanal, Amazon and Congo). These result from known limitations in the data and the models used, which shows us how to improve our ability to make critical predictions of inundation events in the future.
Juan Manuel Castillo, Huw W. Lewis, Akhilesh Mishra, Ashis Mitra, Jeff Polton, Ashley Brereton, Andrew Saulter, Alex Arnold, Segolene Berthou, Douglas Clark, Julia Crook, Ananda Das, John Edwards, Xiangbo Feng, Ankur Gupta, Sudheer Joseph, Nicholas Klingaman, Imranali Momin, Christine Pequignet, Claudio Sanchez, Jennifer Saxby, and Maria Valdivieso da Costa
Geosci. Model Dev., 15, 4193–4223, https://doi.org/10.5194/gmd-15-4193-2022, https://doi.org/10.5194/gmd-15-4193-2022, 2022
Short summary
Short summary
A new environmental modelling system has been developed to represent the effect of feedbacks between atmosphere, land, and ocean in the Indian region. Different approaches to simulating tropical cyclones Titli and Fani are demonstrated. It is shown that results are sensitive to the way in which the ocean response to cyclone evolution is captured in the system. Notably, we show how a more rigorous formulation for the near-surface energy budget can be included when air–sea coupling is included.
Elizabeth Cooper, Eleanor Blyth, Hollie Cooper, Rich Ellis, Ewan Pinnington, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 2445–2458, https://doi.org/10.5194/hess-25-2445-2021, https://doi.org/10.5194/hess-25-2445-2021, 2021
Short summary
Short summary
Soil moisture estimates from land surface models are important for forecasting floods, droughts, weather, and climate trends. We show that by combining model estimates of soil moisture with measurements from field-scale, ground-based sensors, we can improve the performance of the land surface model in predicting soil moisture values.
Ewan Pinnington, Javier Amezcua, Elizabeth Cooper, Simon Dadson, Rich Ellis, Jian Peng, Emma Robinson, Ross Morrison, Simon Osborne, and Tristan Quaife
Hydrol. Earth Syst. Sci., 25, 1617–1641, https://doi.org/10.5194/hess-25-1617-2021, https://doi.org/10.5194/hess-25-1617-2021, 2021
Short summary
Short summary
Land surface models are important tools for translating meteorological forecasts and reanalyses into real-world impacts at the Earth's surface. We show that the hydrological predictions, in particular soil moisture, of these models can be improved by combining them with satellite observations from the NASA SMAP mission to update uncertain parameters. We find a 22 % reduction in error at a network of in situ soil moisture sensors after combining model predictions with satellite observations.
Simon J. Dadson, Eleanor Blyth, Douglas Clark, Helen Davies, Richard Ellis, Huw Lewis, Toby Marthews, and Ponnambalan Rameshwaran
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-60, https://doi.org/10.5194/hess-2021-60, 2021
Manuscript not accepted for further review
Short summary
Short summary
Flood prediction helps national and regional planning and real-time flood response. In this study we apply and test a new way to make wide area predictions of flooding which can be combined with weather forecasting and climate models to give faster predictions of flooded areas. By simplifying the detailed floodplain topography we can keep track of the fraction of land flooded for hazard mapping purposes. When tested this approach accurately reproduces benchmark datasets for England.
Cited articles
Adams, S., Ford, R., Hambley, M., Hobson, J., Kavčič, I., Maynard, C.,
Melvin, T., Müller, E., Mullerworth, S., Porter, A., Rezny, M., Shipway, B.,
and Wong, R.: LFRic: Meeting the challenges of scalability and performance
portability in Weather and Climate models, J. Parallel
Distr. Com., 132, 383–396,
https://doi.org/10.1016/j.jpdc.2019.02.007, 2019. a
Balaji, V., Benson, R., Wyman, B., and Held, I.: Coarse-grained component concurrency in Earth system modeling: parallelizing atmospheric radiative transfer in the GFDL AM3 model using the Flexible Modeling System coupling framework, Geosci. Model Dev., 9, 3605–3616, https://doi.org/10.5194/gmd-9-3605-2016, 2016. a
Barnhart, K. R., Hutton, E. W. H., Tucker, G. E., Gasparini, N. M., Istanbulluoglu, E., Hobley, D. E. J., Lyons, N. J., Mouchene, M., Nudurupati, S. S., Adams, J. M., and Bandaragoda, C.: Short communication: Landlab v2.0: a software package for Earth surface dynamics, Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020, 2020. a
Bell, V. A., Kay, A. L., Jones, R. G., and Moore, R. J.: Development of a high resolution grid-based river flow model for use with regional climate model output, Hydrol. Earth Syst. Sci., 11, 532–549, https://doi.org/10.5194/hess-11-532-2007, 2007. a, b
Best, M. J., Beljaars, A., Polcher, J., and Viterbo, P.: A Proposed Structure
for Coupling Tiled Surfaces with the Planetary Boundary Layer, J.
Hydrometeorol., 5, 1271–1278, https://doi.org/10.1175/JHM-382.1, 2004. a
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. a, b, c, d
Betts, A. K., Ball, J. H., Beljaars, A. C. M., Miller, M. J., and Viterbo,
P. A.: The land surface-atmosphere interaction: A review based on
observational and global modeling perspectives, J. Geophys.
Res.-Atmos., 101, 7209–7225, https://doi.org/10.1029/95JD02135, 1996. a
Beven, K.: Rainfall-Runoff Modelling: The Primer, vol. 3204, Wiley-Blackwell,
2nd edn., https://doi.org/10.1002/9781119951001, 2012. a
Beven, K. and Freer, J.: A dynamic TOPMODEL, Hydrol. Process., 15,
1993–2011, https://doi.org/10.1002/hyp.252, 2001. a
Blyth, E. M., Arora, V. K., Clark, D. B., Dadson, S. J., De Kauwe, M. G.,
Lawrence, D. M., Melton, J. R., Pongratz, J., Turton, R. H., Yoshimura, K.,
and Yuan, H.: Advances in Land Surface Modelling, Current Climate Change
Reports, 7, 45–71, https://doi.org/10.1007/s40641-021-00171-5, 2021. a, b, c
Boorman, D. B., Hollis, J. M., and Lilly, A.: Hydrology of soil types: a
hydrologically-based classification of the soils of United Kingdom, Institute
of Hydrology, Wallingford, ISBN 0 948540 69 9, 1995. a
Chaney, N. W., Metcalfe, P., and Wood, E. F.: HydroBlocks: a field-scale
resolving land surface model for application over continental extents,
Hydrol. Process., 30, 3543–3559, https://doi.org/10.1002/hyp.10891, 2016. a
Clark, D. B. and Gedney, N.: Representing the effects of subgrid variability of
soil moisture on runoff generation in a land surface model, J.
Geophys. Res.-Atmos., 113, D10111, https://doi.org/10.1029/2007JD008940, 2008. a
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701–722, https://doi.org/10.5194/gmd-4-701-2011, 2011. a, b, c, d
Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta,
H. V., Wagener, T., and Hay, L. E.: Framework for Understanding Structural
Errors (FUSE): A modular framework to diagnose differences between
hydrological models, Water Resour. Res., 44, W00B02,
https://doi.org/10.1029/2007WR006735, 2008. a
Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis,
D. J., Hooper, R. P., Kumar, M., Leung, L. R., Mackay, D. S., Maxwell, R. M.,
Shen, C., Swenson, S. C., and Zeng, X.: Improving the representation of
hydrologic processes in Earth System Models, Water Resour. Res., 51,
5929–5956, https://doi.org/10.1002/2015WR017096, 2015a. a
Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods,
R. A., Freer, J. E., Gutmann, E. D., Wood, A. W., Brekke, L. D., Arnold,
J. R., Gochis, D. J., and Rasmussen, R. M.: A unified approach for
process-based hydrologic modeling: 1. Modeling concept, Water Resour. Res., 51, 2498–2514, https://doi.org/10.1002/2015WR017198, 2015b. a
Collins, N., Theurich, G., DeLuca, C., Suarez, M., Trayanov, A., Balaji, V.,
Li, P., Yang, W., Hill, C., and da Silva, A.: Design and Implementation of
Components in the Earth System Modeling Framework, The International Journal
of High Performance Computing Applications, 19, 341–350,
https://doi.org/10.1177/1094342005056120, 2005. a, b, c
Craig, A., Valcke, S., and Coquart, L.: Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308, https://doi.org/10.5194/gmd-10-3297-2017, 2017. a, b
Craig, A. P., Vertenstein, M., and Jacob, R.: A new flexible coupler for earth
system modeling developed for CCSM4 and CESM1, Int. J.
High Perform. C., 26, 31–42,
https://doi.org/10.1177/1094342011428141, 2012. a, b
Craig, J. R., Brown, G., Chlumsky, R., Jenkinson, R. W., Jost, G., Lee, K.,
Mai, J., Serrer, M., Sgro, N., Shafii, M., Snowdon, A. P., and Tolson, B. A.:
Flexible watershed simulation with the Raven hydrological modelling
framework, Environ. Model. Softw., 129, 104728,
https://doi.org/10.1016/j.envsoft.2020.104728, 2020. a
Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Lange, S., Müller Schmied, H., Hersbach, H., and Buontempo, C.: WFDE5: bias-adjusted ERA5 reanalysis data for impact studies, Earth Syst. Sci. Data, 12, 2097–2120, https://doi.org/10.5194/essd-12-2097-2020, 2020. a, b
Dadson, S., Bell, V., and Jones, R.: Evaluation of a grid-based river flow
model configured for use in a regional climate model, J. Hydrol.,
411, 238–250, https://doi.org/10.1016/j.jhydrol.2011.10.002, 2011. a, b
Dadson, S. J., Hallouin, T., and Ellis, R.: unifhycontrib-artemis, Zenodo [code],
https://doi.org/10.5281/zenodo.6560408, 2021. a, b
Davies, H. N. and Bell, V. A.: Assessment of methods for extracting
low-resolution river networks from high-resolution digital data, Hydrol.
Sci. J., 54, 17–28, https://doi.org/10.1623/hysj.54.1.17, 2009. a
Dubos, T., Dubey, S., Tort, M., Mittal, R., Meurdesoif, Y., and Hourdin, F.: DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility, Geosci. Model Dev., 8, 3131–3150, https://doi.org/10.5194/gmd-8-3131-2015, 2015. a
Eaton, B., Gregory, J., Drach, B., Taylor, K., Hankin, S., Blower, J., Caron,
J., Signell, R., Bentley, P., Rappa, G., Höck, H., Pamment, A., Juckes,
M., Raspaud, M., Horne, R., Whiteaker, T., Blodgett, D., Zender, C., and Lee,
D.: NetCDF Climate and Forecast (CF) Metadata Conventions,
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html (last access: 20 December 2022),
2020. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Farrell, P., Piggott, M., Pain, C., Gorman, G., and Wilson, C.: Conservative
interpolation between unstructured meshes via supermesh construction,
Comput. Method. Appl. M., 198, 2632–2642,
https://doi.org/10.1016/j.cma.2009.03.004, 2009. a
Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a flexible
approach for conceptual hydrological modeling: 1. Motivation and theoretical
development, Water Resour. Res., 47, W11510, https://doi.org/10.1029/2010WR010174, 2011. a
Fisher, R. A. and Koven, C. D.: Perspectives on the Future of Land Surface
Models and the Challenges of Representing Complex Terrestrial Systems,
J. Adv. Model. Earth Sy., 12, e2018MS001453,
https://doi.org/10.1029/2018MS001453, 2020. a
Gash, J. H. C.: An analytical model of rainfall interception by forests,
Q. J. Roy. Meteor. Soc., 105, 43–55,
https://doi.org/10.1002/qj.49710544304, 1979. a
Hallouin, T.: hydroeval: an evaluator for streamflow time series in Python, Zenodo [code],
https://doi.org/10.5281/zenodo.4709652, 2021. a
Hallouin, T. and Ellis, R. J.: unifhy, Funded by
the Natural Environment Research Council (NERC) Hydro-JULES programme
(NE/S017380/1)., Zenodo [code], https://doi.org/10.5281/zenodo.6466215, 2021. a, b
Hallouin, T., Mockler, E., and Bruen, M.: SMARTpy: Conceptual Rainfall-Runoff
Model, Zenodo [code], https://doi.org/10.5281/zenodo.3376589, 2019. a
Hallouin, T., Mockler, E. M., and Bruen, M.: unifhycontrib-smart, Zenodo [code],
https://doi.org/10.5281/zenodo.6466276, 2021. a, b
Hanke, M., Redler, R., Holfeld, T., and Yastremsky, M.: YAC 1.2.0: new aspects for coupling software in Earth system modelling, Geosci. Model Dev., 9, 2755–2769, https://doi.org/10.5194/gmd-9-2755-2016, 2016. a
Harpham, Q., Hughes, A., and Moore, R.: Introductory overview: The OpenMI 2.0
standard for integrating numerical models, Environ. Model.
Softw., 122, 104549, https://doi.org/10.1016/j.envsoft.2019.104549, 2019. a, b
Hassell, D. and Bartholomew, S. L.: cfdm: A Python reference implementation of
the CF data model, J. Open Source Softw., 5, 2717,
https://doi.org/10.21105/joss.02717, 2020. a
Hassell, D., Gregory, J., Blower, J., Lawrence, B. N., and Taylor, K. E.: A data model of the Climate and Forecast metadata conventions (CF-1.6) with a software implementation (cf-python v2.1), Geosci. Model Dev., 10, 4619–4646, https://doi.org/10.5194/gmd-10-4619-2017, 2017. a
Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E.: Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics, Earth Surf. Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, 2017. a
Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol., 282, 104–115, https://doi.org/10.1016/S0022-1694(03)00257-9, 2003. a
Hortal, M. and Simmons, A. J.: Use of Reduced Gaussian Grids in Spectral
Models, Mon. Weather Rev., 119, 1057–1074,
https://doi.org/10.1175/1520-0493(1991)119<1057:UORGGI>2.0.CO;2, 1991. a
Hutton, E., Piper, M., Drost, N., Gan, T., Kettner, A., Overeem, I., Stewart,
S., and Wang, K.: The Python Modeling Toolkit (PyMT), Zenodo [code],
https://doi.org/10.5281/zenodo.4985222, 2021. a
Hutton, E. W., Piper, M. D., and Tucker, G. E.: The Basic Model Interface 2.0:
A standard interface for coupling numerical models in the geosciences,
J. Open Source Softw., 5, 2317, https://doi.org/10.21105/joss.02317, 2020. a, b
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube
basin under an ensemble of climate change scenarios, J. Hydrol.,
424–425, 264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012. a
Kraft, P., Vaché, K. B., Frede, H.-G., and Breuer, L.: CMF: A Hydrological
Programming Language Extension For Integrated Catchment Models,
Environ. Model. Softw., 26, 828–830,
https://doi.org/10.1016/j.envsoft.2010.12.009, 2011. a
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J.,
Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic
global vegetation model for studies of the coupled atmosphere-biosphere
system, Global Biogeochem. Cycles, 19, GB1015, https://doi.org/10.1029/2003GB002199, 2005. a, b
Lawrence, B. N., Rezny, M., Budich, R., Bauer, P., Behrens, J., Carter, M., Deconinck, W., Ford, R., Maynard, C., Mullerworth, S., Osuna, C., Porter, A., Serradell, K., Valcke, S., Wedi, N., and Wilson, S.: Crossing the chasm: how to develop weather and climate models for next generation computers?, Geosci. Model Dev., 11, 1799–1821, https://doi.org/10.5194/gmd-11-1799-2018, 2018. a
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C.,
Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek,
E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks,
W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger,
A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S. P., Buzan, J.,
Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M.,
Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S.,
Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier,
J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson, B. M.,
Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val Martin, M., and Zeng,
X.: The Community Land Model Version 5: Description of New Features,
Benchmarking, and Impact of Forcing Uncertainty, J. Adv. Model. Earth Sy., 11, 4245–4287, https://doi.org/10.1029/2018MS001583, 2019. a
Lehner, B. and Grill, G.: Global river hydrography and network routing:
baseline data and new approaches to study the world's large river systems,
Hydrol. Process., 27, 2171–2186, https://doi.org/10.1002/hyp.9740, 2013. a
Lehner, B., Verdin, K., and Jarvis, A.: New Global Hydrography Derived From
Spaceborne Elevation Data, Eos, Transactions American Geophysical Union, 89,
93–94, https://doi.org/10.1029/2008EO100001, 2008. a
Lewis, H. and Hallouin, T.: unifhycontrib-rfm, Zenodo [code], https://doi.org/10.5281/zenodo.6466270,
2021. a, b
Los, S. O., Rosette, J. A. B., Kljun, N., North, P. R. J., Chasmer, L., Suárez, J. C., Hopkinson, C., Hill, R. A., van Gorsel, E., Mahoney, C., and Berni, J. A. J.: Vegetation height and cover fraction between 60∘ S and 60∘ N from ICESat GLAS data, Geosci. Model Dev., 5, 413–432, https://doi.org/10.5194/gmd-5-413-2012, 2012. a, b
Marthews, T. R., Dadson, S. J., Lehner, B., Abele, S., and Gedney, N.: High-resolution global topographic index values for use in large-scale hydrological modelling, Hydrol. Earth Syst. Sci., 19, 91–104, https://doi.org/10.5194/hess-19-91-2015, 2015. a
Martínez-de la Torre, A., Blyth, E., and Robinson, E.: Water, carbon and
energy fluxes simulation for Great Britain using the JULES Land Surface Model
and the Climate Hydrology and Ecology research Support System meteorology
dataset (1961–2015) [CHESS-land], [data set],
https://doi.org/10.5285/c76096d6-45d4-4a69-a310-4c67f8dcf096, 2018. a, b
Martínez-de la Torre, A., Blyth, E. M., and Weedon, G. P.: Using observed river flow data to improve the hydrological functioning of the JULES land surface model (vn4.3) used for regional coupled modelling in Great Britain (UKC2), Geosci. Model Dev., 12, 765–784, https://doi.org/10.5194/gmd-12-765-2019, 2019. a
McKay, M. D., Beckman, R. J., and Conover, W. J.: A Comparison of Three Methods
for Selecting Values of Input Variables in the Analysis of Output From a
Computer Code, Technometrics, 42, 55–61,
https://doi.org/10.1080/00401706.2000.10485979, 2000. a
Mockler, E. M., O'Loughlin, F. E., and Bruen, M.: Understanding hydrological
flow paths in conceptual catchment models using uncertainty and sensitivity
analysis, Comput. Geosci., 90, 66–77,
https://doi.org/10.1016/j.cageo.2015.08.015, 2016. a
Monteith, J. L.: Evaporation and environment, Symposia of the Society for
Experimental Biology, 19, 205–234, 1965. a
Moore, R. J., Bell, V. A., Austin, R. M., and Harding, R. J.: Methods for snowmelt forecasting in upland Britain, Hydrol. Earth Syst. Sci., 3, 233–246, https://doi.org/10.5194/hess-3-233-1999, 1999. a
Morris, D. G. and Flavin, R. W.: A digital terrain model for hydrology, in:
Proc. 4th International Symposium on Spatial Data Handling, edited by:
Brassel, K. and Kishimoto, H., 1, 250–262, Zurich, 1990. a
Morris, D. G. and Flavin, R. W.: Sub-set of UK 50 m by 50 m hydrological
digital terrain model grids, NERC, Institute of Hydrology, Wallingford, https://www.ceh.ac.uk/cy/node/16318 (last access: 10 October 2021), 1994. a
Nachtergaele, F., van Velthuizen, H., Verelst, L., Wiberg, D., Batjes, N.,
Dijkshoorn, J., van Engelen, V., Fischer, G., Jones, A., Montanarella, L.,
Petri, M., Prieler, S., Teixeira, E., and Shi, X.: Harmonized World Soil
Database (version 1.2), Food and Agriculture Organization of the UN,
International Institute for Applied Systems Analysis, ISRIC - World Soil
Information, Institute of Soil Science – Chinese Academy of Sciences, Joint
Research Centre of the EC, 2012. a
National River Flow Archive: https://nrfa.ceh.ac.uk/data, National River Flow Archive [data set], last access: 10 October 2021. a
Nguyen-Quang, T., Polcher, J., Ducharne, A., Arsouze, T., Zhou, X., Schneider, A., and Fita, L.: ORCHIDEE-ROUTING: revising the river routing scheme using a high-resolution hydrological database, Geosci. Model Dev., 11, 4965–4985, https://doi.org/10.5194/gmd-11-4965-2018, 2018. a
Peckham, S. D., Hutton, E. W., and Norris, B.: A component-based approach to
integrated modeling in the geosciences: The design of CSDMS, Comput. Geosci., 53, 3–12, https://doi.org/10.1016/j.cageo.2012.04.002, 2013. a, b
Polcher, J., McAvaney, B., Viterbo, P., Gaertner, M.-A., Hahmann, A., Mahfouf,
J.-F., Noilhan, J., Phillips, T., Pitman, A., Schlosser, C., Schulz, J.-P.,
Timbal, B., Verseghy, D., and Xue, Y.: A proposal for a general interface
between land surface schemes and general circulation models, Global
Planet. Change, 19, 261–276, https://doi.org/10.1016/S0921-8181(98)00052-6, 1998.
a
Pool, S., Vis, M., and Seibert, J.: Evaluating model performance: towards a
non-parametric variant of the Kling-Gupta efficiency, Hydrol. Sci.
J., 63, 1941–1953, https://doi.org/10.1080/02626667.2018.1552002, 2018. a
Putman, W. M. and Lin, S.-J.: Finite-volume transport on various cubed-sphere
grids, J. Comput. Phys., 227, 55–78,
https://doi.org/10.1016/j.jcp.2007.07.022, 2007. a
Smith, K. A., Barker, L. J., Tanguy, M., Parry, S., Harrigan, S., Legg, T. P., Prudhomme, C., and Hannaford, J.: A multi-objective ensemble approach to hydrological modelling in the UK: an application to historic drought reconstruction, Hydrol. Earth Syst. Sci., 23, 3247–3268, https://doi.org/10.5194/hess-23-3247-2019, 2019. a
Swenson, S. C., Clark, M., Fan, Y., Lawrence, D. M., and Perket, J.:
Representing Intrahillslope Lateral Subsurface Flow in the Community Land
Model, J. Adv. Model. Earth Sy., 11, 4044–4065,
https://doi.org/10.1029/2019MS001833, 2019. a
Valcke, S.: The OASIS3 coupler: a European climate modelling community software, Geosci. Model Dev., 6, 373–388, https://doi.org/10.5194/gmd-6-373-2013, 2013. a, b
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON
(ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M:
Description of the non-hydrostatic dynamical core, Q. J. Roy. Meteor. Soc., 141, 563–579, https://doi.org/10.1002/qj.2378, 2015. a
Short summary
A new framework for modelling the water cycle in the land system has been implemented. It considers the hydrological cycle as three interconnected components, bringing flexibility in the choice of the physical processes and their spatio-temporal resolutions. It is designed to foster collaborations between land surface, hydrological, and groundwater modelling communities to develop the next-generation of land system models for integration in Earth system models.
A new framework for modelling the water cycle in the land system has been implemented. It...