Articles | Volume 15, issue 11
https://doi.org/10.5194/gmd-15-4625-2022
https://doi.org/10.5194/gmd-15-4625-2022
Model description paper
 | 
16 Jun 2022
Model description paper |  | 16 Jun 2022

GNOM v1.0: an optimized steady-state model of the modern marine neodymium cycle

Benoît Pasquier, Sophia K. V. Hines, Hengdi Liang, Yingzhe Wu, Steven L. Goldstein, and Seth G. John

Related authors

The ocean's biological and preformed carbon pumps in future steady-state climate scenarios
Benoît Pasquier, Mark Holzer, and Matthew A. Chamberlain
EGUsphere, https://doi.org/10.5194/egusphere-2023-2525,https://doi.org/10.5194/egusphere-2023-2525, 2023
Short summary
Optimal parameters for the ocean's nutrient, carbon, and oxygen cycles compensate for circulation biases but replumb the biological pump
Benoît Pasquier, Mark Holzer, Matthew A. Chamberlain, Richard J. Matear, Nathaniel L. Bindoff, and François W. Primeau
Biogeosciences, 20, 2985–3009, https://doi.org/10.5194/bg-20-2985-2023,https://doi.org/10.5194/bg-20-2985-2023, 2023
Short summary
The number of past and future regenerations of iron in the ocean
and its intrinsic fertilization efficiency
Benoît Pasquier and Mark Holzer
Biogeosciences, 15, 7177–7203, https://doi.org/10.5194/bg-15-7177-2018,https://doi.org/10.5194/bg-15-7177-2018, 2018
Short summary
Inverse-model estimates of the ocean's coupled phosphorus, silicon, and iron cycles
Benoît Pasquier and Mark Holzer
Biogeosciences, 14, 4125–4159, https://doi.org/10.5194/bg-14-4125-2017,https://doi.org/10.5194/bg-14-4125-2017, 2017
Short summary

Related subject area

Oceanography
LOCATE v1.0: numerical modelling of floating marine debris dispersion in coastal regions using Parcels v2.4.2
Ivan Hernandez, Leidy M. Castro-Rosero, Manuel Espino, and Jose M. Alsina Torrent
Geosci. Model Dev., 17, 2221–2245, https://doi.org/10.5194/gmd-17-2221-2024,https://doi.org/10.5194/gmd-17-2221-2024, 2024
Short summary
New insights into the South China Sea throughflow and water budget seasonal cycle: evaluation and analysis of a high-resolution configuration of the ocean model SYMPHONIE version 2.4
Ngoc B. Trinh, Marine Herrmann, Caroline Ulses, Patrick Marsaleix, Thomas Duhaut, Thai To Duy, Claude Estournel, and R. Kipp Shearman
Geosci. Model Dev., 17, 1831–1867, https://doi.org/10.5194/gmd-17-1831-2024,https://doi.org/10.5194/gmd-17-1831-2024, 2024
Short summary
MQGeometry-1.0: a multi-layer quasi-geostrophic solver on non-rectangular geometries
Louis Thiry, Long Li, Guillaume Roullet, and Etienne Mémin
Geosci. Model Dev., 17, 1749–1764, https://doi.org/10.5194/gmd-17-1749-2024,https://doi.org/10.5194/gmd-17-1749-2024, 2024
Short summary
Parameter estimation for ocean background vertical diffusivity coefficients in the Community Earth System Model (v1.2.1) and its impact on El Niño–Southern Oscillation forecasts
Zheqi Shen, Yihao Chen, Xiaojing Li, and Xunshu Song
Geosci. Model Dev., 17, 1651–1665, https://doi.org/10.5194/gmd-17-1651-2024,https://doi.org/10.5194/gmd-17-1651-2024, 2024
Short summary
Great Lakes wave forecast system on high-resolution unstructured meshes
Ali Abdolali, Saeideh Banihashemi, Jose Henrique Alves, Aron Roland, Tyler J. Hesser, Mary Anderson Bryant, and Jane McKee Smith
Geosci. Model Dev., 17, 1023–1039, https://doi.org/10.5194/gmd-17-1023-2024,https://doi.org/10.5194/gmd-17-1023-2024, 2024
Short summary

Cited articles

Abbott, A. N., Haley, B. A., and McManus, J.: Bottoms up: Sedimentary control of the deep North Pacific Ocean's εNd signature, Geology, 43, 1035–1035, https://doi.org/10.1130/g37114.1, 2015a. a
Abbott, A. N., Haley, B. A., McManus, J., and Reimers, C. E.: The sedimentary flux of dissolved rare earth elements to the ocean, Geochim. Cosmochim. Ac., 154, 186–200, https://doi.org/10.1016/j.gca.2015.01.010, 2015b. a, b
Adebiyi, A. A., Kok, J. F., Wang, Y., Ito, A., Ridley, D. A., Nabat, P., and Zhao, C.: Dust Constraints from joint Observational-Modelling-experiMental analysis (DustCOMM): comparison with measurements and model simulations, Atmos. Chem. Phys., 20, 829–863, https://doi.org/10.5194/acp-20-829-2020, 2020. a, b, c, d
Adkins, J. F.: The role of deep ocean circulation in setting glacial climates, Paleoceanography, 28, 539–561, https://doi.org/10.1002/palo.20046, 2013. a
Amakawa, H., Yu, T.-L., Tazoe, H., Obata, H., Gamo, T., Sano, Y., Shen, C.-C., and Suzuki, K.: Neodymium concentration and isotopic composition distributions in the southwestern Indian Ocean and the Indian sector of the Southern Ocean, Chem. Geol., 511, 190–203, https://doi.org/10.1016/j.chemgeo.2019.01.007, 2019. a
Download
Short summary
Neodymium isotopes in seawater have the potential to provide key information about ocean circulation, both today and in the past. This can shed light on the underlying drivers of global climate, which will improve our ability to predict future climate change, but uncertainties in our understanding of neodymium cycling have limited use of this tracer. We present a new model of neodymium in the modern ocean that runs extremely fast, matches observations, and is freely available for development.