Articles | Volume 15, issue 9
https://doi.org/10.5194/gmd-15-3773-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-3773-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
MagmaFOAM-1.0: a modular framework for the simulation of magmatic systems
Istituto Nazionale di Geofisica e Vulcanologia, sezione di Pisa, Pisa, Italy
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste, Italy
Simone Colucci
Istituto Nazionale di Geofisica e Vulcanologia, sezione di Pisa, Pisa, Italy
Jacopo Matrone
Dipartimento di Matematica, Università degli Studi di Firenze, Florence, Italy
Chiara Paola Montagna
Istituto Nazionale di Geofisica e Vulcanologia, sezione di Pisa, Pisa, Italy
Mattia De' Michieli Vitturi
Istituto Nazionale di Geofisica e Vulcanologia, sezione di Pisa, Pisa, Italy
Department of Geology, University at Buffalo, Buffalo, New York, USA
Paolo Papale
Istituto Nazionale di Geofisica e Vulcanologia, sezione di Pisa, Pisa, Italy
Related authors
No articles found.
Matteo Trolese, Alessandro Tadini, Laura Pieretti, Damiano Biagini, Spina Cianetti, Simone Colucci, Matteo Cerminara, Claudia D'Oriano, Chiara Montagna, Michele D'Ambrosio, Raffaello Pegna, Giuseppe Re, Francesco Sanseverino, Carlo Giunchi, Carlo Meletti, and Tomaso Esposti Ongaro
EGUsphere, https://doi.org/10.5194/egusphere-2025-3026, https://doi.org/10.5194/egusphere-2025-3026, 2025
Short summary
Short summary
This study describes two hands-on outreach events: an interactive lesson for high-school students during European Researchers’ Night and a tsunami experiment at Lucca Comics & Games. Surveys showed both groups enjoyed the activities, boosted their grasp of geoscience ideas and grew more positive about science. The work emphasizes the effectiveness of quantitative experiment demonstrations and the need to adapt them to the audience, time available and clear educator coordination.
Cited articles
Annen, C., Blundy, J. D., and Sparks, R. S. J.: The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones, J. Petrol., 47, 505–539, https://doi.org/10.1093/petrology/egi084, 2006. a
Aulisa, E., Manservisi, S., and Scardovelli, R.: A mixed markers and
volume-of-fluid method for the reconstruction and advection of interfaces in
two-phase and free-boundary flows, J. Computat. Phys., 188,
611–639, 2003. a
Bachmann, O. and Bergantz, G. W.: Rejuvenation of the Fish Canyon magma body:
A window into the evolution of large-volume silicic magma systems, Geology,
31, 789–792, 2003. a
Bagagli, M., Montagna, C. P., Papale, P., and Longo, A.: Signature of magmatic
processes in strainmeter records at Campi Flegrei (Italy), Geophys. Res.
Lett., 44, 718–725, https://doi.org/10.1002/2016GL071875, 2017. a, b
Bergantz, G., Schleicher, J., and Burgisser, A.: Open-system dynamics and
mixing in magma mushes, Nat. Geosci., 8, 793, https://doi.org/10.1038/ngeo2534, 2015. a, b
Brennen, C. E. and Brennen, C. E.: Fundamentals of multiphase flow, Cambridge University Press, ISBN 9780521848046, 2005. a
Brogi, F., Colucci, S., and Montagna, C. P.: MagmaFOAM-1.0: a modular
framework for the simulation of magmatic systems, Zenodo [code],
https://doi.org/10.5281/zenodo.5031825, 2021. a
Burgisser, A., Alletti, M., and Scaillet, B.: Simulating the behavior of
volatiles belonging to the C–O–H–S system in silicate melts under magmatic
conditions with the software D-Compress, Comput. Geosci., 79, 1–14,
2015. a
Burnham, C. W. and Davis, N.: The role of H2O in silicate melts; II,
Thermodynamic and phase relations in the system NaAlSi3O8-H2O to 10 kilobars,
700 degrees to 1100 degrees C, Am. J. Sci., 274, 902–940,
1974. a
Cerminara, M., Esposti Ongaro, T., and Berselli, L. C.: ASHEE-1.0: a compressible, equilibrium–Eulerian model for volcanic ash plumes, Geosci. Model Dev., 9, 697–730, https://doi.org/10.5194/gmd-9-697-2016, 2016. a
Chandrasekhar, S.: The character of the equilibrium of an incompressible heavy
viscous fluid of variable density, in: Mathematical Proceedings of the
Cambridge Philosophical Society, Cambridge University
Press, 51, 162–178, https://doi.org/10.1017/S0305004100030048, 1955. a
Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability, Courier
Corporation, in: Dover Books on Physics Series, Dover Publications, ISBN 9780486640716, 2013. a
Cheng, L., Costa, F., and Bergantz, G.: Linking fluid dynamics and olivine
crystal scale zoning during simulated magma intrusion, Contrib.
Mineral. Petr., 175, 1–14, 2020. a
Chouet, B., Dawson, P., and Nakano, M.: Dynamics of diffusive bubble growth and
pressure recovery in a bubbly rhyolitic melt embedded in an elastic solid,
J. Geophys. Res.-Sol. Ea., 111,
https://doi.org/10.1029/2005JB004174, 2006. a
Colucci, S., Battaglia, M., and Trigila, R.: A thermodynamical model for the
surface tension of silicate melts in contact with H2O gas, Geochim.
Cosmochim. Ac., 175, 127, https://doi.org/10.1016/j.gca.2015.10.037, 2016. a
Colucci, S., de' Michieli Vitturi, M., and Landi, P.: CrystalMom: a new model
for the evolution of crystal size distributions in magmas with the
quadrature-based method of moments, Contrib. Mineral. Petrol., 172, 100,
https://doi.org/10.1007/s00410-017-1421-6, 2017a. a
Colucci, S., Papale, P., and Montagna, C. P.: Non-Newtonian flow of bubbly
magma in volcanic conduits, J. Geophys. Res.-Sol. Ea., 122, 1789–1804,
https://doi.org/10.1002/2016JB013383, 2017b. a
Costa, A., Suzuki, Y. J., Cerminara, M., Devenish, B. J., Esposti Ongaro, T., Herzog, M., Van Eaton, A. R., Denby, L. C., Bursik, M., de' Michieli Vitturi, M., Engwell, S., Neri, A., Barsotti, S., Folch, A., Macedonio, G., Girault, F., Carazzo, G., Tait, S., Kaminski, E., Mastin, L. G., Woodhouse, M. J., Phillips, J. C., Hogg, A. J., Degruyter, W., and Bonadonna, C.: Results of the eruptive column model inter-comparison study,
J. Volcanol. Geoth. Res., 326, 2–25, 2016. a
Coumans, J., Llewellin, E., Wadsworth, F., Humphreys, M., Mathias, S.,
Yelverton, B., and Gardner, J.: An experimentally validated numerical model
for bubble growth in magma, J. Volcanol. Geoth. Res.,
402, 107002, https://doi.org/10.1016/j.jvolgeores.2020.107002, 2020. a, b
Cussler, E. L. (Ed.): Diffusion mass transfer in fluid systems, in: Cambridge Series in Chemical Engineering, 3rd edn., Cambridge University Press, https://doi.org/10.1017/CBO9780511805134, 2009. a
de' Michieli Vitturi, M. and Pardini, F.: PLUME-MoM-TSM 1.0.0: a volcanic column and umbrella cloud spreading model, Geosci. Model Dev., 14, 1345–1377, https://doi.org/10.5194/gmd-14-1345-2021, 2021. a
de' Michieli Vitturi, M., Clarke, A., Neri, A., and Voight, B.: Effects of
conduit geometry on magma ascent dynamics in dome-forming eruptions, Earth
Planet. Sc. Lett., 272, 567–578, 2008a. a
de' Michieli Vitturi, M., Clarke, A., Neri, A., and Voight, B.: Effects of
conduit geometry on magma ascent dynamics in dome-forming eruptions, Earth
Planet. Sc. Lett., 272, 567–578,
https://doi.org/10.1016/j.epsl.2008.05.025, 2008b. a
de' Michieli Vitturi, M., Neri, A., and Barsotti, S.: PLUME-MoM 1.0: A new integral model of volcanic plumes based on the method of moments, Geosci. Model Dev., 8, 2447–2463, https://doi.org/10.5194/gmd-8-2447-2015, 2015. a
Deshpande, S. S., Anumolu, L., and Trujillo, M. F.: Evaluating the performance
of the two-phase flow solver interFoam, Computat. Sci. Discov.,
5, 014016, https://doi.org/10.1088/1749-4699/5/1/014016, 2012. a, b
Druitt, T. H., Costa, F., Deloule, E., Dungan, M., and Scaillet, B.: Decadal
to monthly timescales of magma transfer and reservoir growth at a caldera
volcano, Nature, 482, 77–80, https://doi.org/10.1038/nature10706, 2012. a
Dufek, J.: The Fluid Mechanics of Pyroclastic Density Currents, Annu. Rev.
Fluid Mech., 48, 459–485, https://doi.org/10.1146/annurev-fluid-122414-034252,
2016. a, b
Dufek, J. and Bergantz, G.: Transient two-dimensional dynamics in the upper
conduit of a rhyolitic eruption: A comparison of closure models for the
granular stress, J. Volcanol. Geoth. Res., 143,
113–132, 2005. a
Duff, R., Harlow, F., and Hirt, C.: Effects of diffusion on interface
instability between gases, Phys. Fluids, 5, 417–425, 1962. a
Esposti Ongaro, T., Cavazzoni, C., Erbacci, G., Neri, A., and Salvetti, M.: A
parallel multiphase flow code for the 3D simulation of explosive volcanic
eruptions, Parallel Computing, 33, 541–560,
https://doi.org/10.1016/j.parco.2007.04.003, 2007. a
Fang, J., Cambareri, J. J., Rasquin, M., Gouws, A., Balakrishnan, R., Jansen,
K. E., and Bolotnov, I. A.: Interface tracking investigation of geometric
effects on the bubbly flow in PWR subchannels, Nucl. Sci.
Eng., 193, 46–62, 2019. a
Ferry, J. and Balachandar, S.: A fast Eulerian method for disperse two-phase
flow, Int. J. Multiphas. Flow, 27, 1199–1226, 2001. a
Ghahramani, E., Arabnejad, M. H., and Bensow, R. E.: A comparative study
between numerical methods in simulation of cavitating bubbles, Int.
J. Multiphas. Flow, 111, 339–359,
https://doi.org/10.1016/j.ijmultiphaseflow.2018.10.010, 2019. a, b
Gonnermann, H. M. and Manga, M.: The Fluid Mechanics Inside a Volcano, Annu.
Rev. Fluid Mech., 39, 321–356, https://doi.org/10.1146/annurev.fluid.39.050905.110207,
2007. a, b, c
Grace, J.: Shapes and velocities of bubbles rising in infinite liquid,
T. I. Chem. Eng.-Lond., 51, 116–120, 1973. a
Griffiths, R. W.: The Dynamics of Lava Flows, Annu. Rev. Fluid Mech.,
32, 477–518, https://doi.org/10.1146/annurev.fluid.32.1.477, 2000. a, b
Issa, R. I.: Solution of the implicitly discretised fluid flow equations by
operator-splitting, J. Computat. Phys., 62, 40–65, 1986. a
Jackson, M. D., Blundy, J. D., and Sparks, R. S. J.: Chemical differentiation,
cold storage and remobilization of magma in the Earth's crust, Nature, 564,
405–409, https://doi.org/10.1038/s41586-018-0746-2, 2018. a
Jellinek, a. M., Kerr, R. C., and Griffiths, R. W.: Mixing and compositional
stratification produced by natural convection: 1. Experiments and their
application to Earth's core and mantle, J. Geophys. Res.,
104, 7183, https://doi.org/10.1029/1998JB900116, 1999. a
Karema, H. and Lo, S.: Efficiency of interphase coupling algorithms in
fluidized bed conditions, Comput. Fluids, 28, 323–360,
https://doi.org/10.1016/S0045-7930(98)00028-0, 1999. a, b
Keller, T. and Suckale, J.: A continuum model of multi-phase reactive
transport in igneous systems, Geophys. J. Int., 219,
185–222, https://doi.org/10.1093/gji/ggz287, 2019. a, b, c
Koyaguchi, T. and Mitani, N. K.: A theoretical model for fragmentation of
viscous bubbly magmas in shock tubes, J. Geophys. Res.-Sol.
Ea., 110, B10202, https://doi.org/10.1029/2004JB003513, 2005. a
Lensky, N. G., Lyakhovsky, V., and Navon, O.: Radial variations of melt
viscosity around growing bubbles and gas overpressure in vesiculating
magmas, Earth Planet. Sc. Lett., 186, 1–6, 2001. a
Longo, A., Papale, P., Vassalli, M., Saccorotti, G., Montagna, C. P., Cassioli,
A., Giudice, S., and Boschi, E.: Magma convection and mixing dynamics as a
source of ultra-long-period oscillations, Bull. Volcanol., 74,
873–880, 2012. a
Lyakhovsky, V., Hurwitz, S., and Navon, O.: Bubble growth in rhyolitic melts:
experimental and numerical investigation, Bull. Volcanol., 58, 19–32,
https://doi.org/10.1007/s004450050122, 1996. a, b, c, d
Macedonio, G., Neri, A., Martí, J., and Folch, A.: Temporal evolution of flow
conditions in sustained magmatic explosive eruptions, J. Volcanol. Geoth. Res., 143, 153–172,
https://doi.org/10.1016/j.jvolgeores.2004.09.015, 2005. a
Mancini, S., Forestier-Coste, L., Burgisser, A., James, F., and Castro, J.: An
expansion–coalescence model to track gas bubble populations in magmas,
J. Volcanol. Geoth. Res., 313, 44–58, 2016. a
Manga, M.: Waves of bubbles in basaltic magmas and lavas, J. Geophys. Res.-Sol. Ea., 101, 17457–17465, 1996. a
Marchisio, D. L. and Fox, R. O. (Eds.): Multiphase reacting flows: modelling and
simulation, Springer, https://doi.org/10.1007/978-3-211-72464-4, 2007. a
Marchisio, D. L. and Fox, R. O.: Computational Models for Polydisperse
Particulate and Multiphase Systems, Cambridge Series in Chemical Engineering,
Cambridge University Press, https://doi.org/10.1017/CBO9781139016599, 2013. a, b
Martí, J., Zafrilla, S., Andújar, J., Jiménez-Mejías,
M., Scaillet, B., Pedrazzi, D., Doronzo, D., and Scaillet, S.: Controls of
magma chamber zonation on eruption dynamics and deposits stratigraphy: The
case of El Palomar fallout succession (Tenerife, Canary Islands), J.
Volcanol. Geoth. Res., 399, 106908,
https://doi.org/10.1016/j.jvolgeores.2020.106908, 2020. a
Massol, H. and Koyaguchi, T.: The effect of magma flow on nucleation of gas
bubbles in a volcanic conduit, J. Volcanol. Geoth. Res., 143, 69–88, https://doi.org/10.1016/j.jvolgeores.2004.09.011, 2005. a
Mauro, J. C., Yue, Y., Ellison, A. J., Gupta, P. K., and Allan, D. C.:
Viscosity of glass-forming liquids, P. Natl. Acad.
Sci. USA, 106, 19780–19784, https://doi.org/10.1073/pnas.0911705106, 2009. a
Melnik, O.: Dynamics of two-phase conduit flow of high-viscosity gas-saturated
magma: large variations of sustained explosive eruption intensity, B. Volcanol., 62, 153–170, https://doi.org/10.1007/s004450000072, 2000. a
Melnik, O. and Sparks, S.: Transient models of conduit flows during volcanic
eruptions, Statistics in Volcanology, pp. 201–214, 2006. a
Mitchner, M. and Landshoff, R.: Rayleigh-Taylor Instability for Compressible
Fluids, Phys. Fluids, 7, 862–866, 1964. a
Moin, P. and Mahesh, K.: Direct numerical simulation: a tool in turbulence
research, Annu. Rev. Fluid Mech., 30, 539–578, 1998. a
Moreno Soto, Ã., EnrÃquez, O. R., Prosperetti, A., Lohse, D., and van der
Meer, D.: Transition to convection in single bubble diffusive growth, J. Fluid Mech., 871, 332–349, https://doi.org/10.1017/jfm.2019.276, 2019. a
Morgavi, D., Arienzo, I., Montagna, C. P., Perugini, D., and Dingwell, D. B.:
Magma Mixing: History and Dynamics of an Eruption Trigger, in: Volcanic
Unrest, 123–137, https://doi.org/10.1007/11157_2017_30, 2017. a
Neri, A., Esposti Ongaro, T., Macedonio, G., and Gidaspow, D.: Multiparticle
simulation of collapsing volcanic columns and pyroclastic flow, J. Geophys. Res.-Sol. Ea., 108, B4, 2003. a
Newman, S. and Lowenstern, J. B.: VolatileCalc: a silicate melt–H2O–CO2
solution model written in Visual Basic for excel, Comput. Geosci.,
28, 597–604, https://doi.org/10.1016/S0098-3004(01)00081-4, 2002. a
Ongaro, T. E., Cavazzoni, C., Erbacci, G., Neri, A., and Salvetti, M.-V.: A
parallel multiphase flow code for the 3D simulation of explosive volcanic
eruptions, Parallel Computing, 33, 541–560, 2007. a
Papale, P.: Modeling of the solubility of a two-component H2O+ CO2 fluid in
silicate liquids, American Mineralogist, 84, 477–492, 1999. a
Papale, P.: Dynamics of magma flow in volcanic conduits with variable
fragmentation efficiency and nonequilibrium pumice degassing, J. Geophys.
Res., 106, 11043, https://doi.org/10.1029/2000JB900428, 2001. a, b
Parmigiani, A., Huber, C., and Bachmann, O.: Mush microphysics and the
reactivation of crystal-rich magma reservoirs, J. Geophys. Res.-Sol. Ea., 119, 6308–6322, 2014. a
Perugini, D. and Poli, G.: The mixing of magmas in plutonic and volcanic
environments: Analogies and differences, Lithos, 153, 261–277,
https://doi.org/10.1016/j.lithos.2012.02.002, 2012. a
Perugini, D., Poli, G., Petrelli, M., De Campos, C., and Dingwell, D.:
Time-scales of recent Phlegrean Fields eruptions inferred from the
application of a “diffusive fractionation” model of trace elements,
Bul. Volcanol., 72, 431–447, https://doi.org/10.1007/s00445-009-0329-z, 2010. a
Proussevitch, A. A., Sahagian, D. L., and Anderson, A. T.: Dynamics of
Diffusive Bubble Growth in Magmas: Isothermal Case, J. Geophys.
Res., 98, 22283–22307, 1993. a
Qin, Z. and Suckale, J.: Flow-to-Sliding Transition in Crystal-Bearing Magma,
J. Geophys. Res.-Sol. Ea., 125, e2019JB018549, https://doi.org/10.1029/2019JB018549, 2020. a, b
Rider, W. J. and Kothe, D. B.: Reconstructing volume tracking, J. Computat. Phys., 141, 112–152, 1998. a
Roenby, J., Larsen, B. E., Bredmose, H., and Jasak, H.: A new volume-of-fluid
method in openfoam, in: VII International Conference on Computational Methods
in Marine Engineering, Nantes: International Center for Numerical Methods in
Engineering, Proceedings of the VI International Conference on Computational Methods in Marine Engineering, 15–17 May 2017, Nantes, France, 266–277, ISBN 978-84-943928-6-3, 2017. a
Roghair, I., Lau, Y., Deen, N., Slagter, H., Baltussen, M., Van Sint
Annaland, M., and Kuipers, J.: On the drag force of bubbles in bubble swarms
at intermediate and high Reynolds numbers, Chemical Engineering Science, 66,
3204–3211, https://doi.org/10.1016/j.ces.2011.02.030, 2011. a
Ruprecht, P., Bergantz, G. W., and Dufek, J.: Modeling of gas-driven magmatic
overturn: Tracking of phenocryst dispersal and gathering during magma
mixing, Geochem. Geophys. Geosyst., 9, 7, https://doi.org/10.1029/2008GC002022, 2008. a, b, c, d
Sahagian, D. and Proussevitch, A.: Standardized model runs and sensitivity
analysis using the “Bubbledrive-1” volcanic conduit flow model, J. Volcanol. Geoth. Res., 143, 173–185,
https://doi.org/10.1016/j.jvolgeores.2004.09.016, 2005. a
Samkhaniani, N., Ajami, A., Kayhani, M. H., and Dari, A. S.: Direct numerical
simulation of single bubble rising in viscous stagnant liquid, in:
International Conference on Merchanical, Automobile and Robotics Engineering, International Conference on Mechanical, Automobile and Robotics Engineering (ICMAR), January 2012, Penang, Malaysia,
https://www.researchgate.net/publication/280099401_Direct_Numerical_Simulation_of_Single_Bubble_Rising_in_Viscous_Stagnant_Liquid (last access: 4 May 2022),
2012. a, b
Scopigno, T., Ruocco, G., Sette, F., and Monaco, G.: Is the fragility of a
liquid embedded in the properties of its glass?, Science, 302, 849–852,
2003. a
Segre, P. N., Liu, F., Umbanhowar, P., and Weitz, D. A.: An effective
gravitational temperature for sedimentation, Nature, 409, 594–597, 2001. a
Seropian, G., Rust, A. C., and Sparks, R. S. J.: The gravitational stability
of lenses in magma mushes: confined Rayleigh-Taylor instabilities, J.
Geophys. Res.-Sol. Ea., 123, 3593–3607, https://doi.org/10.1029/2018JB015523, 2018. a
Shimomura, Y., Nishimura, T., and Sato, H.: Bubble growth processes in magma
surrounded by an elastic medium, J. Volcanol. Geoth. Res., 155, 307–322, https://doi.org/10.1016/j.jvolgeores.2006.04.003, 2006. a
Sigurdsson, H., Houghton, B., McNutt, S. R., Rymer, H., and Stix, J.: The
Encyclopedia of Volcanoes, Elsevier, https://doi.org/10.1016/C2015-0-00175-7, 2015. a
Sparks, R.: The dynamics of bubble formation and growth in magmas: A review and
analysis, J. Volcanol. Geoth. Res., 3, 1–37,
https://doi.org/10.1016/0377-0273(78)90002-1, 1978. a
Sparks, R. S. J.: Forecasting volcanic eruptions, Earth Planet. Sc.
Lett., 210, 1–15, https://doi.org/10.1016/S0012-821X(03)00124-9, 2003. a
Suckale, J., Nave, J.-C., and Hager, B. H.: It takes three to tango: 1.
Simulating buoyancy-driven flow in the presence of large viscosity
contrasts, J. Geophys. Res.-Sol. Ea., 115, B7, https://doi.org/10.1029/2009JB006916,
2010b. a
Suzuki, Y. J., Koyaguchi, T., Ogawa, M., and Hachisu, I.: A numerical study of
turbulent mixing in eruption clouds using a three-dimensional fluid dynamics
model, J. Geophys. Res.-Sol. Ea., 110, B8, https://doi.org/10.1029/2004JB003460, 2005. a, b
Thummala, P. P.: ReactingTwoPhaseEulerFoam description, Proceedings of CFD with
OpenSource Software,
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2016/PhanindraPrasadThummala/reactingTwoPhaseEulerFoam.pdf (last access: 27 April 2022),
2016. a
Ubbink, O. and Issa, R.: A method for capturing sharp fluid interfaces on
arbitrary meshes, J. Computat. Phys., 153, 26–50, 1999. a
Venier, C. M., Marquez Damian, S., and Nigro, N. M.: Numerical aspects of
Eulerian gas–particles flow formulations, Comput. Fluids, 133, 151–169, https://doi.org/10.1016/j.compfluid.2016.05.003, 2016. a
Wardle, K. E. and Weller, H. G.: Hybrid multiphase CFD solver for coupled
dispersed/segregated flows in liquid-liquid extraction, Int. J. Chem. Eng., 2013, 128936, https://doi.org/10.1155/2013/128936, 2013. a
Wark, D., Hildreth, W., Spear, F., Cherniak, D., and Watson, E.: Pre-eruption
recharge of the Bishop magma system, Geology, 35, 235,
https://doi.org/10.1130/G23316A.1, 2007. a
Winden, B.: An Open-Source Framework for Ship Performance CFD, in: SNAME 26th
Offshore Symposium, OnePetro, 7 April 2021, https://doi.org/10.5957/TOS-2021-22, 2021. a
Yeoh, G. H. and Tu, J. (Eds.): Computational techniques for multiphase flows, 2nd edn.,
Butterworth-Heinemann, 567–596, https://doi.org/10.1016/B978-0-08-102453-9.00010-6, 2019a. a, b, c
Yeoh, G. H. and Tu, J.: Chapter 10 - Future Trends in Handling Turbulent
Multiphase Flows, in: Computational Techniques for Multiphase Flows (Second
Edition), edited by: Yeoh, G. H. and Tu, J.,
Butterworth-Heinemann, second edn., 567–596,
https://doi.org/10.1016/B978-0-08-102453-9.00010-6, 2019b. a
Short summary
Computer simulations play a fundamental role in understanding volcanic phenomena. The growing complexity of these simulations requires the development of flexible computational tools that can easily switch between sub-models and solution techniques as well as optimizations. MagmaFOAM is a newly developed library that allows for maximum flexibility for solving multiphase volcanic flows and promotes collaborative work for in-house and community model development, testing, and comparison.
Computer simulations play a fundamental role in understanding volcanic phenomena. The growing...