Articles | Volume 15, issue 4
https://doi.org/10.5194/gmd-15-1499-2022
https://doi.org/10.5194/gmd-15-1499-2022
Model description paper
 | 
21 Feb 2022
Model description paper |  | 21 Feb 2022

CliffDelineaTool v1.2.0: an algorithm for identifying coastal cliff base and top positions

Zuzanna M. Swirad and Adam P. Young

Related authors

Extent, duration and timing of the sea ice cover in Hornsund, Svalbard, from 2014–2023
Zuzanna M. Swirad, A. Malin Johansson, and Eirik Malnes
The Cryosphere, 18, 895–910, https://doi.org/10.5194/tc-18-895-2024,https://doi.org/10.5194/tc-18-895-2024, 2024
Short summary
Wind wave and water level dataset for Hornsund, Svalbard (2013–2021)
Zuzanna M. Swirad, Mateusz Moskalik, and Agnieszka Herman
Earth Syst. Sci. Data, 15, 2623–2633, https://doi.org/10.5194/essd-15-2623-2023,https://doi.org/10.5194/essd-15-2623-2023, 2023
Short summary

Related subject area

Solid Earth
ShellSet v1.1.0 parallel dynamic neotectonic modelling: a case study using Earth5-049
Jon B. May, Peter Bird, and Michele M. C. Carafa
Geosci. Model Dev., 17, 6153–6171, https://doi.org/10.5194/gmd-17-6153-2024,https://doi.org/10.5194/gmd-17-6153-2024, 2024
Short summary
FastIsostasy v1.0 – a regional, accelerated 2D glacial isostatic adjustment (GIA) model accounting for the lateral variability of the solid Earth
Jan Swierczek-Jereczek, Marisa Montoya, Konstantin Latychev, Alexander Robinson, Jorge Alvarez-Solas, and Jerry Mitrovica
Geosci. Model Dev., 17, 5263–5290, https://doi.org/10.5194/gmd-17-5263-2024,https://doi.org/10.5194/gmd-17-5263-2024, 2024
Short summary
Automatic adjoint-based inversion schemes for geodynamics: reconstructing the evolution of Earth's mantle in space and time
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024,https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Benchmarking the accuracy of higher-order particle methods in geodynamic models of transient flow
Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Elbridge Gerry Puckett, and Cedric Thieulot
Geosci. Model Dev., 17, 4115–4134, https://doi.org/10.5194/gmd-17-4115-2024,https://doi.org/10.5194/gmd-17-4115-2024, 2024
Short summary
REHEATFUNQ (REgional HEAT-Flow Uncertainty and aNomaly Quantification) 2.0.1: a model for regional aggregate heat flow distributions and anomaly quantification
Malte Jörn Ziebarth and Sebastian von Specht
Geosci. Model Dev., 17, 2783–2828, https://doi.org/10.5194/gmd-17-2783-2024,https://doi.org/10.5194/gmd-17-2783-2024, 2024
Short summary

Cited articles

Alessio, P. and Keller, E. A.: Short-term patterns and processes of coastal cliff erosion in Santa Barbara, California, Geomorphology, 353, 106994, https://doi.org/10.1016/j.geomorph.2019.106994, 2020. 
Brooks, S. M., Spencer, T., and Boreham, S.: Deriving mechanisms and thresholds for cliff retreat in soft-rock cliffs under changing climates: Rapidly retreating cliffs of the Suffolk coast, UK, Geomorphology, 153–154, 48–60, https://doi.org/10.1016/j.geomorph.2012.02.007, 2012. 
Dornbusch, U., Robinson, D. A., Moses, C. A., and Williams, R. B. G.: Temporal and spatial variations of chalk cliff retreat in East Sussex, 1873 to 2001, Marine Geol., 249, 271–282, https://doi.org/10.1016/j.margeo.2007.12.005, 2008. 
Hapke, C. J., Reid, D., and Richmond, B.: Rates and trends of coastal change in California and the regional behavior of the beach and cliff system, J. Coast. Res., 25, 603–615, https://doi.org/10.2112/08-1006.1, 2009. 
Liu, J. K., Li, R., Deshpande, S., Niu, X., and Shih, T. Y.: Estimation of blufflines using topographic Lidar data and orthoimages, Photogramm. Eng. Remote Sens., 75, 69–79, 2009. 
Download
Short summary
Cliff base and top lines that delimit coastal cliff faces are usually manually digitized based on maps, aerial photographs, terrain models, etc. However, manual mapping is time consuming and depends on the mapper's decisions and skills. To increase the objectivity and efficiency of cliff mapping, we developed CliffDelineaTool, an algorithm that identifies cliff base and top positions along cross-shore transects using elevation and slope characteristics.