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Abstract. Correct quantification of coastal cliff erosion re-
quires accurate delineation of the cliff face bounded by the
cliff top and base lines. Manual mapping is time consum-
ing and relies on the mapper’s decisions and skills. Existing
algorithms are generally site specific and may be less suit-
able for areas with diverse cross-shore cliff geometries. Here
we describe CliffDelineaTool (v1.2.0), a MATLAB/Python-
based algorithm that identifies cliff base and top positions
on complex cliffs using cross-shore transects extracted from
digital elevation models. Testing on four 750–1200 m cliffed
coastlines shows that the model performance is comparable
to manual mapping and provides some advantages over exist-
ing methods but provides poor results for cliff sections with
ambiguous cliff top edges. The results can form the basis for
a range of analyses, including coastal inventories, erosion
measurements, spatiotemporal erosion trends, and coastline
evolution modeling.

1 Introduction

Correct quantification of cliff erosion for scientific and man-
agement purposes requires accurate delineation of coastal
cliff faces. Cliff base and top positions are often digitized
manually on georeferenced maps, aerial photographs, or-
thophotographs, and digital elevation models (DEMs) (e.g.,
Dornbusch et al., 2008; Hapke et al., 2009; Brooks et al.,
2012; Orviku et al., 2013; Swirad et al., 2017; Young, 2018).
However, manual mapping is subject to the mapper’s deci-
sions and skills (Moore, 2000). The lack of uniform defi-
nitions for a cliff base and top leads to further inconsisten-
cies. Payo et al. (2018) suggested that, for consistency, the
mapping should be performed at the same time for the entire

dataset, and by one mapper. However, this becomes problem-
atic for multitemporal studies, and those that build on previ-
ous efforts.

While manual digitization may be necessary when using
cartographic sources, DEMs provide an opportunity to map
the cliff base and top programmatically, as these features are
characterized by local changes in slope (Liu et al., 2009). A
preference for manual over automated mapping, particularly
for small (< km) areas of interest, may result from clear vi-
sual recognition of cliff base and top positions and challenges
with developing an algorithm that works for a range of cliff
geometries outside the initial calibration dataset. However,
automated cliff delineation increases objectivity and consis-
tency and decreases processing time, which is particularly
useful for large-area high-resolution topographic datasets
(Swirad and Young, 2021).

Several studies have used automated or semiautomated
techniques to separate the cliff face from the foreshore and/or
hinterland. The studies vary in terms of local settings, spa-
tial scale, available source datasets, and purpose. For in-
stance, Alessio and Keller (2020) extracted the cliff base as
a 3 m (NAVD88) elevation contour. Richter et al. (2013) ap-
plied terrain filters (first and second derivatives of elevation)
sensitive to slope change to identify the cliff base line for
a simple cliff morphology. Several authors identified cliff
base positions as inflection points along cross-shore tran-
sects. Liu et al. (2009) identified cliff base and top points
using transects combined with image segmentation, surface
reconstruction, and edge detection on orthoimages. For rel-
atively simple cliffs, Terefenko et al. (2019) identified the
cliff base as the seaward-most location along the transects
with a vertical change of at least 0.5 m over a 1 m hori-
zontal distance. Palaseanu-Lovejoy et al. (2016) and Payo
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et al. (2018) developed methods based on the “distance to
trendline,” where cliff base and top positions are extracted
along cross-shore transects by comparing transect elevations
with elevations along a straight line between transect ends
(“trendline”). Cliff base and top points were defined as lo-
cations along the transects with the largest vertical distance
between the cliff profile and trendline, with the cliff base lo-
cated below and the cliff top above the trendline. Palaseanu-
Lovejoy et al. (2016) manually adjusted transect lengths to
ensure that the cliff was the most prominent topographic fea-
ture. Palaseanu-Lovejoy (2021) updated the model (iBluff,
coded in R) to include automatic outlier removal using a
moving window (Tukey, 1977). Payo et al. (2018) developed
the C++ CliffMetrics algorithm (available also in SAGA
GIS; Payo, 2020), where the distance-to-trendline method
is combined with automated transect generation for coasts
with complex alongshore geometries. Payo et al. (2018) used
a constant transect length to reduce preprocessing time. Er-
rors associated with using the distance-to-trendline method
are addressed by calibrating the “vertical tolerance,” transect
length parameters, and manual quality control (Payo et al.,
2018). CliffMetrics performs well for a simple cross-shore
cliff morphology, but it is less suitable for more complex
cliff profiles where rotational landslides, within-cliff flatten-
ing, roads, etc. are present (Swirad and Young, 2021).

Here, we build on previous models to develop a
new MATLAB/Python-based algorithm, CliffDelineaTool
(v1.2.0; Swirad, 2021) that identifies cliff base and top po-
sitions on cross-shore transects for a range of complex cliff
geometries. The model parameters are calibrated using four
cliff sections that encompass a range of geomorphic set-
tings, and then tested on four different cliff sections with
topographies ranging from simple to complex. The results
are compared to manually mapped cliff lines, the distance-to-
trendline method, and CliffMetrics using default parameters.

2 Methods

2.1 The CliffDelineaTool workflow

The model (Fig. 1) uses eight user-defined parameters (Ta-
ble 1) and an input text file containing rows of values of
point ID, transect ID, distance from the seaward end of the
transect, and elevation (Swirad et al., 2016). A single input
file includes multiple ordered transects representing an entire
coastal section.

Processing is performed on a transect-by-transect basis.
Transect elevation gaps are filled through extrapolation (tran-
sect peripheries) and linear interpolation (interior sections).
For each point, local seaward and landward slope angles
are calculated as an average slope between the point and
a user-defined number of adjacent points called the NVert
parameter. The NVert value is used at various stages of the
model workflow to determine local spatial relationships be-

tween points (Swirad and Rees, 2015). To remove unneces-
sary inland points, the landward transect end is set to NVert
points landward of the highest elevation. Next, a straight
line (“trendline #1”) is created by connecting transect ends
(Fig. 2a; after Payo et al., 2018).

Potential cliff base locations are below trendline #1 and
fulfill the user-defined criteria of the maximum elevation of
the cliff base (MaxBaseElev), maximum local seaward slope
(BaseSea), and minimum local landward slope (BaseLand).
These criteria eliminate physically invalid cliff base eleva-
tions and ensure the discovery of inflection points (concavi-
ties) at the full transect (relationship to the trendline) and lo-
cal (seaward and landward slopes) levels. From the set of po-
tential cliff base locations, the point with the largest vertical
distance from the trendline is selected to represent the cliff
base, following Palaseanu-Lovejoy et al. (2016) and Payo et
al. (2018) (Fig. 2a). If no points fulfill the criteria, the tran-
sect is skipped at this stage.

Cliff top identification consists of three stages (Fig. 1). In
stage 1, trendline #2 is created by connecting the modeled
cliff base with the landward end of the transect (Fig. 2b). Po-
tential cliff top locations are located above trendline #2 and
fulfill the user-defined criteria of the minimum local seaward
slope (TopSea) and maximum local landward slope (Top-
Land) that define local convexities. From the set of potential
cliff top locations, the point with the largest vertical distance
from trendline #2 is selected to represent the cliff top, follow-
ing Palaseanu-Lovejoy et al. (2016) and Payo et al. (2018)
(Fig. 2b). If no points along the transect fulfill the criteria,
the transect is skipped and has no explicitly modeled cliff
top.

In some locations with complex cliff face profiles, such
as rotational landslides or mid-cliff roads, a local flattening
within the cliff face may exist and cause incorrect cliff top se-
lection. To account for these situations, in stage 2, the model
checks if any alternative potential cliff top exists landwards
of the initial cliff top location identified in stage 1. Alter-
native potential cliff top positions located closer than NVert
points from the initial top are rejected to ignore points that
are likely part of the same convex section. Alternative po-
sitions must also be located above trendline #3 (a line from
the initial cliff top to the landward transect end, Fig. 2c), and
be greater than PropConvex (values between 0 and 1) mul-
tiplied by the elevation difference between the initial cliff
top and trendline #2. For example, if PropConvex= 0.5 and
the initial cliff elevation is 4 m above trendline #2, potential
cliff top locations must be > 2 m (0.5×4 m) above trendline
#2. If alternative positions exist, the initial top is relocated to
the point with the largest vertical distance from trendline #2
(Fig. 2c). Otherwise, the initial cliff top is retained.

In stage 3, cliff top outliers are identified by comparing
the cross-shore location to an alongshore smoothed cliff line
created from the median of an alongshore moving window
(SmoothWindow) (Fig. 2d). Residuals are calculated as the
distance between the smoothed and modeled cross-shore lo-
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Figure 1. CliffDelineaTool workflow and the three cliff top processing stages. The calibrated parameters NVert, MaxBaseElev, BaseSea,
BaseLand, TopSea, TopLand, PropConvex, SmoothWindow are defined in Table 1.

cations. Transects with standardized residuals (the residual
divided by the residual standard deviation) > 2 are flagged as
outliers (Fig. 2e) and re-examined to identify new potential
cliff top locations. If the standardized residual of the poten-
tial cliff top closest to the smoothed cross-shore location is
< 2, it replaces the previously modeled top. Otherwise, the
transect has no explicitly modeled cliff top (Fig. 2f).

2.2 Model development

2.2.1 CliffDelineaTool calibration

To optimize user-defined parameters (Table 1), four cali-
bration coastal cliff sections in California (areas of interest
(AOIs) #1–4) were selected that span 650–1200 m along-
shore and encompass a range of geomorphic settings (Ta-
ble 2; Fig. 3a–d). Topographic information for each AOI was
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Figure 2. Example of the identification of cliff base and top positions (transect #123 of area of interest (AOI) #3; see Fig. 3c for topography
and oblique photograph): (a) potential cliff base positions and the point with the largest distance from trendline #1; (b) potential cliff top
positions and the point with the largest distance from trendline #2 (stage 1); (c) alternative potential cliff top positions in the case of a
complex cross-shore profile, and the point with the largest distance from trendline #2 (stage 2). Identification and removal of alongshore cliff
top outliers (stage 3) – alongshore distributions of (d) the stage 2 modeled and smoothed cliff top, (e) standardized residuals between the
smoothed and stage 2 modeled cliff top, and (f) the stage 3 modeled cliff top with outliers removed. Note the vertical exaggeration in (a)–(c)
and the horizontal exaggeration in (d)–(f).

derived from 1 m DEMs created from a 2016 airborne lidar
dataset (Swirad and Young, 2021).

Parallel calibration transects generated with ArcGIS tools
were spaced 5 m alongshore to capture mesoscale details of
alongshore cliff geometry and sampled at 1 m cross-shore
resolution. Points representing “true” cliff base and top loca-
tions were visually selected for each transect. The CliffDelin-
eaTool results were compared with the distance-to-trendline
method (Palaseanu-Lovejoy et al., 2016) and CliffMetrics
(SAGA GIS version; Payo, 2020) using input parameters
(seaward transect end points, transect length, and no tran-
sect smoothing) to match the same cross-shore transects used
for CliffDelineaTool and the default vertical tolerance of 0.5.
Maximum cliff base elevation (MaxBaseElev) was subjec-
tively set to 5 m (NAVD88) for AOIs #1, #3, and #4 and to
9 m (NAVD88) for AOI #2 based on DEM inspection (Fig. 3,
Table 2). The remaining seven parameters were calibrated to
minimize the root mean squared error (RMS) between the
true and modeled cliff base and top positions while not skip-
ping too many transects. NVert and threshold slope angles
(BaseSea, BaseLand, TopSea, and TopLand) were calibrated

using the characteristics of the true cliff base and top lo-
cations. Slope angles were calculated for a range of NVert
values (Table 2). Local slope angle distributions were sum-
marized in statistical terms (Fig. 4), and outliers were de-
fined as points greater than q3+ 1.5× (q3− q1) or less than
q1− 1.5× (q3− q1), where q1 and q3 are the 25th and 75th
percentiles (red crosses in Fig. 4; Tukey, 1977). NVert= 20
was selected for AOIs #1–2 and NVert= 30 was selected for
AOIs #3–4 to minimize the number of outliers while main-
taining a relatively narrow and normal slope angle distri-
bution. Threshold slope angles were picked as minimum or
maximum values excluding outliers (q3+ 1.5× (q3− q1) or
q1− 1.5× (q3− q1); black whisker ends in Fig. 4; Table 1).

Next, CliffDelineaTool checks for false cliff tops caused
by local flattening within the cliff face using PropConvex
(stage 2 of the model, Fig. 1). PropConvex was calibrated by
inspecting the cliff top RMS for values ranging from 0.1 to
0.9 at intervals of 0.05 (Fig. 5a–d). For the simple cliff mor-
phology of AOI #1, introducing PropConvex did not change
the modeled cliff top locations, but it did decrease the RMS
for more complex AOIs #2–4 (Fig. 5a–d; Table 1). Next,
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Table 1. CliffDelineaTool user-defined parameters, and values that are optimized for the calibration coastal sections (areas of interest (AOIs)
#1–4) and used to validate the model (AOIs #5–8).

Calibration Validation

Parameter Description AOI #1 AOI #2 AOI #3 AOI #4 AOI #5 AOI #6 AOI #7 AOI #8

MaxBaseElev Maximum elevation of the cliff
base (m, NAVD88)

5 9 5 5 5 5 7 5

NVert Number of consecutive points
to define local scale

20 20 30 30 20 20 20 20

BaseSea Maximum seaward slope angle
at the cliff base (◦)

12 13 9 15 20 20 20 15

BaseLand Minimum landward slope angle
at the cliff base (◦)

34 4 6 29 30 20 30 20

TopSea Minimum seaward slope angle
at the cliff top (◦)

39 32 18 14 30 25 30 40

TopLand Maximum landward slope an-
gle at the cliff top (◦)

14 8 10 19 10 25 20 35

PropConvex Threshold parameter for stage 2
cliff top replacement

n/a 0.4 0.1 0.6 0.2 0.8 0.5 0.5

SmoothWindow Moving window size for cross-
shore location smoothing (num-
ber of transects)

8 4 13 14 10 5 5 25

n/a: not applicable

cliff top outliers were identified. The optimal SmoothWin-
dow was selected by comparing a moving window ranging
from 1 to 20 alongshore transects for each AOI to minimize
RMS and the number of skipped transects (Fig. 5e–h; Ta-
ble 1). The modeled cliff base and top locations were con-
verted to polylines using ArcGIS and intersected with tran-
sects to define cliff base and top locations on skipped tran-
sects. Overall, these steps improved automated cliff mapping
performance for the more complex cliff sections and usually
led to a lower RMS compared to the distance-to-trendline
method and CliffMetrics (Table 3; Fig. 6).

2.2.2 CliffDelineaTool evaluation

Ten geoscientists manually digitized the cliff base and top for
four different sections of the California coastline (AOIs #5–
8) with diverse morphologies using 1 m resolution DEMs and
hillshade maps (Table 4; Fig. 3e–h). The “true” cliff base and
top positions were defined as the medians of the manually
mapped positions.

CliffDelineaTool, the distance-to-trendline method, and
CliffMetrics were applied to the four test sections (AOIs #5–
8) and compared to the manually mapped cliff lines. For
CliffDelineaTool, NVert was set at 20 because the test sec-
tions had the same 1 m DEM resolution as the calibration
set. MaxBaseElev was set based on the average cliff base el-
evation (Table 4). The remaining parameter values (BaseSea,

BaseLand, TopSea, TopLand, PropConvex, and SmoothWin-
dow) were selected based on the average foreshore, cliff, and
hinterland slopes (Table 4) and visual assessment of initial
model runs (Table 1). The RMS between the true and mod-
eled cliff base or top locations was used to assess model per-
formance on all transects (including skipped transects).

3 Results

The consistency of the manual cliff mapping and the per-
formance of the automated cliff mapping varied between the
four evaluated AOIs. The simple cliff geometry and unam-
biguous location of the cliff base and top of AOI #5 resulted
in a low (≤ 2.7 m) RMS for all mapping methods (Table 5;
Fig. 7a–b). In general, cliff base locations were more con-
sistent between manual mappers and CliffDelineaTool com-
pared to the cliff tops. The distance-to-trendline method had
a relatively high (� 10 m) cliff base RMS for all three com-
plex AOIs (#6–8), and sometimes placed the cliff base on the
upper cliff face or hinterland (B in Fig. 7d). Using default
parameters, CliffMetrics generally performed better than the
distance-to-trendline method, but it had a higher RMS com-
pared to CliffDelineaTool. CliffDelineaTool (RMS= 1.1–
8.2 m) and manual mapping (RMS= 0.7–11 m) gave com-
parable cliff base detection results. For AOI #6, the distance-
to-trendline method and CliffMetrics sometimes placed the
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Table 2. Characteristics of the areas of interest (AOIs) used to calibrate CliffDelineaTool. Average values are represented as mean± standard
deviation.

AOI #1 AOI #2 AOI #3 AOI #4

Geographic location 34◦28′15.54′′ N,
120◦13′8.30′′W

33◦18′49.31′′ N,
117◦29′7.61′′W

33◦20′47.17′′ N,
117◦31′20.70′′W

35◦57′24.90′′ N,
121◦28′57.90′′W

Alongshore extent (m) 700 965 1180 655

Number of transects 141 194 237 132

Cross-shore extent (m) 87 159 264 249

Average cross-shore
cliff extent (m)

23± 6 29± 15 153± 22 76± 32

Average cliff base ele-
vation (m, NAVD88)

2.7± 0.4 6.7± 0.7 3.5± 0.7 4.3± 0.8

Average cliff height (m) 26± 2 23± 1 42± 2 60± 10

Average foreshore
slope (◦)

5.4± 5.4 5.7± 5.7 5.6± 3.6 7.1± 8.7

Average cliff slope (◦) 47± 12 43± 18 28± 15 46± 13

Average hinterland
slope (◦)

10± 11 7.1± 10 16± 15 26± 17

Morphology Cliff is the unique
slope, beach and hin-
terland are planar, cliff
top has a near-straight
shape

Back beach berm, gul-
lies that intersect the
cliff top, complex cliff
top line

Rotational landslides
resulting in within-cliff
flattening, vegetation,
beach cusps, road
within cliff face

Rocky foreshore, road
adjacent to the cliff,
sloping hinterland, gul-
lies

Table 3. Performance of CliffDelineaTool (at various stages), the distance-to-trendline method, and CliffMetrics (Payo, 2020).

AOI Error metric CliffDelineaTool Distance-to- CliffMetrics

Stage 1 Stage 2 Stage 3 Stage 3 including trendline (default parameters)
skipped transects

#1

Skipped cliff base points (%) 0 0 0 0 0 0
Cliff base RMS (m) 0.3 0.3 0.3 0.3 0.4 0.6
Skipped cliff top points (%) 7.8 7.8 9.2 0 0 0
Cliff top RMS (m) 5.0 5.0 3.6 6.1 5.0 4.9

#2

Skipped cliff base points (%) 0 0 0 0 0 0
Cliff base RMS (m) 5.9 5.9 5.9 5.9 14 12
Skipped cliff top points (%) 0 0 2.6 0 0 0
Cliff top RMS (m) 6.7 4.9 4.4 4.9 5.8 5.8

#3

Skipped cliff base points (%) 2.1 2.1 2.1 0 0 0
Cliff base RMS (m) 5.4 5.4 5.4 5.3 74 70
Skipped cliff top points (%) 2.1 2.1 2.1 0 0 0
Cliff top RMS (m) 83 28 9.7 10 74 73

#4

Skipped cliff base points (%) 0.8 0.8 0.8 0 0 0
Cliff base RMS (m) 1.7 1.7 1.7 2.0 31 11
Skipped cliff top points (%) 0.8 0.8 0.8 0 0 0
Cliff top RMS (m) 40 26 16 16 29 28
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Figure 3. Areas of Interest (AOIs) used to calibrate (a–d) and validate (e–h) CliffDelineaTool. Vertical exaggeration is labeled in
red for profiles. Photographs copyright © 2002–2021 Kenneth & Gabrielle Adelman, California Coastal Records Project, http://www.
Californiacoastline.org (last access: 12 November 2021).

cliff base at beach cusps (C in Fig. 7d). For the complex AOIs
#6–8, manual and automated cliff top positions were varied
(RMS= 2.9–214 m). In AOI #6, one mapper (#2) selected
the head scarp of an interior landslide as the cliff top, about
100 m from the cliff top selected by all other mappers (A
in Fig. 7c). However, the models also picked sections of the
landslide head scarp (D in Fig. 7d). In AOI #7, two mappers
interpreted an elevated section between two separate land-

slide scars as the cliff top (E in Fig. 7e), whereas most other
mappers and both models opted for a simpler cliff top shape
(Fig. 7e and f). The cliff top position was most diverse for
AOI #8, with mappers’ interpretations ranging from the top
of the coastal mountain slope (F in Fig. 7g) to mid-slope (G
in Fig. 7g) and tops of interior cliff face landslide scars (H
in Fig. 7g). CliffDelineaTool gave inconsistent results, while

https://doi.org/10.5194/gmd-15-1499-2022 Geosci. Model Dev., 15, 1499–1512, 2022
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Figure 4. Distributions of the local seaward and landward slopes of true cliff base and top locations for varying NVert values. Boxplots
include medians (red bars), 25th (q1) and 75th (q3) percentiles (blue boxes), ranges excluding outliers (black whiskers), and outliers (red
crosses). Outliers are defined as values greater than q3+ 1.5× (q3− q1) or less than q1− 1.5× (q3− q1). Values in red located above the
plots show the number of outliers (if > 0). Gray shadow indicates the local slope distribution at the selected NVert value.

the distance-to-trendline method and CliffMetrics placed the
cliff top at the top of the mountain slope (Fig. 7h).

4 Discussion

Acceptable model results depend on the purpose of cliff de-
lineation. At the scale and resolution considered here, the
model generally provided comparable results to manual map-
ping for diverse cliff morphologies. Model performance gen-
erally correlates with the amount of inconsistency between
manual mappers, which is related to the cliff complexity. For
example, in the complex AOI #8, the mean manual mapper
and CliffDelineaTool RMSs were both high (97 and 99 m,
respectively). Conversely, for the simple AOI #5, the manual

mapper and CliffDelineaTool RMSs were both low (1.5 m
for both). The present model does not resolve the situation
where a transect crosses the cliff top multiple times, and typ-
ically places the cliff top at the seawardmost crossing point
(Fig. 6b). Other model application issues include occasion-
ally selecting treetop locations for cliff top positions (Fig. 6c
and d) when using non-bare-earth DEMs. Given these issues
and the high RMS for complex cliff sections, we suggest that
model outputs should be visually controlled (similar to Payo
et al., 2018), and should not be used where the cliff top is
very ambiguous, such as AOI #8 with complex tall mountain
slopes.

Unlike the models of Palaseanu-Lovejoy et al. (2016) and
Payo et al. (2018), CliffDelineaTool does not generate tran-

Geosci. Model Dev., 15, 1499–1512, 2022 https://doi.org/10.5194/gmd-15-1499-2022
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Figure 5. Calibration of PropConvex (testing from 0.1 to 0.9 at intervals of 0.05) (a–d) and SmoothWindow (testing from 1 to 20 transects) (e–
h). Vertical dashed lines represent the optimal values (Table 1).

Figure 6. Locations of the cliff base and top at various stages of the CliffDelineaTool calibration.

https://doi.org/10.5194/gmd-15-1499-2022 Geosci. Model Dev., 15, 1499–1512, 2022
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Table 4. Characteristics of the areas of interest (AOIs) used to evaluate CliffDelineaTool. Average values are represented by the
mean± standard deviation.

AOI #5 AOI #6 AOI #7 AOI #8

Geographic location 34◦25′6.44′′ N,
119◦47′49.20′′W

33◦21′19.13′′ N,
117◦32′3.34′′W

34◦33′36.12′′ N,
120◦37′49.53′′W

34◦54′6.71′′ N,
120◦39′36.70′′W

Alongshore extent (m) 845 1195 745 1075

Number of transects 170 240 150 216

Cross-shore extent (m) 134 309 366 650

Average cross-shore
cliff extent (m)

26± 4 101± 42 49± 40 158± 56

Average cliff base ele-
vation (m, NAVD88)

3.3± 0.6 4.9± 1.0 3.9± 2.3 3.6± 1.9

Average cliff height (m) 31± 3 34± 4 38± 17 105± 35

Average foreshore
slope (◦)

4.4± 4.3 7.4± 7.2 7.5± 8.5 6.8± 8.6

Average cliff slope (◦) 50± 10 30± 17 38± 17 36± 8.2

Average hinterland
slope (◦)

6.9± 7.3 17± 15 11± 9.2 22± 10

Morphology Cliff is the unique
slope, beach and hin-
terland are planar, cliff
top has a near-straight
shape

Rotational landslides
resulting in within-cliff
flattening, trees, beach
cusps, gullies that
intersect the cliff top

Plunging cliff, fore-
shore rocks, road
adjacent to the cliff,
sloping hinterland

Steep hinterland, cliff
is part of a mountain
slope, multiple super-
posed landslides

Table 5. RMS between the true cliff base/top position (i.e., the median of all positions given by the 10 manual mappers) and the corresponding
cliff base/top position given by a manual mapper or a modeling method.

AOI #5 AOI #6 AOI #7 AOI #8

base top base top base top base top

Mapper #1 0.9 1.1 2.5 8.1 11 2.9 3.6 174
Mapper #2 1.0 1.5 4.3 28 3.6 6.8 3.0 79
Mapper #3 1.1 1.3 1.5 10 4.8 18 4.2 166
Mapper #4 0.8 1.7 1.2 7.5 1.8 5.3 2.9 116
Mapper #5 0.8 1.2 1.3 10 2.7 13 2.7 25
Mapper #6 1.4 1.3 4.3 9.0 6.6 21 5.8 111
Mapper #7 1.1 1.7 1.2 16 5.6 4.2 5.1 61
Mapper #8 1.0 1.5 1.6 11 3.5 4.1 3.7 169
Mapper #9 0.9 2.3 1.3 11 3.4 3.9 2.3 49
Mapper #10 0.7 1.9 2.7 13 5.2 5.4 2.5 17
Average of mappers 1.0 1.5 2.2 12 4.8 8.5 3.6 97
Distance to trendline 2.1 2.7 82 32 82 28 63 215
CliffMetrics (default parameters) 2.0 2.5 40 30 10 28 75 201
CliffDelineaTool 1.1 1.5 3.8 25 8.2 8.3 4.8 99

sects. For this study, simple cross-shore transects with 5 m
alongshore spacing were defined manually for each AOI. The
relatively short AOI alongshore sections permitted the use of
parallel transects (Swirad, 2021). However, for longer, more

complex cliff sections, varying the transect orientation will
improve results and could be generated with CliffMetrics
(Payo et al., 2018).
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Figure 7. Cliff base and top positions for AOIs #5–8: (a, c, e, g) positions according to individual manual mappers; (b, d, f, h) true (i.e., the
median from manual mapping) and modeled positions. Locations A: pre-slide cliff top position interpreted as the cliff top by mapper #2; B:
cliff base placed in the hinterland by the distance-to-trendline method; C: beach cusps identified as the cliff base by the distance-to-trendline
method and CliffMetrics; D: interior cliff face location selected as the cliff top by all models; E: elevated section between two landslide scars
interpreted as the cliff top by two mappers; F: top of the mountain slope interpreted as the cliff top; G: cliff top placed mid-slope; H: cliff top
placed in the lower part of the mountain slope.

We compared CliffDelineaTool to the distance-to-
trendline method, which forms the basis of iBluff (Palaseanu-
Lovejoy, 2021) and CliffMetrics (Payo et al., 2018). How-
ever, iBluff and CliffMetrics both include additional steps
to improve results and correct erroneous cliff base and top

positions. iBluff uses manual transect shortening during pre-
processing, and outlier removal with a smoothing window,
similar to CliffDelineaTool. CliffMetrics uses manual quality
control and iterative parameter selection (Payo et al., 2018).
The CliffMetrics results presented here used default parame-
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Figure 8. Location of the stage 2 cliff top after optimizing all parameters for NVert ranging from 10 to 50. Location A: vegetation interpreted
as the cliff top for model runs with low NVert values. Location B: high NVert values can inhibit correct stage 2 cliff top replacement to
locations further landward.

ters and predefined transects to provide a direct comparison
to CliffDelineaTool. However, one of the strengths of Cliff-
Metrics is the ability to quickly iterate the parameter setup.
Therefore, the results could be improved by using iterative
parameter selection and varying the transect length and ori-
entation.

For best performance, CliffDelineaTool should be cali-
brated to the user study section. The input parameters have a
varied impact on model performance (Fig. 6). MaxBaseElev
is easily selected using a slightly conservative cliff base ele-
vation estimated from the general site settings. The optimal
NVert parameter depends on DEM resolution and cross-shore
cliff extent. Calibration showed that, in general, the greater
the NVert value, the narrower the distribution of the four
threshold slopes (BaseSea, BaseLand, TopSea, and TopLand)
and the higher the number of outliers. That relationship holds
until an NVert value (30 for AOI #1, 40 for #3, and 70 for #4,
Fig. 4) over which the q1−q3 box becomes very wide or the
distribution is dominated by outliers. Figure 8 shows the cliff
top optimized for NVert values of 10, 20, 30, 40, and 50 for
AOI #4. It suggests that during stage 2, a low NVert value can
cause an incorrect cliff top section due to minor protruding
features such as vegetation (A in Fig. 8), while a higher value
can inhibit correct stage 2 cliff top replacement (B in Fig. 8).
A TopLand of 10–20◦ is generally appropriate when the hin-
terland is planar or gently sloping but should be increased for
cliffs with steeper inland areas. BaseSea and BaseLand are
important for proper cliff base placement in coastal sections
with back beach cusps and landslide deposits. The Smooth-
Window parameter depends on the alongshore complexity
of the coast, the bay/headland sequence spacing, and their
relation to transect spacing. Model results are sensitive to
TopSea, PropConvex, and SmoothWindow, and testing var-
ious values on short sections of the study area with visual
inspection can help identify optimal values (Fig. 6).

Two previous studies have successfully used parts of
CliffDelineaTool. Swirad and Young (2021) used a modi-

fied version of CliffDelineaTool to automate the mapping
of cliff base and top positions along the California coast
(1646 km). The modified version did not include stage 2
(shifting the cliff top landwards for within-cliff flattening ar-
eas) and stage 3 (removal of outliers), but it did include a
Laplacian topographic filter (Richter et al., 2013). The au-
tomated results were visually inspected, and some (10 % of
the cliff base and 29 % of the cliff top positions) required
manual modification to correct positions. Young et al. (2021)
used the present CliffDelineaTool model to identify the cliff
base in 155 0.25 m-resolution DEMs along a 2.5 km coastal
section with 1 m alongshore transect spacing. Quality control
showed that cliff base misplacement was negligible, while
the total processing time was ∼ 30 min (Young et al., 2021).
These studies demonstrate the tool’s applicability for both
large space and time datasets, and over a range of DEM res-
olutions.

5 Conclusions

Building on previous studies, we developed a new algorithm
(CliffDelineaTool) to delineate coastal cliffs from DEMs.
The model identifies cliff base and top positions along cross-
shore transects using elevation and slope characteristics. It
considers complex cliff morphologies and removes along-
shore cliff top outliers. CliffDelineaTool provides results
comparable to manual mapping and improves cliff base
and top identification for complex cross-profiles. The auto-
mated results have known errors and should be inspected
visually. The method has been applied successfully to two
large datasets (Swirad and Young, 2021; Young et al., 2021),
greatly reducing processing time. With calibration and qual-
ity control, CliffDelineaTool can be used in a wide variety of
coastal settings, facilitating a range of scientific and manage-
rial applications, but it has limited application where the cliff
top is ambiguous.
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Code availability. CliffDelineaTool was initially coded in MAT-
LAB R2019a. The source code, the calibration and validation
datasets explored in this paper (DEMs, model input, true and
modeled cliff base and top positions), the Python version of
the tool (CliffDelineaToolPy, v1.0.0), and user instructions are
available at https://github.com/zswirad/CliffDelineaTool (last ac-
cess: 24 November 2021, https://doi.org/10.5281/zenodo.5724975,
Swirad, 2021). Cliff top positions identified with MATLAB and
Python versions of the code may vary slightly due to the program-
specific outlier removal functions.

Data availability. The data are available at https://github.com/
zswirad/CliffDelineaTool (last access: 24 November 2021,
https://doi.org/10.5281/zenodo.5724975, Swirad, 2021).
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