Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-763-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-763-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Meridionally Averaged Model of Eastern Boundary Upwelling Systems (MAMEBUSv1.0)
Jordyn E. Moscoso
CORRESPONDING AUTHOR
Department of Atmospheric Sciences, University of California, Los Angeles, CA, USA
Andrew L. Stewart
Department of Atmospheric Sciences, University of California, Los Angeles, CA, USA
Daniele Bianchi
Department of Atmospheric Sciences, University of California, Los Angeles, CA, USA
James C. McWilliams
Department of Atmospheric Sciences, University of California, Los Angeles, CA, USA
Related authors
No articles found.
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024, https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary
Short summary
The BiOeconomic mArine Trophic Size-spectrum (BOATSv2) model dynamically simulates global commercial fish populations and their coupling with fishing activity, as emerging from environmental and economic drivers. New features, including separate pelagic and demersal populations, iron limitation, and spatial variation of fishing costs and management, improve the accuracy of high seas fisheries. The updated model code is available to simulate both historical and future scenarios.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
De'Marcus Robinson, Anh L. D. Pham, David J. Yousavich, Felix Janssen, Frank Wenzhöfer, Eleanor C. Arrington, Kelsey M. Gosselin, Marco Sandoval-Belmar, Matthew Mar, David L. Valentine, Daniele Bianchi, and Tina Treude
Biogeosciences, 21, 773–788, https://doi.org/10.5194/bg-21-773-2024, https://doi.org/10.5194/bg-21-773-2024, 2024
Short summary
Short summary
The present study suggests that high release of ferrous iron from the seafloor of the oxygen-deficient Santa Barabara Basin (California) supports surface primary productivity, creating positive feedback on seafloor iron release by enhancing low-oxygen conditions in the basin.
Daniele Bianchi, Daniel McCoy, and Simon Yang
Geosci. Model Dev., 16, 3581–3609, https://doi.org/10.5194/gmd-16-3581-2023, https://doi.org/10.5194/gmd-16-3581-2023, 2023
Short summary
Short summary
We present NitrOMZ, a new model of the oceanic nitrogen cycle that simulates chemical transformations within oxygen minimum zones (OMZs). We describe the model formulation and its implementation in a one-dimensional representation of the water column before evaluating its ability to reproduce observations in the eastern tropical South Pacific. We conclude by describing the model sensitivity to parameter choices and environmental factors and its application to nitrogen cycling in the ocean.
Priscilla Le Mézo, Jérôme Guiet, Kim Scherrer, Daniele Bianchi, and Eric Galbraith
Biogeosciences, 19, 2537–2555, https://doi.org/10.5194/bg-19-2537-2022, https://doi.org/10.5194/bg-19-2537-2022, 2022
Short summary
Short summary
This study quantifies the role of commercially targeted fish biomass in the cycling of three important nutrients (N, P, and Fe), relative to nutrients otherwise available in water and to nutrients required by primary producers, and the impact of fishing. We use a model of commercially targeted fish biomass constrained by fish catch and stock assessment data to assess the contributions of fish at the global scale, at the time of the global peak catch and prior to industrial fishing.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Cited articles
Abernathey, R. P. and Marshall, J.: Global surface eddy diffusivities derived
from satellite altimetry, J. Geophys. Res.-Oceans, 118,
901–916, 2013. a
Aiki, H. and Richards, K. J.: Energetics of the global ocean: the role of
layer-thickness form drag, J. Phys. Oceanogr., 38, 1845–1869, 2008. a
Andersen, K., Berge, T., Gonçalves, R., Hartvig, M., Heuschele, J.,
Hylander, S., Jacobsen, N., Lindemann, C., Martens, E., Neuheimer, A.,
Olsson, K., Palacz, A., Prowe, A., Sainmont, J., Traving, S., Visser, A.,
Wadhwa, N., and Kiørboe, T.: Characteristic Sizes of Life in the Oceans,
from Bacteria to Whales, Annu. Rev. Marine Sci., 8, 217–241, 2016. a
Arakawa, A. and Suarez, M. J.: Vertical Differencing of the Primitive Equations
in Sigma Coordinates, Mon. Weather Rev., 111, 34–45, 1983. a
Bakun, A. and Nelson, C. S.: The Seasonal Cycle of Wind-Stress Curl in
Subtropical Eastern Boundary Current Regions, J. Phys. Oceanogr., 21, 1815–1834,
1991. a
Bakun, A. and Parrish, R. H.: Turbulence, Transport, and Pelagic Fish in the
California and Peru Current Systems, CalCOFI Rep., 23, 1982. a
Burke, A., Stewart, A. L., Adkins, J. F., Ferrari, R., Jansen, M. F., and
Thompson, A. F.: The glacial mid-depth radiocarbon bulge and its implications
for the overturning circulation, Paleoceanography, 30, 1021–1039, 2015. a
Cabre, A., Shields, D., Marinov, I., and Kostadinov, T. S.: Phenology of
Size-Partitioned Phytoplankton Carbon-Biomass from Ocean Color Remote Sensing
and CMIP5 Models, Front. Mar. Sci., 3, 39, 2013. a
Capet, X., Colas, F., McWilliams, J., Penven, P., and Marchesiello, P.: Eddies
in eastern boundary subtropical upwelling systems, Ocean Modeling in an
Eddying Regime, Geophys. Monogr. Ser, 177, 131–147, 2008. a
Chelton, D. B., DeSzoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz, N.:
Geographical variability of the first baroclinic Rossby radius of
deformation, J. Phys. Oceanogr., 28, 433–460, 1998. a
Chenillat, F., Franks, P. J. S., Capet, X., Rivière, P., Grima, N., Blanke,
B., and Combes, V.: Eddy properties in the Southern California Current
System, Ocean Dynam., 68, 761–777, 2018. a
Durran, D.: Numerical Methods for Fluid Dynamics: With Applications to
Geophysics, Texts in Applied Mathematics, Springer, New York, 2010. a
Durran, D. R.: The third-order Adams-Bashforth method: An attractive
alternative to leapfrog time differencing, Mon. Weather Rev., 119, 702–720,
1991. a
Eady, E. T.: Long waves and cyclone waves, Tellus, 1, 33–52, 1949. a
Edwards, A. M. and Bees, M. A.: Generic dynamics of a simple plankton
population model with a non-integer exponent of closure, Chaos, Solitons &
Fractals, 12, 289–300, 2001. a
Edwards, N. R., Willmott, A. J., and Killworth, P. D.: On the role of
topography and wind stress on the stability of the thermohaline circulation,
J. Phys. Oceanogr., 28, 756–778, 1998. a
Furuya, K.: Subsurface chlorophyll maximum in the tropical and subtropical
western Pacific Ocean: Vertical profiles of phytoplankton biomass and its
relationship with chlorophylla and particulate organic carbon, Marine
Biol., 107, 529–539, 1990. a
Gent, P. R.: The Gent–McWilliams parameterization: 20/20 hindsight, Ocean
Modell., 39, 2–9, 2011. a
Griffies, S. M.: The Gent–McWilliams skew flux, J. Phys. Oceanogr., 28,
831–841, 1998. a
Gula, J., Molemaker, M. J., and McWilliams, J. C.: Submesoscale cold
filaments in the Gulf Stream, J. Phys. Oceanogr., 44,
2617–2643, 2014. a
Haney, R. L.: Surface thermal boundary condition for ocean circulation models,
J. Phys. Oceanogr., 1, 241–248, 1971. a
Haney, R. L.: On the Pressure Gradient Force over Steep Topography in Sigma
Coordinate Ocean Models, J. Phys. Oceanogr., 21, 610–619,
1991. a
Jacox, M. and Edwards, C.: Effects of stratification and shelf slope on
nutrient supply in coastal upwelling regions, J. Geophys. Res.-Oceans, 116, C3, 2011. a
Jacox, M. G., Moore, A. M., Edwards, C. A., and Fiechter, J.: Spatially
resolved upwelling in the California Current System and its connections to
climate variability, Geophys. Res. Lett., 41, 3189–3196, 2014. a
Kahan, W.: Pracniques: further remarks on reducing truncation errors,
Communications of the ACM, 8, 40, 1965. a
Kays, W. M.: Turbulent Prandtl number. Where are we?, ASME Transactions
J. Heat Transf., 116, 284–295, 1994. a
Lamb, K. G.: Internal Wave Breaking and Dissipation Mechanisms on the
Continental Slope/Shelf, Annu. Rev. Fluid Mech., 46, 231–254,
2014. a
Lentz, S. J. and Chapman, D. C.: The importance of nonlinear cross-shelf
momentum flux during wind-driven coastal upwelling, J. Phys. Oceanogr., 34, 2444–2457, 2004. a
Lentz, S. J. and Fewings, M. R.: The wind-and wave-driven inner-shelf
circulation, Annu. Rev. Marine Sci., 4, 317–343, 2012. a
MATLAB: version 9.1.0 (R2016b), The MathWorks Inc., Natick, Massachusetts,
2016. a
McDougall, T. J. and Ferrari, R.: Abyssal upwelling and downwelling driven by
near-boundary mixing, J. Phys. Oceanogr., 47, 261–283, 2017. a
Mellor, G. L., Ezer, T., and Oey, L.-Y.: The Pressure Gradient Conundrum of
Sigma Coordinate Ocean Models, J. Atmos. Ocean. Tech.,
11, 1126–1134, 1994. a
Mellor, G. L., Oey, L.-Y., and Ezer, T.: Sigma Coordinate Pressure Gradient
Errors and the Seamount Problem, J. Atmos. Ocean.
Tech., 15, 1122–1131, 1998. a
Plumb, R. A. and Ferrari, R.: Transformed Eulerian-Mean Theory. Part I:
Nonquasigeostrophic Theory for Eddies on a Zonal-Mean Flow, J. Phys. Oceanogr., 35, 165–174, 2005a. a
Raick, C., Soetaert, K., and Gregoire, M.: Model complexity and performance:
How far can we simplify?, Prog. Oceanogr., 70, 27–57, 2006. a
Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J., and Manabe, S.: Simulated
response of the ocean carbon cycle to anthropogenic climate warming, Lett. Nature, 393, 245–249, 1998. a
Smith, K. S. and Marshall, J.: Evidence for Enhanced Eddy Mixing at Middepth in
the Southern Ocean, J. Phys. Oceanogr., 39, 50–69, 2009. a
Stewart, A. L. and Moscoso, J. E.: A Meridionally Averaged Model of Eastern Boundary Upwelling Systems (v1.0) (Version v1.0), Zenodo, https://doi.org/10.5281/zenodo.3866652, 2020. a
St. Laurent, L., Simmons, H., and Jayne, S.: Estimating tidally driven mixing
in the deep ocean, Geophys. Res. Lett., 29, 21–1, 2002. a
Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G. D., Roskies, R., Scott, J. R., and Wilkins-Diehr, N.: XSEDE: accelerating scientific discovery, Comput. Sci. Eng., 16, 62–74, 2014. a
Tréguier, A.-M., Held, I. M., and Larichev, V. D.: Parameterization of
quasigeostrophic eddies in primitive equation ocean models, J. Phys.
Oceanogr., 27, 567–580, 1997. a
Troen, I. B. and Mahrt, L.: A simple model of the atmospheric boundary layer;
sensitivity to surface evaporation, Bound.-Lay. Meteorol., 37, 129–148,
1986. a
Van Oostende, N., Dussin, R., Stock, C., Barton, A., Curchitser, E., Dunne, J.,
and Ward, B.: Simulating the ocean's chlorophyll dynamic range from coastal
upwelling to oligotrophy, Prog. Oceanogr., 168, 232–247, 2018. a
Venegas, R. M., Strub, P. T., Beier, E., Letelier, R., Thomas, A. C., Cowles,
T., James, C., Soto-Mardones, L., and Cabrera, C.: Satellite-derived
variability in chlorophyll, wind stress, sea surface height, and temperature
in the northern California Current System, J. Geophys. Res.-Oceans, 113, C3, 2008. a
Wang, Y. and Stewart, A. L.: Eddy dynamics over continental slopes under
retrograde winds: Insights from a model inter-comparison, Ocean Modell.,
121, 1–18, 2018. a
Wang, Y. and Stewart, A. L.: Scalings for eddy buoyancy transfer across
continental slopes under retrograde winds, Ocean Modell., 147, 101579, https://doi.org/10.1016/j.ocemod.2020.101579,
2020. a
Short summary
This project was created to understand the across-shore distribution of plankton in the California Current System. To complete this study, we used a quasi-2-D dynamical model coupled to an ecosystem model. This paper is a preliminary study to test and validate the model against data collected by the California Cooperative Oceanic Fisheries Investigations (CalCOFI). We show the solution of our model solution compares well to the data and discuss our model as a tool for further model development.
This project was created to understand the across-shore distribution of plankton in the...