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Abstract. Eastern boundary upwelling systems (EBUSs) are
physically and biologically active regions of the ocean with
substantial impacts on ocean biogeochemistry, ecology, and
global fish catch. Previous studies have used models of vary-
ing complexity to study EBUS dynamics, ranging from min-
imal two-dimensional (2-D) models to comprehensive re-
gional and global models. An advantage of 2-D models is
that they are more computationally efficient and easier to in-
terpret than comprehensive regional models, but their key
drawback is the lack of explicit representations of impor-
tant three-dimensional processes that control biology in up-
welling systems. These processes include eddy quenching of
nutrients and meridional transport of nutrients and heat. The
authors present the Meridionally Averaged Model of East-
ern Boundary Upwelling Systems (MAMEBUS) that aims at
combining the benefits of 2-D and 3-D approaches to mod-
eling EBUSs by parameterizing the key 3-D processes in
a 2-D framework. MAMEBUS couples the primitive equa-
tions for the physical state of the ocean with a nutrient—
phytoplankton—zooplankton—detritus model of the ecosys-
tem, solved in terrain-following coordinates. This article de-
fines the equations that describe the tracer, momentum, and
biological evolution, along with physical parameterizations
of eddy advection, isopycnal mixing, and boundary layer
mixing. It describes the details of the numerical schemes and
their implementation in the model code, and provides a ref-
erence solution validated against observations from the Cali-
fornia Current. The goal of MAMEBUS is to facilitate future
studies to efficiently explore the wide space of physical and
biogeochemical parameters that control the zonal variations
in EBUSs.

1 Introduction

Eastern boundary upwelling systems (EBUSs) are among
of the most biologically productive regions in the ocean,
supporting diverse ecosystems and contributing to a signif-
icant portion of the global fish catch (Bakun and Parrish,
1982). The characteristic wind-driven upwelling dominant in
EBUS:s is forced by an equatorward meridional wind stress
that decreases toward the shore, driving a zonal Ekman trans-
port offshore. The resulting Ekman pumping brings cold,
nutrient-rich water to the surface, fueling primary produc-
tivity (Jacox and Edwards, 2012; Chavez and Messié, 2009;
Rykaczewski and Dunne, 2010).

The upwelling-favorable winds also drive baroclinic,
equatorward geostrophic current, which sheds mesoscale ed-
dies (Colas et al., 2013). Together with offshore Ekman
transport, mesoscale eddies redistribute nutrients zonally and
subduct nutrients and other tracers into the ocean subsurface
(Capet et al., 2008; Gruber et al., 2011; Renault et al., 2016).
The resulting cross-shore gradient of nutrients at the surface
supports a zonal variation in the abundance of phytoplankton,
with high biomass and chlorophyll nearshore, and low off-
shore (Chavez and Messié, 2009). The size structure of phy-
toplankton is similarly affected, with larger cells with higher
nutrient demand onshore, and smaller cells offshore (Cabre
etal., 2013).

While these qualitative patterns of productivity are com-
mon to upwelling systems, previous studies have shown that
productivity varies substantially between EBUSs, but the
causes of these inter-EBUS variations are not well under-
stood. Possible physical drivers of these inter-EBUS vari-
ations include the shape and strength of the wind-stress
curl, which set the upwelling strength and source depth
(Bakun and Nelson, 1991; Jacox and Edwards, 2012). This
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in turn controls the energy transferred to the baroclinic eddy
field, modulating surface nutrient availability via the “eddy
quenching” mechanism (Gruber et al., 2011; Renault et al.,
2016). Additionally, inter-EBUS variations may have bio-
geochemical origins, for example, due differing subsurface
oxygen inventories (Chavez and Messié, 2009).

Our understanding of these drivers is hindered in part by
the observational limitations and in part by the computa-
tional expense of regional models that can resolve the pro-
cesses mentioned above. A range of models of varying com-
plexity have been used to study EBUSs, from minimal two-
dimensional (2-D) models (Jacox and Edwards, 2012; Jacox
et al., 2014) to comprehensive regional models (Shchepetkin
and McWilliams, 2005; Chenillat et al., 2018). While 2-D
models require fewer computational resources than compre-
hensive regional model studies and thus allow a more com-
prehensive exploration of the relevant parameter space, they
lack the explicit representation of important physical pro-
cesses that affect biology in upwelling systems (i.e., eddy-
quenching and meridional transport of nutrients).

Here, we aim to close the current gap in understanding by
developing an idealized, quasi-2-D model of the physics and
biogeochemistry of EBUSs. The model includes parameteri-
zations of the key three-dimensional processes, while retain-
ing the computational efficiency of a 2-D model. The model
is cast in a residual-mean framework (Plumb and Ferrari,
2005a) in terrain-following coordinates (Song and Haidvo-
gel, 1994) and is referred to as the Meridionally Averaged
Model of Eastern Boundary Upwelling Systems (MAME-
BUS). A schematic of all the important processes in MAME-
BUS is shown in Fig. 1.

The rest of the paper is organized as follows. In Sect. 2,
we describe the equations and physical parameterizations
implemented in MAMEBUS, including general formulation
of tracer advection and diffusion, the time-dependent turbu-
lent thermal wind approximation of the momentum equa-
tions (T3W), eddy and boundary layer parameterizations,
and our ecosystem formulation. In Sect. 3, we detail the al-
gorithms and discretizations, including mesh specification,
vertical coordinate transformation, and time integration. In
Sect. 4, we describe the implementation of MAMEBUS in-
cluding the various options available to the user, parameter
choices, initialization, and output. In Sect. 5, we describe
reference solutions for MAMEBUS, discussing model sen-
sitivities to changes in bathymetry, wind forcing, and surface
heat fluxes. Finally, in Sect. 6, we discuss further model de-
velopment and future work.

2 MAMEBUS framework
MAMEBUS is comprised of a series of components that
are necessary to capture physical-biogeochemical dynamics

in EBUSs: (1) explicit momentum conservation in form of
geostrophic, hydrostatic, and Ekman balances implemented
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as part of the T3W formulation; (2) eddies and their effect on
material transport; (3) surface and bottom boundary layers;
(4) nutrient and plankton cycles in form of a size-structured
“NPZD”-type model (Banas, 2011).

With the exception of the velocity field, all tracers in
MAMEBUS evolve according to the following conservation
equation:

" ac
ot
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o dc N
ot

o ot
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phys bio nct’
where the bar indicates a meridional average. The key physi-
cal tracer that follows Eq. (1) is temperature, 6, which serves
as the thermodynamic variable in our model. We choose tem-
perature as our thermodynamic variable because of its im-
portant effects on biogeochemistry (Sarmiento and Gruber,
2006). The biogeochemical tracers that are affected by the
biogeochemical evolution term, aﬂbw, are a limiting nu-
trient N (here expressed in nitrogen units, akin to nitrate);
a phytoplankton tracer, P; a zooplankton tracer, Z; and a
detrital pool, D. The non-conservative terms, 8tE|nct, rep-
resent physical sources and sinks of tracers, including sur-
face fluxes, restoring at the offshore boundary, and optional
restoring throughout the domain.

2.1 Tracer evolution

We first formulate an evolution equation for the meridion-
ally averaged concentration of an arbitrary tracer c. We as-
sume that ¢ evolves according to a combination of advec-
tion by the three-dimensional ocean flow and diffusion by
microscale mixing processes:

dc

o = —V3-(u3c) + Vi - (kgia V30). 2

advection

phys L
mixing

Here, us is the three-dimensional velocity vector, V3 is the
three-dimensional gradient operator, and kgj, the microscale
diffusivity. In Eq. (2), we have assumed that the velocity field
is non-divergent, i.e., V3 -u3 =0. We further assume that
u3 and c have already been averaged over a short timescale
to exclude fluctuations associated with microscale eddies,
whose effects are parameterized via the microscale mixing
term (e.g., Aiki and Richards, 2008). We further simplify
Eq. (2) by assuming that horizontal tracer gradients are small
compared with vertical gradients, i.e., d,¢ > 0yc, dyc, as is
typical for oceanic scales of evolution (e.g., Vallis, 2017).
This implies that the microscale mixing acts primarily in the
vertical, i.e.,

dc 0 dc
3 ~ —V3-(u3c) + — | kdia— | - 3)
! | phys 0z 0z
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Figure 1. A schematic of the essential components of the Meridionally Averaged Model of Eastern Boundary Upwelling Systems (MAME-
BUS). This schematic highlights some components that the user is able to control including the offshore restoring conditions, the eddy mixing
along isopycnals, the wind forcing, the surface mixed layer and bottom boundary layer parameterizations, and grid spacing.

We now reduce the dimensionality of Eq. (3) by taking a
meridional average, which we denote via an overbar:

1
o:L—y/dy. (4)

Here, Ly is the meridional length of the region of interest
and y is the meridional coordinate. Though we refer to this
average as “meridional” throughout the text, for the purpose
of comparison with EBUSs in nature, this average might be
thought of instead as an along-coast average or as an average
following isobaths, under the assumption that the additional
metric terms introduced by such coordinate transformations
are negligible. We next perform a Reynolds decomposition
of the velocity and tracer fields:

u=u-+tu, (5a)
+c, (5b)

where primes ' denote perturbations from the meridional av-
erage. Taking a meridional average of Eq. (3) then yields
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Here, we have used Eq. (5a)—(5b) and the property that per-
turbations vanish under the average, i.e., u = = 0. We fur-
ther define V = 9,x + 9,2 as the zonal—vertical gradient op-
erator, and u = uXx +wz as the zonal-vertical velocity vector.
The square bracket indicates the difference between vc at the
northern and southern boundaries of the domain of integra-
tion, i.e.,

L,
[vely” = vely—r, — vely—o- @)

In its current form, Eq. (6) cannot be solved prognosti-
cally for ¢ because it includes correlations between pertur-
bation quantities, i.e., the eddy tracer flux u’c’. Assuming
that these perturbations are associated with mesoscale ed-
dies, we parameterize the eddy tracer flux following Gent
and McWilliams (1990) and Redi (1982). Specifically, we
decompose the eddy tracer flux into advection of the mean
tracer ¢ by “eddy-induced velocity” u* and diffusion of ¢
along the mean buoyancy surfaces (see Burke et al., 2015):

V(W) =V (07) = V- (k50 V)0) - ®)

Here, V| denotes the gradient along mean buoyancy sur-
faces (see Sect. 2.2. A more detailed derivation of Eq. (8)
is given in Appendix A. We additionally simplify the merid-
ional tracer advection term by assuming that dv/dy ~ 0, i.e.,
that the meridional tracer flux convergence is dominated by
meridional tracer gradients, and that correlations between
Kkdia and c are negligible, i.e., that the meridionally averaged
vertical diffusive tracer flux serves to diffuse ¢ downgradient.
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With these simplifications, the full equation for the physical
evolution of tracers is given by

ac - v L,
= = ve@o Iy
ar —_— L,

mean advection —_—
meridional advection

=V (@) =V (KisoV)€) + 9 (Kaiad:0). ©)
————/

phys

eddy advection eddy stirring mixing

The terms on the right-hand side of Eq. (9) are discussed fur-
ther in the following sections: in Sect. 2.2, we discuss the
evolution of the mean velocity # via the momentum equa-
tions, and in Sect. 2.3 we discuss the subgrid-scale parame-
terizations, i.e., eddy advection, eddy stirring, and mixing.

2.2 Momentum evolution equations

To evolve a meridionally averaged tracer ¢ using Eq. (9), the
meridionally averaged velocity field u3 is required. This ve-
locity field is evolved in MAMEBUS by solving a simplified
form of the hydrostatic Boussinesq momentum and continu-
ity equations with a linear equation of state (Vallis, 2017):

du 3¢ du
§=—u3-v3u+fv—a—+£<lcdia£>, (10a)
av dp 0 v
E:—u3-V3v—fM—a_+a_Z<Kdiaa_Z)a (10b)
9 _y (10c)
0z
Vi-u3 =0, (10d)
b=gab (10e)

Here, ¢ = p/po is the dynamic pressure, where pg is an ar-
bitrary reference density, b is the buoyancy, 6 is the potential
temperature, « is the thermal expansion coefficient (assumed
constant), g is the gravitational constant, and f is the Cori-
olis parameter. Note that we have assumed that momentum
is mixed by microscale turbulence following the same dif-
fusivity kgia as tracers (see Sect. 2.1), i.e., that the turbulent
Prandtl number (e.g., Kays, 1994) is exactly equal to 1.

As in Sect. 2.1, we now meridionally average Eq. (10a)—
(10e) to obtain evolution equations for # and v, and thus im-
plicitly also for w. This yields the following set of averaged
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equations:
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Here, we have made the frictional-geostrophic approxima-
tion (e.g., Edwards et al., 1998), assuming that the Rossby
number of the flow is small (e.g., Vallis, 2017), and thus that
momentum advection (second terms from the left in Eq. 10a—
10b) is negligible compared to other terms in the momentum
equation. This assumption may indeed have some limitations
in upwelling regions with steep topography and strong strat-
ification. Lentz and Chapman (2004) show that in the cross-
shelf momentum flux divergence balances the wind stress
and supports an on shore return flow, which can impact ni-
trate concentrations on the shelf (Jacox and Edwards, 2011).

On the other hand, we have retained the time-evolution
terms (leftmost terms in Eq. 10a—10b) to allow forward evo-
lution of the horizontal velocity fields; if these terms were
neglected, then these terms would need to be computed diag-
nostically at each time step. The resulting system is almost
identical to the T3W equations (Dauhajre and McWilliams,
2018), a time-varying extension of the turbulent thermal
wind balance (Gula et al., 2014), which was developed to ex-
plain the circulation of submesoscale fronts. The meridional
pressure gradient in Eq. (11a) is imposed, rather than solved
for prognostically, and is assumed to be set by the larger-
scale subtropical gyre circulation encompassing the EBUS,
which explicitly differs from the work done in Dauhajre
and McWilliams (2018) which focuses on more rapid time-
varying evolution on smaller scales. Together with the tracer
advection equation for potential temperature (i.e., Eq. 9 with
c=20), Eq. (11a)—(11e) comprise a closed set of equations
for the physical evolution of MAMEBUS.

In Eq. (11c), we have invoked the earlier assumption that
dv/dy ~ 0 (see Sect. 2.1), such that the averaged velocity
field is non-divergent in the x—z plane. This implies that the
zonal—vertical velocity field can be related to a mean stream
function v via

=¥ -2 (12)

These relationships allow us to calculate ¥ and thus w, from
u, subject to the boundary conditions

Y =0atz=0,z=7x). (13)

Here, z = 7, (x) is the mean sea floor elevation.
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Additional boundary conditions are required to solve
Eq. (11a)—(11e) prognostically. Specifically, we require that
the vertical turbulent stress in Eq. (11a)—(11b) matches the
wind stress applied at the sea surface and the drag stress at
the sea floor, with the latter formulated via a linear drag law.
Formally, these boundary conditions are

ou ov T

kdiam— =0, kgiaz— = —atz =0, (14a)
0z 9z po
ou  _ v _ _

Kdia— =TU, Kdia— =1V at z =N, (x). (14b)
0z 0z

Here, r is a linear drag coefficient and t” is the meridional
wind stress.

2.3 Physical parameterizations

In this section, we describe the parameterization of unre-
solved microscale mixing in the tracer evolution (Eq. 9) and
the horizontal momentum (Eq. 11a—11b), and of mesoscale
eddy advection and stirring in Eq. (9). This amounts to pa-
rameterizing the diapycnal diffusivity kgia, the isopycnal dif-
fusivity «jso, and the eddy velocity u*.

2.3.1 Diapycnal mixing

We formulate the diapycnal mixing coefficient «giy as a sum
of four distinct contributing processes: surface mixed layer
turbulence (kgm1), bottom boundary layer turbulence (ikppi),
turbulence due to convective overturns within the water col-
umn (kcony), and background mixing due to internal wave
breaking («pg). Formally, we write

Kdia(X, 2, 1) = ksml(X, 2) + Kbbl (X, 2)
+Kconv(xyz,t)+’<bg(xaz)- (15)

The terms on the right-hand side of Eq. (15) are discussed in
turn in the following paragraphs.

The diapycnal diffusivity in the surface mixed layer, kg1,
is prescribed to have the same structure as that used in the k-
profile parameterization (KPP) of Large et al. (1994). How-
ever, for simplicity, the mixed layer depth Hgmi(x) and maxi-
mum magnitude «gm1 (x) are prescribed functions, rather than
depending on the local surface forcing. The vertical profile of
Kdia in the surface mixed layer, i.e., —Hgm < z < 0, is given
by

Ksml (X, 2) = k0, Gpp(Tsml), (16)

where the dimensionless surface mixed layer vertical coordi-
nate osm| = —z/ Hgm is defined such that 0 < ogp < 1 within
the mixed layer. The structure function Ggpp(ogm)) is given
by

2
—osm(1 —osm)”, 0<osm <1,

Gkpp(o) =14 4 a7

0, Osml > 1,
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following Large et al. (1994) and Troen and Mahrt (1986).
The scaling factor of 27/4 ensures that Ggpp(osm) has a
maximum of 1 for 0 < oy < 1.

The diapycnal diffusivity in the bottom boundary layer,
Kbbl, 18 prescribed in the same way as xgpy) but over the depth
range My, < zZ < Np+ Hpbi(x). Thus, analogous to Eq. (16), we
prescribe

Kbl (X, 2) = K GKPP(Tbbl), (18)

where the dimensionless bottom boundary layer vertical co-
ordinate is defined as opp) = (2 — 7)) / Hobl-

At any point in space and time at which the water col-
umn is statically unstable, i.e., when N 2 < 0, we increase the
value of «gj, is increased locally to parameterize the effect
of density-driven convection. That is, we prescribe k¢ony fol-
lowing

0 2
Kooy N2 <O,
o =1 " (19)
0, N”=>0.

Finally, the background diapycnal mixing, kug(x, ), is sim-
ply prescribed as a constant background diffusivity. There are
others that can be used (e.g., St. Laurent et al., 2002), but we
opt for simplicity in the first version of this model.

2.3.2 Eddy advection and isopycnal mixing

We now discuss the formulation of the eddy advection
and isopycnal mixing terms in Eq. (9). As discussed in
Sect. 2.1, we follow the assumptions and formalism of the
Gent and McWilliams (1990) and Redi (1982) parameteriza-
tions, which are commonly used in ocean models that do not
explicitly resolve mesoscale eddies (e.g., Gent, 2011). These
parameterizations assume that eddy-induced fluxes of buoy-
ancy and tracer diffusion are directed along isopycnal slopes
and so must be augmented in the ocean’s surface mixed layer
(SML) and bottom boundary layer (BBL). Here, the isopy-
cnal slopes become very steep and isopycnals intersect the
sea surface and floor (Tréguier et al., 1997). MAMEBUS
therefore uses a modified form of the Ferrari et al. (2008)
boundary layer parameterization, in which eddy buoyancy
and tracer fluxes are rotated through the SML and BBL in or-
der to enforce vanishing eddy-induced mass and tracer fluxes
through the boundaries. Here, we summarize salient proper-
ties of this scheme, and in Appendix C we highlight differ-
ences between our scheme and that of Ferrari et al. (2008).

The eddy-induced velocity u* = (u*, w*), introduced in
Eq. (8), is non-divergent by construction (see Appendix A)
and so we write it as

s A

_ w2 20
" 0z YT Tax (20)

where * is the “eddy stream function”. This advecting
stream function is assumed to be the same for all tracers,
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which is accurate in the limit of small-amplitude fluctuations
of the velocity and tracer fields (Plumb, 1979), and takes the
form

¥* = Kgm Sem- 1)

Here, «gm is the Gent-McWilliams diffusivity and the Sgp,
is the is the Gent—-McWilliams slope. The latter is conven-
tionally set equal to the mean isopycnal slope (Gent and
McWilliams, 1990):

Sint = —0xb/d,b. (22)

However, we allow Sgn, to diverge from Siy¢ in the SML and
BBL, in part to ensure that the no-flux surface and bottom
boundary conditions are satisfied (Ferrari et al., 2008):

Yy*=0atz=0, z=",x). (23)
Specifically, we prescribe

Ssml, —Hsmi(x) <z <0,
Mp(x) + Hpp1 (%) < 2 < —Hgmi(x),  (24)
Spbl,  Mp(X) < 2 < Mp(x) + Hppl (X).

ng = Sint,

The formulations of the modified slopes Ssmi and Spp are
discussed below in the following sections (“surface mixed
layer” and “bottom boundary layer” subsections).

The isopycnal mixing operator serves to mix tracers down
their mean gradients, in a direction that is parallel to mean
isopycnal surfaces in the ocean interior, following (Redi,
1982). This may be written componentwise as

_ a ac ac
v (Kisov\lc) ~ox Kiso 7= + KisoSiso 7=

ax 0z
+ 2 (o Siso 25 4 sig082, 26 (25)
KisoSi KisoS; )
3z 15091s0 9x 1509{s0 9z

where Sjs, denotes the slope of the surface along which the
tracer is to be mixed and is assumed to be small (Sjs, < 1).
Similar to Sgm, this slope is conventionally set equal to the
mean isopycnal slope Siy;, but we apply modifications to the
formulation of Sjs, in the SML and BBL to ensure that there
is zero eddy-induced tracer flux through the domain bound-
aries, i.e.,

KiSOV”E-ﬁ:OatZ:O, 7 =T (x), (26)

where 7 is a unit vector oriented perpendicular to the sea
surface or sea floor. Specifically, we prescribe

Ssml,  —Hsmi(x) <z <0,
Siso =1 Sint»  Tp(x) + Hobl(x) < 2 < —Hgp, (27)
Sbbls  Mp(X) <z < 7 (x) + Hpbl (X).
Thus, Sgm and S5, are identical everywhere above the BBL.
The need for a distinction within the BBL is explained below

in the “surface mixed layer” and “bottom boundary layer”
subsections.
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Surface mixed layer

We now discuss the formulation of Sgy, the effective isopy-
cnal slope in the surface mixed layer. Following Ferrari et al.
(2008), we construct Sgpy in a way that avoids singularities
due to the vanishingly small vertical buoyancy gradients, and
thus near-infinite isopycnal slopes, that occur in the mixed
layer. This is achieved by using the vertical buoyancy gradi-
ent at the base of the mixed layer to define the effective slope
as

0xb
Ssml = _Gsml(o-sml)aE;v (28)

2V 1z=—Hsmi

where ogm) = —z/Hgsm 1S a dimensionless vertical coordi-
nate for the SML, as in Sect. 2.3.1. The corresponding eddy
stream function (Eq. 21) is identical to that of Ferrari et al.
(2008):

Ox

V= _KgmGsml(Usml) , 2> —Hgy. (29)

8Zb|Z=*Hsml
The structure function Ggmi(z) is required to enforce con-
tinuity of the vertical tracer fluxes and flux divergences at
the surface and at the base of the mixed layer. For example,
Eq. (23) requires that Gy vanishes at the surface:

Gsml(o) =0. 30)

We further require that the eddy stream function and eddy
residual tracer fluxes be continuous at the base of the SML,
i.e., that Sgm) = Sint, which requires that

Gem(1) = 1. (31)

Finally, we require continuity of the divergence of the eddy
tracer flux in order to avoid producing singularities at the
SML base. The zonal and vertical components of the eddy
tracer flux are

— ac ac ac
u'e = Knggma_Z — Kiso <£ + Siso &) ) (32a)
w'c’ = —Kom S, oc — KisoSi oc + S; oc (32b)
= gmPgm ax is09is0 ax iso a2 .

It may be shown that continuity of V u'c’ across z = — Hgmi
is guaranteed if
a5, 0S; H

sml _ int - Ggml(l) _ sml ’ (33)

0z ZziHsJ;ﬂ 0z =—H,, Asml

where Agmi = 8,.b/9,b|,—— H.y 1S @ vertical length scale for
eddy motions at the base of the mixed layer.

The simplest form for Gy (z) that satisfies conditions for
Egs. (30), (31), and (33) is a quadratic function of depth:

Hgmnl Hgpm
Gsmi(Osm1) = — (1 - ﬁ“) ot + <2 - ;““ )asml. (34)

sml sml
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Equation (34) is currently implemented in MAMEBUS. A
more sophisticated form of Ggyy that arguably has stronger
physical motivation is given by Ferrari et al. (2008). They
split the SML into a true mixed layer, in which G varies
linearly (and so the eddy velocity is approximately uni-
form), overlying a transition layer, in which Ggpni(osm])
varies quadratically.

Bottom boundary layer

The scheme described above for the SML relies on the fact
that the ocean surface is approximately flat, which allows the
same effective slopes Ssmi to be used for Sgm and Siso. The
sloping sea floor requires separate BBL slopes, Spb1 and Spbi,
and structure functions, Gpl and Gy, to satisfy the required
conditions of no volume nor tracer flux through the boundary,
i.e., Egs. (23) and (26).

Analogous to the SML, we define the effective slope Spp)
as

Oxb

— , (35
02Dz =ny+ Hy

Sbbl = —Gob1(Obbl)

where opp) = (z—np(x))/ Hpp1(x) is the BBL vertical coordi-
nate, as in Sect. 2.3.1. The eddy stream function in the BBL
is therefore

a.b

— , 2<np+ Hppl.  (36)
aZb|Z=77b+bel

U* = —Kgm Gobl (Tbbl)
To satisfy the condition of zero volume flux through the sea

floor, Eq. (23), the effective slope must vanish at z = np(x),
which requires

Gobi(0) = 0. 37

To ensure continuity of the eddy stream function at the top of
the BBL, we require that Sy approach Sy, i.e.,

Gpbi(1) =1. (38)

Finally, to ensure continuity of the eddy bolus velocity, we
require that the gradient of Sy, be continuous at z =1, +
Hyp1. This imposes a constraint analogous to Eq. (33) on
Ghbi:

Hpp

G (1) = ——, (39)
Abbl

where App = b, /b, |z:ﬁb + Hopy is a vertical length scale for

eddies at the top of the BBL. To satisfy Eqgs. (37)-(39), we
select a quadratic form for the structure function Gyp)(0pp)):

Hyp Hyp
Gobi(Obbl) = — (1 + —) 0'b2b1 + (2 + —) obbl.  (40)
Abbl Abbl

However, the effective slope Spp can no longer be used to de-
fine Siso in the BBL: Eq. (26) requires that the effective slope
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be aligned with the bottom slope at the sea floor, Sp = 07y,
at z =T1y,. We must therefore employ a modified effective
slope Spbi in the isopycnal mixing operator, as expressed in
Eq. (27). We define Sy as

St = Sbit + (1 — Gopi(2)) b (41)

where CN}bbl (obb1) is a modified structure function that also
vanishes at the ocean bed:

Gpi(0) = 0. (42)

Continuity of the eddy tracer fluxes at the top of the BBL
requires that

Gop (1) = 1. 43)
Finally, continuity of the eddy flux divergence is enforced by

3G bl
0z

=0. 44)
z=Mp+Hobl

To satisfy Egs. (42)-(44), we select a quadratic form for the
structure function Gyp)(oppb1):

Ghb(Gbbl) = Obb1 (2 — Tbb1)- (45)
2.4 Biogeochemical model formulation

The current biogeochemical model implemented in MAME-
BUS is an NPZD (nutrient—phytoplankton—zooplankton—
detritus) model. This NPZD model is modeled after the
size-structured AstroCAT (Banas, 2011) and Darwin models
(Ward et al., 2012). For the purpose of this paper, we reduced
the size-structured ecosystem model to single phytoplankton
and zooplankton size classes, while preserving the option to
run multiple size classes in future versions of the model. We
also include a detritus variable, which allows for sinking and
export of organic matter away from the euphotic zone and
redistribution of nutrients in the water column.

The biogeochemical equations in MAMEBUS are formu-
lated similarly to previous NPZD models but cast in terms
of the meridionally averaged nutrient, phytoplankton, zoo-
plankton, and detritus concentrations. We neglect additional
terms that would be introduced by first formulating the equa-
tions and then taking the meridional average, e.g., covari-
ances of the type P’Z’. This assumption is partially pred-
icated on the idea that zonal gradients in biogeochemical
tracers (e.g., nutrients and chlorophyll) are much stronger
than meridional gradients, as supported by observations and
models (Fiechter et al., 2018). For example, Venegas et al.
(2008) show that average chlorophyll concentrations during
the upwelling season vary approximately 2-fold in the north-
ern California Current System, whereas observations from
the California Cooperative Oceanic Fisheries Investigations
(CalCOFI) (Fig. 7) show variations by an order of magni-
tude between nearshore and offshore stations. Along-shore
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gradients in chlorophyll are observed along the coast, where
they are driven by wind and topographic variations; however,
they are generally much smaller than the gradient between
the coast and the offshore region (Fiechter et al., 2018). We
recognize that this is a simplification of the true variability
in EBUSs, but we consider it appropriate on average over
the entire upwelling system, in particular within the ideal-
ized MAMEBUS framework, and plan to reassess it in future
work.

We drop the bar notation indicating a meridional aver-
age for this section, with the understanding that all vari-
ables denote meridionally averaged quantities. In the follow-
ing, we include size-dependent uptake and grazing, along
with variable sinking speeds for detritus, to retain essen-
tial size-dependent biogeochemical interactions and export
fluxes. This will facilitate a future introduction of multiple
size classes in the model. All variables and coefficients are
given in Table 1. We note that all of the parameter values and
equations described below measure time in days, whereas
more generally MAMEBUS measures time in seconds; ap-
propriate conversions are made in the model code to ensure
dimensional consistency. The main conservation equations
for biogeochemical tracers are

% =—U(N,I,T,P)+R(D), (46a)
bio
3P
m =U(N,I,T,P)—G(P,Z)— M(P), (46b)
21 g, 2) - M), (46¢)
or bio
D
| = M(P)+M(Z)+ (1 -1G(P, Z)

L D~ R(D), (46d)

0z

where T (°C) is the model temperature, / (Wm_z) is the
local irradiance profile, N (mmolNm™3) is nitrate con-
centration, P (mmolNm~3) is phytoplankton concentra-
tion, Z (mmolNm™3) is zooplankton concentration, and D
(mmol N m™—3) is the detritus concentration. The terms on the
right-hand sides of Eq. (46a)—(46d) are explained in the fol-
lowing subsections.

2.4.1 Nutrient uptake

Common controls on phytoplankton population are bottom-
up limitation (i.e., nutrient control), and top-down grazing
by zooplankton (Sarmiento and Gruber, 2006). We formu-
late bottom-up controls using typical choices for light- and
temperature-dependent terms, and Michaelis—Menten uptake
(Sarmiento and Gruber, 2006). The functional form of uptake
is given by

) N
UNN,I,T,P)=pDe(THY U™ ———P, 47
N +kn
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where ¢(/) and ¢(T) are light- and temperature-limiting
functions, respectively. The light attenuation is modeled by
integrating the Beer—Lambert law, following Moore et al.
(2001):

a1 (2)
92 = _kparl(z)a where Ip = I(z=0) = Oswlp, (48a)
kpar = kw + P - ke, (48b)

and the light-dependent uptake function is modeled follow-
ing Sarmiento and Gruber (2006),

1(2)

o) = ———. (49)
VI3 +1(2)?

The temperature component of the uptake function is

@(T)=eTT—T0), (50)

The maximum uptake rate is an allometric relationship de-
fined as

£, b
Uma =au<—‘°> , (51)
Lo

where £, is the user-determined phytoplankton size ex-
pressed as equivalent spherical diameter (ESD), and {9 =
1 um is a normalized length scale, with all allometrically de-
fined variables listed in Table 2. While there are other options
for the bases of these allometric relationships outlined in this
section (e.g., cell volume), we make the decision to use ESD
as a measure of cell size. Finally, the half-saturation coeffi-
cient is ky = 0.1 mmolNm™3.

24.2 Grazing

Top-down processes are represented by zooplankton grazing
on phytoplankton. Andersen et al. (2016) noted that there
is an optimal length scale for active predation and grazing,
as a strategic trade-off for optimal biomass assimilation. We
make the assumption that the biomass assimilation of phy-
toplankton by zooplankton also follows Michaelis—Menten
dynamics, then the functional form of grazing is given by
max 19 P

G(P,2)=G kp+ﬁPZ’ (52)
where the maximum grazing rate is defined by an allometric
relationship defined as

O -
0

where d~! represents a “per day” quantity. We define a Gaus-
sian distribution about an optimal grazing length-scale fol-
lowing Banas (2011):

2 = exp (_ log(£p) Zéoglo(eopt)> ’

(54)
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Table 1. Parameters and values used in the ecosystem model implemented in MAMEBUS. Coefficients without explicit references are chosen

by the user.
Parameter Value  Units Description Reference
Ip 0.45 Fraction of light available for photosynthesis (PAR) Moore et al. (2001)
ke 0.01 1 (mmolN)m_l Absorption coefficient for photosynthesis Moore et al. (2001)
kp 3  mmolNm~3 Half-saturation coefficient for phytoplankton grazing  Banas (2011)
kw 0.04 1m™! Absorption coefficient for water Moore et al. (2001)
AL 0.25 logjgum Width of grazing profile Banas (2011)
Lp 5 um Length (ESD) of phytoplankton cell
£, 10 um Length (ESD) of zooplankton cell
A 0.33 Biomass assimilation efficiency
Osw 340 Wm™2 Surface irradiance Moore et al. (2001)
rr 005 1°C”! Temperature dependence of nutrient uptake Ward et al. (2012)
Fremin 004 1471 Remineralization rate Ward et al. (2012)
Ty 10 °C Reference temperature
Mp 0.02 Phytoplankton mortality as a fraction of growth rate ~ Banas (2011)
Hz 0.97-12.57 m3 (mmolNd)~! Density dependent zooplankton mortality Edwards and Bees (2001)
Wgink 10 md™! Sinking speed of detritus

Table 2. Parameters and values used in the ecosystem model implemented in MAMEBUS. Coefficients without explicit references are chosen

by the user.

Parameter =~ Value Units  Description Reference

ay 26 1d71 Uptake rate Tang (1995)

by —0.45 Scaling parameter for uptake Tang (1995)

ag 26 147! Grazing rate Hansen et al. (1994)
bg —-0.4 Scaling parameter for grazing Hansen et al. (1994)
do 0.65 um Optimal predator—prey length scale Hansen et al. (1994)
bo 0.56 Scaling parameter for optimal predator—prey interaction = Hansen et al. (1994)

where A/ sets the width of the optimal grazing profile and
defines a band of grazing about the optimal prey size, £opt. By
allowing for a variable band of grazing, we are able to control
the assimilation efficiency of phytoplankton by zooplankton
through direct preferential grazing. Accordingly, we model
the optimal prey size based on a preferential grazing profile
centered about an optimal predator—prey length scale:

.\
Lopt = ao| — . (55)
)

2.4.3 Mortality

Mortality closure terms often set important internal dynam-
ics in ecosystem models (Poulin and Franks, 2010). While
linear mortality terms are generally used for phytoplank-
ton, zooplankton mortality is often modeled via a quadratic
term to avoid unrealistic oscillations and stabilize the solu-
tion (Poulin and Franks, 2010). The quadratic mortality term
may be rationalized as a representation of mixotrophic graz-
ing, zooplankton self-grazing, and higher-order grazing in
NPZD models (Raick et al., 2006). Therefore, we model phy-
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toplankton mortality as

M(P) = p, U™ P, (56)
and zooplankton mortality as

M(Z) = p,Z>. (57)
2.44 Remineralization and particle sinking

Sinking particles are an essential component of the verti-
cal transport of nutrients from the surface to the deep ocean
(Sarmiento and Gruber, 2006). Once particles sink past the
euphotic zone, they are remineralized and returned to the
subsurface nutrient pool. In this model, we represent rem-
ineralization processes via a linear rate, i.e.,

R(D) = rreminD, (58)

where rremin 1 the specific remineralization rate.

Particles sink at a constant average speed in the water col-
umn, following Eq. (46d). At the bottom boundary, we im-
pose zero sinking flux, i.e., wginx = 0 at z = N, (x). Thus, any
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nutrients that sink to the sea floor as detritus must remineral-
ize there. This allows for redistribution of nutrients by mix-
ing within the bottom boundary layer, diffusion into the inte-
rior, and transport via upwelling onto the shelf.

2.5 Non-conservative terms

In this section, we describe the treatment of all non-
conservative terms in the tracer evolution equation. MAME-
BUS allows arbitrary restoring of all tracers, which may be
used, for example, to impose offshore boundary conditions
or to impose restoring at the sea surface. Fixed fluxes of all
tracers may also be imposed through the surface. More pre-
cisely, we formulate the non-conservative tracer tendency as

ac
ot

ac
at

e

= . (59)
nct at

flux

restore

The restoring and surface flux components of this tendency
are discussed separately below.

2.5.1 Restoring

The restoring of a tracer is represented as an exponential de-
cay to a prescribed, spatially varying tracer field, ¢;(x, z),
with timescale #(x, z). The tracer restoring is then formu-
lated as

ac c—cr

e =— . (60)

restore
2.5.2 Tracer fluxes
Surface fluxes are represented as a tendency in the tracer con-

centration in the surface grid boxes. For an arbitrary tracer c,
we formulate the surface flux term as follows:

ac 0F§ F¢ o, =0,
_C — flux , Fﬂux — { flux,0 z (61)
0t |qux 0z 0, z < 0.

Here, Fﬂcuxy0 is the downward flux of ¢ (units of [¢Jms™!)
at the surface. For the case of buoyancy, the surface flux is
imposed as a surface energy flux, Qs (Wm™2), with

b 8a Qs
=——, 62

flux,0 00 CP ( )

where Cp = 4000] K~ 'kg™! is the specific heat capacity.

3 MAMEBUSvV1.0 algorithm

In this section, we discuss the numerical solution of the
model equations presented in Sect. 2. This entails a recast-
ing of the equations in terrain-following, or *“sigma”, coor-
dinates (e.g., Song and Haidvogel, 1994; Shchepetkin and
McWilliams, 2003), followed by the spatial discretization of
the equations and algorithms for numerical time stepping.
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3.1 Formulation in terrain-following coordinates

We solve the model equations presented in Sect. 2 in a co-
ordinate system that “stretches” in the vertical to follow
the shape of the sea floor. Such a coordinate system avoids
“steps” in the sea floor that arise, for example, when using
geopotential vertical coordinates and allows fine vertical res-
olution of the bottom boundary layer (e.g., Song and Haid-
vogel, 1994; Shchepetkin and McWilliams, 2003). Formally,
we make a coordinate transformation (x, z) — (x, o), where
o is a dimensionless vertical coordinate and is defined such
that 0 =0 at z=0and 0 = —1 at z =7, (x). This transfor-
mation requires a relationship between z and o via a trans-
formation function

7=1{(x,0). (63)
For example, a “pure” o coordinate corresponds to the choice
¢(x,0) = —ohp(x), (64)

where hp(x) = —7p(x) is the meridionally averaged water
column thickness. However, this is not necessarily the most
practical choice for numerical applications, in which it is use-
ful to focus the vertical resolution over certain depth ranges
(especially those close to the top and bottom boundaries of
the ocean). MAMEBUS currently implements the UCLA-
ROMS (Shchepetkin and McWilliams, 2005) transformation
function:

heo + hy(x)C (o)
,o)=nh — 7. 65
{(x,0) b(X)[ PREAS } (65)
Here, C (o) is the stretching function, defined as
exp <9b6(o)) —1
= b eb > 07

CO=1 "T—exp(—) (66)
C(o), O <0,

where
1 — cosh(650) 0.0

~ I >

C(o)=14 cosh(6)—1" °~ 7 (67)
—0?, 6 < 0.

Here, C and C are the bottom and surface components of the
stretching function, respectively. The parameters 65 € [0, 10]
and 6, € [0, 4] are surface and bottom stretching parameters;
larger values cause the near-surface and near-bottom portions
of the domain to occupy larger fraction of o space. The pa-
rameter /. defines a surface layer thickness, in which the co-
ordinate system is approximately aligned with geopotentials,
provided that iy > he.

We now write the physical tracer evolution (Eq. 9) in o
coordinates. For a given function f = f(x, z(x,0)), we can
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write derivatives with respect to x and o as

x|, dx|, dx dz|,
o = Ky . (68b)
do|, do 0z|,

Using these identities, we may write the divergence of an
arbitrary vector F, with components F) and F'@ in the %
and Z directions, respectively, as

0 0

v.r. Yl pwy 9| po
ox |, + a9z,
0
— -1 (x)
—1 2z F )
o), (e
19 @) ®)
5 | (FO—5F®). (69)
o X

Equation (69), combined with the definition of the mean
stream function (Eq. 12), allows us to write the mean ad-
vection term in Eq. (9) as

z)

) . (70)

An analogous expression may be obtained for the eddy
advection term, V - (u*c), in Eq. (9), using the definition
(Eq. 21) of the eddy stream function. Next, we apply Eq. (69)
to the isopycnal mixing operator, defined by Eq. (25), in
Eq. (9) to obtain

_ Y

7C_

V-(%)=V~<—E%
0z

V- (kisoVie) =45 o

0 Jac

x|, CoKiso a

el
x

o

+(Siso - SU){()' 90

| 0 oc
+ ¢, 3_0' i |:Kiso(Siso —Ss) <£ .
1 dac
+(Sis0 - Sﬂ)é‘g % x)] ’ (71)

where S, = ¢, is the slope of surfaces of constant o in x—
Z space, i.e., the slope of the o coordinate grid lines. Thus,
the isopycnal mixing operator is essentially just modified by
subtracting S, from Sjs, to obtain the mixing slope relative
to the slope of the o coordinate grid. Over most of the water

https://doi.org/10.5194/gmd-14-763-2021

773

column, Sjso is equal to the isopycnal slope Sin, given by

ab ab ab
0x ox 7 9z
Sint = ——— L=— g — 2
b ab
0z 0z
X X
ab
0x
=——7—+5. (72)
C_l b
7 do
X

Thus, the quantity Sj,; — Sy can actually be computed more
directly than the true isopycnal slope, as

ab
0x
- (73)
A
7 9o

Sint — So =

X

Finally, the o coordinate transformation of the vertical
(quasi-diapycnal) mixing operator is

0 ac _1 0 {71 ac (74)
—| | kdia — = — 1| | ki —1 ).
9z N dia 9z N Co‘ 90 N diaby Fye i
To summarize, we write Eq. (9) in o coordinates as
ac
- = Gadv + Giso + Gdia + Glats (75)

where the tendency terms are

T
JEL

Gy =—C; ' —
adv %o X do

J]

—¢! 2 (Ea—‘w ) (76a)
do |, ax |,
Giw:é‘_li |:§ Kis (E
S o 9x . o Kiso 9x ,
(S — S0 28 )}
do |,
_1 0 ac
+¢, % . |:Kiso(Siso - S) <a 3
0
+(Siso_Sa)Cg o >i|’ (76b)
do |,
Gaia =, 2 <Kdia§l o > (76¢)
7 9o |, 7 9o,
Gl = ——lely". (764)
y
Here, we define
v =y 4y (77)
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Figure 2. Illustration of the numerical grid used to compute solu-
tions to the model equations.

as the total advective or “residual” stream function (Plumb
and Ferrari, 2005b), and we have added factors of ¢, in
Eq. (76a) so that the fluxes can be directly identified with the
zonal velocity, u’ = -4 19y /30|y, and the dia-o veloc-
ity, " = 8y 7 /dx|,. Note also that every derivative with re-
spect to o is multiplied by ¢~ !, and that their product o 13,
is equivalent to a derivative with respect to z. This allows us
to simplify the numerical discretization by avoiding explicit
references to o coordinates and computing these derivatives
via finite differencing in z coordinates.

3.2 Spatial discretization of the tracer evolution
equation

We solve Eq. (9) using the slope-limited finite-volume
scheme of Kurganov and Tadmor (2000) for systems of con-
servation laws. We divide the domain into a grid of N, by
N cells, with uniform side lengths Ay and A; in x/¢ space,
as shown in Fig. 2. We store the cell-averaged value of ¢ at
the center of the (J, k)t grid cell, which we denote as ¢ (7).
The mean, eddy, and residual stream functions are most nat-
urally defined at the cell corners, as this allows a straightfor-
ward calculation of the residual velocities at the cell edges:

+ R
¥ Vivi2k12 = Vit1/2k—-12
Witk =~ ) (78a)
’ (A j+1/2.k
+ ¢
Vi -V
¥ ~ Viniar12 = Vi-1/2,k4172
@i = ™ . (78b)

Here, we use A, as a shorthand for the spatially varying ver-
tical grid spacing, defined as a centered difference between
adjacent grid points. The vertical grid spacing is defined for
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all cell centers, corners, and faces:

(ADjk = Zjk+1/2 = Zjk—1/2 (78¢)
(A j+1/2.k = Zjt1/2,k+1/2 — Zj+1/2.k—1/25 (784d)
(A k4172 = Zjk+1 — Zj k> (78e)
(A j+1/2,k+1/2 = Zj+1/2,k+1 — Zj+1/2,ks (781)

where zj11/2 1+1/2 denotes the physical elevation of each
grid point. Note again that & is the velocity normal to the
upper and lower faces of the grid cell and so differs slightly
from the true vertical velocity w.

To compute the advective tendency, G,gy, the Kurganov
and Tadmor (2000) scheme requires a linear interpolation of
¢ over each grid cell. The linear slopes in the x and ¢ di-
rections around ¢ x (f) are calculated via slope-limited finite
differences between ¢ x (¢) and its adjacent grid points:

Cjt+1,k —Cjk Cj+l,k —Cj—1k
A, 2A,

g ik — Lk _Cfl’k>, (79)
Ay

)

(9xC) j,k = minmod (9

g Cikt1 ~Cik Cjktt =Cjik-1
9 9
(A jk+1/2  Zjk+1 —Zjk—1

g Cik — Gkt _E"”“1> (80)
(A jk—172 )"

(9;€) j k = minmod <

with parameter 1 < o < 2. The “minmod” function evaluates
to zero if its arguments have differing signs and otherwise
evaluates to its argument with smallest modulus. The cell
center estimates of the derivatives are then used to construct
two different estimates of ¢ at each cell face via

S =ikt %Ax(axa joks (81a)
ok = Crrk = %Ax(axaﬁl,kv (81b)
Ej;c)+1/2 =Cjk+ (Zjkr1/2 —2j.00(0:0) jk (81c)
e =Tk — Gkt — k1D @) a1 (81d)

Finally, advective fluxes are determined at the cell faces us-
ing an estimate of the maximum propagation speed in the
system, which in our case is simply the residual velocity, and
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thus the fluxes reduce to an upwind approximation:

w _1 t —(+) —(5)
Filipg= E(Az)ﬂrl/%lc [“}H/z,k (Cj+1/2,k +Cj+1/2,k)

+ —(+) —()
o] (Cj+1/2,k - Cj+1/2,k):| ’

(82a)
1
() _ T —=(+) —(=)
Fihip= 5 [wj,k+l/2 (Cj,k+1/2 +Cj,k+1/2)
T —(+) —(=)
=@ 1110l (Cj,k+l/2 - Cj,k+1/2)] . (82b)

For this version of the model, the formulation of the
Kurganov and Tadmor (2000) scheme considers only the
maximum propagation speed of the momentum, u, and ex-
cludes the internal gravity wave speed which is supported
with the momentum calculation in Sect. 2.2. As a result, this
would alter the overall advective fluxes; however, we omit
this in the current version of the model and note that the full
formulation can be implemented here, but we choose to leave
this calculation to be updated in a future version of the model.
The advective tendency in (x, z) space is then computed via
straightforward finite differencing of these fluxes:

(u) (u)
(Gad) ik = _Fj+1/2,k - Fj—l/z,k
adv)j,k —
/ Ay(A)jk
(=) (@)
B Fj,k+1/2 - Fj,k—l/z B F;'),k (83)
(Az)j,k Ly

The advective discretization (83) requires the residual stream
function to be known on all grid cell corners, which allows
the numerical fluxes to be computed at the cell edges. The
mean stream function ¥ is computed from the mean velocity
field via Eq. (12):

k
Vivi2k+12 =" Zﬁj+1/2,k(Az)j+1/2,k- (84)

m=0

The eddy stream function (Eq. 21) depends on the “true”
slope (Eq. 72) of the local b contours, which we discretize
as

(xD12) j+1/2,k41)2

(Sin) j+1/2,k+1/2 = — (85)

(0:b1x) j+1/2.k+1/2
The calculation of the derivatives with respect to x and z is

described in Sect. 3.5. We then construct ¥* on cell corners
as

Vi 2 k172 = (Kgm) j+172,k+1/2(Sind) j+1/2,k+1/2- (86)

The tracer tendency due to isopycnal diffusion, Gigo, is dis-
cretized following the formulation of Kurganov and Tadmor
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(2000) for parabolic operators.
H;fr)uz,k = (D) j+1/2.k(Kiso) j+1/2,k
Cit+1,k —Cjk
- [ﬁA—J + (Siso — So) j+1/2.k
X
(9:0) juk ~I—2(3z5)j+1,k ] 7 872)
H;ﬁrl/z = (Kiso) j,k+1/2(Siso — So ) j k+1/2
| 0x) ik + (3x€) j k41
2
Cjk+1 —Cjk
+(Siso = So) jk+1 2/—} : (87b)
B T Re bk (AZ)jk+1/2

where (0;C) j k, (0;€) j+1,k, (0xC) j k, and (3xC) j k+1 are com-
puted via Eq. (81a)—(81d). In the interior, the isopycnal dif-
fusion slope Siso = Sint and is calculated on cell corners via
Eq. (85) and interpolated to cell faces via

1
(Siso) j+1/2,k = 2 ((Siso) j+1/2.k+1/2

+(Siso) j+1/2,k—1/2) » (88a)
(Siso) jk+1/2 = 3 ((Siso) j+1/2.k+1/2
+(Siso) j—1/2,k+1/2) - (88b)

The diffusive tendency is then computed via straightforward
finite differencing of the H fluxes:

(x) (x)
Hi o —HiZk
Ax(A)jk

(o) (o)
_ Hiip—Hi i

(A jk

The tracer tendency due to diapycnal mixing, Ggia, iS cOom-
puted implicitly. During each time step, all other physical
and biogeochemical tendencies are computed and used to ad-
vance ¢ x forward one time step Ay, i.e.,

(Giso)j,k = -

(89)

& =T+ FIE. (90)

Here, n denotes the time step number, and ¢* denotes an es-
timate of ¢ at r + A (see Sect. 3.3 for details of the time-
stepping schemes). The updated tracer concentration is then
further modified via the addition of a “correction” due to di-
apycnal diffusion. At each longitude, or for each j, we solve

—n+1 —x%
Cik ~Cik 1
At Zj k4172 — Zjk—1)2
S =T
| (Kdia) j k12—
ikl —Zjk
E?,Jrkl _E;%,Jrkl—l
—(Kdia) jk—12————— |. 1
ik —Zjk—1
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Equation (91) defines a tridiagonal matrix system of alge-
braic equations for the unknowns {Eﬁl |k =1...N;}, which
is inverted using the Thomas algorithm.

Finally, the meridional advection is discretized via a

straightforward upwind advection scheme:

(c)
ik u
(Glat)j,k = ? (Cj,k - Cj,k) ,

1 .
(c) T
Vi = 5 (”j+1/2,k + U,L]/z,k) ; 92)

where v© denotes the meridional velocity on tracer points
and c" denotes the upstream tracer concentration, defined as

N
c v<0

u J.k ’

M= (93)

Jk { st'kv v>0.

Here, ¢N and ¢S are the tracer concentrations at the northern
and southern ends of the domain, respectively. In all of the
steps listed above, conditions of zero residual stream func-
tion and zero normal tracer flux are applied at the domain
boundaries. These conditions are imposed by simply setting
¥ T to zero on all boundary points and by setting the numeri-
cal fluxes (F, H, etc.) to zero on the boundary cell faces.

3.3 Temporal discretization

MAMEBUS evolves the model equations forward in time
using Adams—Bashforth (AB) methods Durran (e.g., 1991)
modified to allow for adaptive-time-step sizes. In this section,
we outline the derivation of these methods and formally show
the derivation in Appendix B. We implement the adaptive-
time-step AB methods because this family of methods is nu-
merically stable with our scheme for the momentum equa-
tions (see Sect. 2.2). We then describe the constraints on the
time step imposed by the Courant—Friedrichs—Lewy (CFL)
condition.

3.3.1 Adaptive-time-step Adams—Bashforth methods

Our time-integration scheme uses a family of time-step-
variable Adams—Bashforth integrative methods. This specific
formulation of the AB methods allows for the model time
step to be adjusted dynamically following the CFL condi-
tions described in Sect. 3.3.2. Consider a tracer quantity ¢
that evolves according to

ac

i ft c@)). %94)
Here, the function f conceptually represents the entire
model state, including the physical, biogeochemical, and
non-conservative tendencies. We make a note here that the
diffusive component of the time-integration step is calculated
implicitly and not included in the ABIII integration step (see
Eq. 91). We implement the third-order Adams—Bashforth, or
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ABIII method, in this version of the model as the default op-
tion for time integration.

ABIIL ¢(tyy1) = c(ty)

+l( o A2 QAL +3AL,)
6 Aty 1(Aty + Aty—1)
ot AtE L QAL +3A0, +3A1,1)
At,_1 Aty
Aty 1 QAL +6ALy 1 Aty +3Ak, 4
4o Aty_1+6ALZ+6 AL, Aty_1)

(At, + At,—1) Aty

95)

The first two time steps require the lower-order methods.
We implement a forward Euler for the first time step and a
second-order AB scheme (defined below) for the second time
step:

Aty

ABIL: ¢(ty41) = c(tn) + Tzl Qf (b (1)) Aty

+ f(tl’la C(tn))Atn-H
—fta—1, c(tn=1)) Atpg1). (96)

Here, the notation At¢, indicates the nth time step. Deriva-
tions for the adaptive-time-stepping ABII and ABIII methods
are given in Appendix B.

3.3.2 CFL conditions

MAMEBUS selects each model time step adaptively to en-
sure that time stepping is numerically stable. The time step is
chosen to ensure that the CFL conditions for each of MAME-
BUS’s various advective and diffusive operators, described in
preceding subsections, are satisfied.

The time step for advection of tracers is limited by the
timescale associated with advective propagation across the
width of a grid box (Ay or A;). These constraints can ap-
proximately be expressed as

At <, (973)

At <— (97b)

(Durran, 2010). Here, ujgy, is the maximum horizontal propa-
gation speed of internal gravity waves (Chelton et al., 1998):

1
g = / Ndz. (98)
T

Particulate sinking in the NPZD model is also calculated ex-
plicitly and constrains the time step via a similar CFL crite-
rion:

(Ar)

At < ,
|wgink|

99)
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where wgink is the sinking speed of the particles.

We apply additional constraints on the time step to en-
sure that diffusive operators are stable. The standard numer-
ical stability criterion for a Laplacian diffusion operator is
(Griffies, 2018)

1 A2
At < ==,

> (100)

where « is a diffusion coefficient and Ay is the spatial grid
spacing. In the horizontal (Ag = Ay, the diffusion coeffi-
cients that determine the diffusive time step are the eddy
diffusion and isopycnal diffusion coefficients, when « = «kgm
and k = kjgo, respectively. I In the vertical (A = A;), the
diffusive time step is determined by the diapycnal diffusiv-
ity, K = Kkdia, and by the vertical component of the eddy and
isopycnal diffusion operators, x = /cngizm and Kk = /qSOSizm,
respectively (see, e.g., Ferrari et al., 2008).

3.4 Discrete momentum equations and barotropic
pressure correction

In this section, we describe the discretization of the mo-
mentum equations presented in Sect. 2.2, specifically in
Eq. (11a), (11b), and (11c). To facilitate our discretization,
we split the pressure, ¢, into barotropic and baroclinic com-
ponents:

0
8
b= +—/,odz. (101)
- £0
barotropic z
—_——
baroclinic

The barotropic and baroclinic components correspond to the
pressure at the surface and the hydrostatic pressure variation
with depth, respectively.

The numerical time integration is calculated in a series
of steps which include an explicit calculation of the non-
diffusive time step, an implicit calculation of the vertical
diffusion, and a barotropic corrector step in order to ensure
that the flow is non-divergent. The calculation of the explicit
time step is outlined in Sect. 3.3 and Appendix B. In order to
be numerically consistent with the calculation of the stream
function, the mean horizontal velocities # and v are stored
on the western face of each grid cell. In Fig. 2, these are
labeled as the u points. The time step calculation is shown
below, noting that the explicit components of the time step,
E{-} are calculated following the ABIII methods outlined in
Sect. 3.3, and the implicit diffusion Z{-} is calculated follow-
ing Eq. (91).

INote that although «j5, appears only in an advective operator in
Eq. (83), this operator can be written as the divergence of a diffusion
tensor (Griffies, 2018), and experience with MAMEBUS suggests
that the more restrictive, diffusive formulation more accurately con-
strains the model time step.
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Given the mean momentum at time step n, u”, we first
perform the explicit component of the time step to construct

an estimate of " !, denoted as w*:

(102)
dy £0

. oIl

—fzxu"——y—EV/.,o”dz
Z
Note that the zonal barotropic pressure gradient, 9,1y, is
excluded from this equation; this will be revisited in the final
component of the time step. The discretization of the hori-
zontal pressure-gradient terms in Eq. (102) is described in
Sect. 3.5.

We next compute the tendency due to vertical viscosity
following Eq. (91), which we denote via the operator Z. We
thereby construct a second estimate of the velocity at time
step n + 1, denoted as w™*:
u =T{u"}. (103)
Finally, we apply a tendency due to the zonal barotropic pres-
sure gradient, ensuring that mass is conserved in each vertical
fluid column (Dauhajre and McWilliams, 2018):

/ﬁ"“dz:/ﬁ”dz:o,

Z Z

(104)

as required by Eq. (11c). We formulate the barotropic pres-
sure correction as

oll
't = — Ar—. (105)
ax
Substituting Eq. (105) into (104), we obtain
oIl , 1 .
At—Xx = uw™ dz. (106)
dx (76 (x)]
z

This implies that the tendency in the mean zonal velocity due
to the zonal barotropic pressure gradient must serve to bring
the depth-integrated zonal velocity to zero, i.e.,

”) X /
u Z.

The calculation of the vertical integral of #** is computed in
the model using a Kahan sum (Kahan, 1965).

ﬁ’”’] — ﬁ** _

(107)

3.5 Horizontal pressure- and buoyancy-gradient
calculations

Pressure-gradient calculations in o coordinates have been
long known to produce discretization errors from the mis-
alignment of geopotential and o coordinate surfaces and rely
on large cancelations in the vertical gradient near steep slopes
(Arakawa and Suarez, 1983; Haney, 1991; Mellor et al.,
1994, 1998). We follow Shchepetkin and McWilliams (2003)

Geosci. Model Dev., 14, 763-794, 2021



k

pis s

Figure 3. Stencil for the isopycnal slope and pressure-gradient
scheme given by Shchepetkin and McWilliams (2003). The points
indicate the buoyancy (density) points. The solid lines are the re-
constructed coordinate lines used in the horizontal calculation, and
the shaded area shows the area integral of the horizontal buoyancy
gradient.

to calculate the horizontal-pressure-gradient force and re-
duce the errors in horizontal gradient calculations, which
otherwise produce large spurious along-slope currents in
MAMEBUS (not shown). This algorithm has been exten-
sively tested via its implementation in ROMS (Shchepetkin
and McWilliams, 2003, 2005), so we omit our own tests of
the pressure-gradient calculation scheme in this study. For
numerical consistency, we also calculate horizontal buoy-
ancy gradients, required to evaluate the isopycnal slope (see
Sect. 3.2), using the same algorithm.

3.5.1 Zonal pressure gradients

In this section, we outline the implementation of the zonal
baroclinic pressure-gradient calculation used in MAMEBUS
following Shchepetkin and McWilliams (2003). The ultimate
goal of the algorithm is to calculate the following baroclinic
pressure gradient at a cell center (see Eq. 102):

aa baroclinic B 1 g / / 9 0
ox |, A po J ox |,

where p, like the linear case, is the density anomaly, pg is
a reference density, and A is the area between four adjacent
buoyancy grid points (shaded area in Fig. 3). Shchepetkin
and McWilliams (2003) calculate the second term by imple-
menting a Lagrangian polynomial reconstruction of the z and
p fields. By Green’s theorem, we write the integrated hori-
zontal density gradient as

e

The two algorithms differ on the treatment of the vertical in-
tegration of pressure. The density Jacobian algorithm first in-
terpolates the density field onto the o grid and calculates the

dxdz |, (108)

(109)

dxdz = f,odz.
z
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values of p and z along the solid lines in Fig. 3, then in-
tegrates to obtain the pressure. The o coordinate primitive
form algorithm first integrates the pressure and calculates the
gradients using a vertical correction term. We opt for the sec-
ond algorithm which results in an equation for the horizon-
tal gradient which closely resembles Eq. (68a). Furthermore,
this algorithm tends to be more stable in our model. The al-
gorithm is calculated as follows:
First, we calculate all elementary differences in p and z:

(AX)Pj+1/2.k = Pj+1.k — Pjks (110a)
(ADPjk+1/2 = Pjk+1 = Pj k> (110b)
(Ax)Zj+1/2.k = Zj+1.k = Zjiko (110c)
(ADZj k412 =Zjk+1 = Zjks (110d)

where z; ; is the depth value at the cell centers, where the
density tracer is located. Note that the edges of Fig. 3 corre-
spond to the cell centers in MAMEBUS; this requires some
extrapolation at the boundaries so that the elementary dif-
ferences are fully calculated throughout the domain. For all
variables, we assume that the elementary differences at the
boundary are zero.

We then calculate the hyperbolic differences of all vari-
ables. This step calculates an estimate of the derivatives fol-
lowing a cubic spline formalism outlined in more detail in
Shchepetkin and McWilliams (2003). The derivatives are
then given by

208:)pj+172,4(Dx)Pj—1/2.k
(A)pjs1/2.k + (AOPj—12%
2(80)Zj4172,6(Dx)Zj—1/2.k
(A)zjt12k+ (ADZj—12k

hepji = (111a)

hyzjg = (111b)

The vertical hyperbolic differences for p and z are calcu-
lated similarly using Eq. (110b) and (110d). Again, the hy-
perbolic differences on the boundaries are not defined using
Eqg. (111a) and (111b), so we extrapolate the hyperbolic av-
erages of density. For example, at the western edge of the
domain, we define

3

hypn ik == ((A)pN=1/2.k — (D) PN-3/2.k)

(hxpN—1k)- (112)

2
1
2
Analogous extrapolation schemes are applied at all domain
boundaries.

We the calculate the pressure field using the hydrostatic re-
lationship. This is done via a vertical integration of the den-
sity reconstructed along the vertical lines in Fig. 3. The pres-
sure field is calculated from the surface down. The pressure
is calculated in the surface grid cells as

)&ﬁjﬂﬂ)m_ﬁw7

¢'N=£<P‘N+l(§'—Z'N
g po \'” 2 N =N
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(113)

where ¢; = 0 from the rigid lid assumption in MAMEBUS.
Then the pressure is calculated at successively deeper grid
levels as

Pjk+1+ Pjk
) (Zj,kH - Zj,k)

8
Gjk=¢jr+1+— <
£0

1
=T {(thj,k+1 —hzpjk) [Zj,k+1
hoZjxe1+hzzjk
12

— (hzZj k1 — hzzj i) [Pjkt1

hopjiv1+hzpjk
TPk 12 '

—Zjk—

(114)

We then correct for the iso-o pressure gradient introduced by
the slope of the o coordinate grid, analogous to the continu-
ous expression in Eq. (68a). This step calculates the product
of p and the local slope of the o coordinate and corrects for
the interpolation errors from the coordinate transformation.
Following the notation used in Shchepetkin and McWilliams
(2003),

Pj+1.k+ Pk

> (Zj4+1,k — 2j,k)

FCjtippk =

(hxpjt+1.6 —hxpjk)
hyzjq, +thj,ki|

_E{
: |:Zj+1,k —Zjk— B

— (hxZjs1 .k —hazj)

hyxPji1k+hxpjk (115)
12 ’

|::0j+1,k — Pjk—

Finally, we use Eqgs. (114) and (115) to calculate the pressure
gradients:

(5:1)
dx [ JH1/2.k

1 g
= (ps—di+2 . Fc; .
A <¢;+1,k djk+ 0 ]+1/2,k>

(116)

Buoyancy gradients

The buoyancy gradient is calculated similarly to the pres-
sure gradient. However, because we do not vertically inte-
grate the buoyancy term, we opt to use the density Jacobian
algorithm described in Shchepetkin and McWilliams (2003).
The pressure-gradient algorithm described above integrates
the pressure and then corrects for the pressure gradient in o
coordinates. The density gradient algorithm described below
calculates the line integral about the area enclosed by the ¢
points where the buoyancy gradient is located (see Fig. 3).
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Therefore, we use the following form to calculate the buoy-
ancy gradient:

b
/ —dxdz = %bdz
0x
A

=FXjr1k+12+FCjr106 — FXjpy12
— FCjt1/2.k+1,
(117

where F X 1,2 is the value of the integral (Eq. 117) along
the vertical sides, and F'C 2« is the value of the integral
along the horizontal sides. This calculation follows a similar
procedure to the pressure gradient.

First, we calculate the elementary differences, and the hy-
perbolic averages in b and z, given by Eqgs. (110a)—(111b).
Then we calculate the value of the integral along the upper
and lower sides of the domain following

2

1
10 {(habjy1x —hibjr)

hyZjs1, +hezjk
12

FCitik = (Zj+l,k—Zj,k)

[Zj+1,k —Zjk—

— (hxZjr1,k —hxzjk)

hib i1k +hybig
.[bj+1,k—b,~,k— s 3 X “ (118)

Note that this formulation is the same as Eq. (115) but with

buoyancy instead of pressure. Then we calculate the value of

the line integral along the vertical components of the cell:

bjk+1+Dbjk
2

1
10 {(hzbjrsr —hzbjg)

FXjrt12= (Zj,k+1 —Zj,k)

hezjk+1+hzzjk
B R R T S
— (hzZj k1 — 25 k)
h b',k 1 +h b',k
Nbjas1—bjx— D2kl TRk (119)
12
Shchepetkin and McWilliams (2003) write Eq. (68a) as
ob ob| 0o ob 0
Dl =gy =22 2% (120)
ox |, x|, 00 00 Ox |,

This allows us to numerically integrate the buoyancy gradient
in the cell as

ob
%bdz = (A—)
X ) jh1/2.k41)2

=FXjt1h+12+ FCjr1p2k

—FXjk+12 = FCjriy2k+1, (121)
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where A, again, is the area of the cell. At the surface, the
boundary condition is given that FCj11/2 y4+1 =0.

Finally, in order to calculate the horizontal buoyancy gra-
dient, we divide by the area. Since the area of each cell is
defined by the cell-centered ¢ points, we implement Gauss’
area formula:

1
Ajr12kv12 = 5 k12 + X2k

X1 kZj+1k+1 X1 k12, k+1
—XjkZjk+1 — Xj+1,k3j.k
=X k1 2k — X k1241 k1| (122)
3.5.2 Meridional pressure gradients

The along-shore pressure gradient in Eq. (11b), denoted by

[¢]g */Ly, is determined by along-shore gradients in the
surface pressure and buoyancy/density that are imposed as
model input parameters. We integrate the profiles of pressure
following the hydrostatic relationship. We define p”V and oS
as the densities at the northern and southern ends of the do-
main, and 1Y = ITV-S as the surface pressures at northern
and southern ends of the domain. Then the pressure is given
by

0
1 g, oM p
— ol == -5 [ Lq,
Ly dy poJ dy
z
HN HS 9 N S
=;+ﬁ/udz' (123)
poLy £0 Ly

z

Here, the along-shore variations in sea surface pressure and
density are both model inputs. We discretize the meridional
pressure gradient as

N—-1

1 Lo 1 N s g
_[¢,]O»‘ :_[(H.N_H.N)+_
Ly jk Ly g ’ ,Ookg,;
N N N S
) pj’k/+1+10j’k/ . ’Oj,k,+1+pj,k/
2 2

(2j 41— 2jw)]- (124)
Though MAMEBUS allows meridional pressure gradients to
be imposed, we have excluded them from our reference so-
lutions in the interest of simplicity. However, previous stud-
ies have highlighted the importance of meridional pressure
gradients in supporting interior cross-slope transport and in
driving poleward undercurrents Connolly et al. (2014). We
plan to address the effects of meridional pressure gradients
on EBUS ecosystem dynamics in future scientific studies us-
ing MAMEBUS.
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4 Implementation details

In this section, we outline the details for implementation in
MAMEBUS. The model code is written in the C program-
ming language. The model expects various user inputs that
include initial conditions, along with user-defined model cal-
culation details in Table 4 that include, but are not limited
to, the momentum calculation scheme and the time-stepping
scheme. The MAMEBUS distribution includes sample MAT-
LAB codes that package these user inputs.
The software needed to run this model includes

1. MATLAB (2016) or later and
2. a C compiler (e.g., GCC).

Our provided setup also includes example scripts for running
the model on a cluster; however, this model can be easily
run locally on a laptop or desktop on any operating system
so long as the necessary software is installed. Table 6 shows
run times for the model on both the cluster and a 2015 Mac
laptop.

MAMEBUS has three active physical variables: the zonal
and meridional momenta, and the temperature (buoyancy).
The current implementation of the biogeochemical model
has four active variables: nitrate (N), phytoplankton (P), zoo-
plankton (Z), and detritus (D). A variable number of addi-
tional passive tracers may also be included.

4.1 Expected user inputs and options available

MAMEBUS expects a list of parameters given in Table 3 that
control the physical components of the model, the model run
details, and the grid setup. Other identifiers included in this
model, given in Table 4, determine which internal schemes
the model uses for each specific run. Furthermore, MAME-
BUS expects a set of input parameters from physical tracers,
forcing, diffusivity, and restoring, along with initial profiles
of biogeochemical tracers that are listed in Table 5.

For the solutions shown in Sect. 5, the following initial
conditions are detailed in Sect. 5.1.

4.2 Model run details

The main function of the mamebus.c file has five major com-
ponents and steps:

1. Calculate the time tendency of each tracer. The time
step is calculated using the “tderiv”’ function detailed in
Fig. 4. The explicit tendencies are calculated following
Sect. 2.

2. Add implicit vertical diffusion and remineralization
(Eq. 91).

3. Apply zonal barotropic pressure-gradient correction
if the “momentumScheme” is MOMENTUM_TTW
(Sect. 3.4).
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Table 3. Input parameters expected by the MAMEBUS model code. All parameters listed in this table are chosen by the user. The sample
values listed in this table are those used in the reference experiments described in Sect. 5.

Description Value  Units
Number of horizontal grid points 64
Number of vertical grid points 64
Computational domain width 400 km
Computational domain height 3000 m
Depth of the shelf 50 m
Location of the continental slope in the domain from the eastern boundary 50 km
Topographic slope 9.8 x 1073

Depth of surface mixed layer 40 m
Depth of bottom boundary layer 40 m
Drag coefficient in the bottom boundary layer 1x1073 ms!
Reference density 1000 kg m~3
Coriolis parameter Ix1074 157!
Surface grid stretching parameter 9

Bottom grid stretching parameter 4

Depth below the surface over which the vertical coordinate is approximately 300 m
aligned with geopotentials

The fraction of the maximum time step taken for each Ar to ensure the CFL 0.75
condition is met

The end time for integration 30 years
Output frequency of model data 1 d

Table 4. MAMEBUS numerical scheme options and descriptors.

Parameter Identifier Value  Scheme description
modelType BGC_NONE 0 Physics only, no biogeochemistry
BGC_NPZD 1 NPZD model,
described in Sect. 2.4
timeSteppingScheme ~ TIMESTEPPING_AB1 0 First-order Adams—Bashforth variable time stepping
TIMESTEPPING_AB2 1 Second-order Adams—Bashforth variable time stepping
TIMESTEPPING_AB3 2 Third-order Adams—Bashforth variable time stepping

4. Enforce zero tendency where relaxation time is zero
(Sect. 2.5.1).

5. Write model state (Sect. 4.3).
4.3 Model data

All of the model input and output are saved in binary files.
Depending on the “monitorFreq” or the frequency of output,
the model will interpolate the between time steps, calculate
the correct model state if necessary, and write the data to file.
The following list contains all files that are written to file
during the time-integration step. For each model, there is an
option to include an arbitrary number of passive tracers; how-
ever, this is the standard list of tracers that are included in the
indicated modelTypes.

— Residual stream function, ¥ (all modelTypes)

— Mean stream function, ¥ (all modelTypes)

https://doi.org/10.5194/gmd-14-763-2021

Eddy stream function, ¥* (all modelTypes)

Temperature field (all modelTypes)

Nitrate (NPZD model)

Phytoplankton (NPZD model)

Zooplankton (NPZD model)

Detritus (NPZD model)

5 Reference solution and model validation

In this section, we present reference solutions for MAME-
BUS. Below, we discuss the choice of parameters, the non-
conservative forcing, and profiles of restoring. We focus pre-
dominantly on the output of a single run and plan in the future
to run parameter sweeps to better understand the response of
the ecosystem dynamics to the physical forcing.
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Table 5. A table outlining the initial profiles that MAMEBUS expects during initialization. To visualize the grid locations, see Fig. 2. Each
initial profile is included in “all modelTypes” unless otherwise stated. Note that Ny is the number of zonal domain points and N; is the

number of vertical domain points given in Table 3.

Initial profile Parameter  Grid location  Size Descriptions
Zonal momentum u(x,z) u points Ny +1xN; All modelTypes
Meridional momentum  v(x, z) v points Ny +1xN; All modelTypes
Temperature T ¢ points Ny x Ny All modelTypes
Nitrate N ¢ points Ny x Ny NPZD model
Phytoplankton P ¢ points Ny x Ny NPZD model
Zooplankton VA ¢ points Ny x Ny NPZD model
Detritus D ¢ points Ny x Ny NPZD model
Buoyancy diffusivity Kgm Y points Ny+1xN;+1 SeeEq. (131)
Isopycnal diffusivity Kiso Y points Ny+1xN;+1 SeeSect.5.2
Topography hy(x) w, ¥ points Ny+1x1 See Eq. (126)
Wind stress T(x,t) Y points Ny+1x1 See Eq. (125)

5.1 Model geometry, initial conditions, and forcing

The model is configured to represent an idealized California
Current System (CCS). While the model can be formulated to
represent a general EBUS, we use the California Current Sys-
tem as a test case because this allows comparison of our re-
sults with measurements from McClatchie (2016). Note that
we exclude salinity as a physical tracer; while it may be im-
portant in determining the structure of the California under-
current (Connolly et al., 2014), we find that the main features
of stratification can be well described by temperature.

A list of input fields that MAMEBUS expects is given in
Table 5, with a subset illustrated in Fig. 5. The solutions
shown in Sect. 5 use the following choices for these input
fields. The wind-stress profile is given by

Ly—x

Ly ) '
where L, is the width of the computational profile given in
Table 3, and A; =4 is a tuning parameter that controls the
horizontal width of the wind-stress drop-off, or wind-stress
curl. We tune the offshore maximum to approximate values
reported by Castelao and Luo (2018). While this is the ex-
ample of wind-stress forcing we choose to use to validate
our model, any form of wind-stress forcing can be defined
by the user.

The topography for the reference solutions is

7(x) = tptanh (AT (125)

—H - By (2 126
np(x) = —5( - s)an< I ) (126)

t

where H is depth of the computational domain, Hy is the
slope depth, x; is the location of the continental slope in the
computational domain, and L. is the width of the continental
slope given from the topographic slope parameter. All pa-
rameters are given in Table 3. The topography is tuned to
represent an idealized profile of bathymetry (ETOPOS; Eto,
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1988) taken from the geographic coordinates given from line
80 in the CalCOFI data (McClatchie, 2016).

The initial conditions for the tracers in the model are the
initial temperature profile, including timescales and inputs
for restoring, and initial conditions for the NPZD model,
which are tuned to give an approximate concentration of
30 mmolm~3 in the deep ocean. The biogeochemical tracers
are not restored in this set of reference solutions. The initial
profile of temperature is shown in Fig. 5 and given by

Tinit(x, 2) = Tyin + (Tmax — Tmin)
o (g5 +1) —exp (=57 +1)
exp(l) —exp (—% + 1)

) 127)

where the minimum and maximum temperatures in the do-
main are Tiin = 4 °C, Timax = Tpax — (Tmax — Tiyin) X/ Lx - The
maximum and minimum surface temperatures are 755, =
22°C and T;. = 18°C, respectively. H* is a decay scale
for the temperature from the surface. This profile is tuned
so that the temperature profile on the western side of the do-
main approximately matches the profile of temperature from
CalCOFI (McClatchie, 2016) in Fig. 7. We initialize the tem-
perature field with a small tilt in the isosurfaces to speed up
the spin-up process. This same initial condition is used as the
reference for temperature restoring. The timescale for restor-

ing is given by

1 Li—x -1
, x <L, (128)

RYest 7) =
T (x,2) <R?ax L,

where L, = 50km is the width of the sponge layer on the
western side of the domain, and R7** = 30 d is the fastest re-
laxation timescale for temperature. In the surface grid boxes,

the restoring timescale is given by
R (x) = 1d, (129)

which is consistent with the formulation of Haney (1971)
for surface grid box thicknesses of approximately 1 m. The
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[Calculation of time tendencies in the explicit st.ep:]

tderiv:

Calculates the time tendency
of all tracers and computes
the explicit time-step based
on a CFL condition.

tderiv__mom:

Calculates the time tenden-
cies of the momentum trac-

tderiv__adv__ diff:
Calculates the CFL condi-
tion used in the time-stepping

tderiv__relax:

Calculates the relaxation ten-
dencies to profiles determined
by the user.

tderiv__bgc:

Calculates the biogeochemical
time tendencies in the NPZD
model.

ers using the time-dependent scheme.
turbulent thermal wind equa-
tions.

calcKgm:
calcPressure:
Calculates the baroclinic pres- calcKisor

sure gradient using a cublic in-

Interpolates k;
terpolation. nterp Kisa

calcSlopes:
Calculates S, in the interior

and S, in the BL’s.

calcPsim: _

Calculates 1
calcPsie:
Calculates ™

calcPsir: B
Calculates ' = 1 + "

do__adv_ diff:
Calculates the explicit
component of the advec-
tion/diffusion

Figure 4. The call tree from the main function of mamebus.c.

restoring at the surface grid box is set to the initial profile of
temperature given in Eq. (127).

The initial conditions for NPZD tracers include a con-
stant concentration of nitrate, Nmax = 30 mmolm—3, phy-
toplankton, Ppax = 0.02mmolm™3, zooplankton, Zma.x =
0.01 mmolm_3, and an initial profile of detritus of zero. This
choice allows for the internal ecosystem dynamics to con-
trol the biogeochemical solutions. Finally, the cell size we
choose for the phytoplankton cell is £, = 1pm. The zoo-
plankton cell is optimized to give the optimal predator—prey
length scale between the phytoplankton and zooplankton in-
teractions, i.e.,

1 L,
£, =exp —05610g 063 .

5.2 Isopycnal, buoyancy, and diapycnal mixing

(130)

The unresolved mesoscale and microscale mixing in the
tracer evolution Eq. (9) are detailed in Sect. 2.3.1 and
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2.3.2, respectively. The diapycnal diffusivities are indepen-
dent of wind stress and are determined by user-input mixed
layer depth and maximum magnitudes. The isopycnal and
buoyancy diffusivities are time-invariant fields whose spatial
structure is prescribed by the user.

In our model reference configuration, the eddy and buoy-
ancy diffusivities are functions of the baroclinic radius of
deformation — the preferential length scale at which baro-
clinic instability occurs and closest to the fastest growing
mode in the Eady model (Eady, 1949). In MAMEBUS,
these diffusivities also exponentially decreases with depth.
There are choices for more sophisticated parameterizations
of eddy transfer across continental slopes (Wang and Stew-
art, 2018, 2020), but in this current version of the model, we
opt for a simpler description. For example, the buoyancy dif-
fusivity coefficient is defined as

e ()
Kgm = explAr— |,
Hpax b

(131)
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Figure 5. Initial temperature profile with a profile of offshore restoring which is modeled as a sponge layer on the western side of the
boundary, and at the surface, there is a surface restoring to an atmospheric profile, idealized to a profile of temperature from CalCOFI. The
northward wind stress is shown at the top of the figure. The white lines in the temperature field are a few lines of constant initial temperature.

where A < 1 is a tuning coefficient that allows for adjust-
ment of the depth of the exponential profile of diffusivity,
Hmax is the maximum depth of the topography offshore,
and np is the depth of the topography. For all solutions
shown in this section, A = 0.25. Note that for this formula-
tion, we assume that z < 0. The maximum buoyancy diffu-
sivity is 0, = 1200m?s~!. Furthermore, kiso = 2kgm, fol-
lowing Smlth and Marshall (2009) and Abernathey and Mar-
shall (2013). The isopycnal and buoyancy diffusivity profiles
are shown in the left and center panels of Fig. 6, respectively.

The diapycnal diffusivities shown in the right panel of
Fig. 6, with structure function described in Eq. (17), are set
SO that the maximum diffusivity in the mixed layers are given
by Ksml = Kbbl =0.1 m?s~!; otherwise, the ambient diffusiv-
ity in the interior is given by Kbg = 1 x 107> m2s~!. In the
case where the mixed layers join at the eastern edge of the
domain, the profiles of diffusivity are simply added.

5.3 Model validation
We run the reference solutions of MAMEBUS for 25 model

years, with initial conditions and physical forcing described
in Sect. 5.1. We validate the model against observations of

Geosci. Model Dev., 14, 763-794, 2021

temperature, nitrate, and chlorophyll a concentration in the
euphotic zone, based on observations from the CalCOFI pro-
gram (McClatchie, 2016). For this comparison, we interpo-
late a typical CalCOFI section (line 80) to a ¢ coordinate grid
with realistic topography from the ETOPO database (Eto,
1988). We chose to validate our model with a single tran-
sect of from CalCOFI instead of several transects along the
same line because averaging over time smooths over the deep
chlorophyll maximum.

Furthermore, we prescribed a continental shelf that is
deeper than in nature in order to reduce the model’s compu-
tation time. Further shallowing the continental shelf is pos-
sible, but the CFL constraint imposed by the finer vertical
resolution on the shelf extends the computation time.

While the continental slope is tuned to have a similar slope
as observations in central California near the shelf break, the
mixed layers in this model run are set to a constant depth
zonally and overlap on the shelf. This choice has been made
for simplicity and could be refined via zonally varying mixed
layer depths to improve agreement with specific EBUSs. The
well-mixed area on the shelf is an analogue to the inner shelf,
albeit somewhat deeper than those found in nature (Lentz and
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Fewings, 2012). In our model comparison, we neglect the
inner shelf region in the model and compare the solutions
and starting approximately 50 km from the coast.

The model temperature is generally in good agreement
with observations for the upper ocean, reproducing sloping
isotherms towards the coast, and realistic surface values. We
observe a cold bias near the coast, which could be a result
of the constant wind-stress curl forcing over the domain, in-
ducing upwelling that is too strong in the model. A cold bias
observed in the surface just outside the shelf, and a warm bias
offshore, are likely caused by the prescription of a constant
mixed layer depth, which may be too deep in the model for
this particular section and time of the year.

As shown by the middle row of Fig. 7, model nitrate agrees
reasonably well with observations in the upper layers, al-
though biases remain, in particular in deeper layers. This may
be caused by several factors, including biases in the cross-
shore and vertical circulation, and in the cycling of inorganic
nutrients and organic matter. For example, remineralization
processes are simplified in the model, which does not include
dissolved organic matter, and represents export by a single
particle size class with a constant sinking speed that was not
explicitly tuned to match nutrients.

The bottom row of Fig. 7 shows that the model captures
the main features of the observed chlorophyll distribution
(here calculated based on a fixed chlorophyll to phytoplank-
ton nitrogen ratio of 4 : Smg, chlm=3 : mmol Nm~3 follow-
ing Furuya, 1990). High surface concentrations are repro-
duced near the shelf, with values decreasing further offshore.
A deep chlorophyll maximum develops in the lower euphotic
zone, at depths between 40 and 80 m, progressively deep-
ening from the coastal to the oligotrophic region offshore.
While these patterns are fairly realistic, we note that the
very high chlorophyll concentrations observed near the shelf
are missing from the model. This underestimation may be
caused by the oversimplification of the ecosystem structure
in the NPZD model, which only includes a single phyto-
plankton group, while multiple groups are likely required
for a more correct representation of enhanced coastal phyto-
plankton biomass (Van Oostende et al., 2018). Furthermore,
aspects of these differences could be caused by the ideal-
ized nature of the 2-D circulation simulated by the physical
model.

In order to compare physical solutions, we also include
solutions which show the residual stream function, including
the mean and eddy components in Fig. 8. The mean stream
function is calculated via the momentum equations given in
Sect. 2.2, whereas the eddy stream function is described in
Sect. 2.3. The positive values indicate clockwise circulation,
which, in this case, is indicative of eddy re-stratification op-
posing the mean upwelling branch (Colas et al., 2013). The
negative values indicate counterclockwise circulation. Fig-
ure 8 shows that residual upwelling of waters onto the conti-
nental shelf via the bottom boundary layer, as interior trans-
port onto the shelf is compensated by eddies. In the deep
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Table 6. A table outlining model run times of varying resolution
between a computational cluster comprised of Intel Xeon E5-2650
v3 CPUs and a 2015 Mac laptop running macOS Catalina (ver-
sion 10.15.7) for 20 model years, for both computing systems, the
model is run on a single core. The highest resolution simulation
(128 x 128 horizontal and vertical levels) was conducted on the clus-
ter only due to computational constraints on a laptop.

Resolution (horizontal — Cluster (single core)  Laptop
and vertical levels)

32 x32 32 min 22 min
64 x 64 499 min 401 min
96 x 96 3295 min (55h) -

128 x 128 13 000 min (9 d) -

ocean (> 500m), there is a relatively strong residual over-
turning circulation that is likely associated with bottom in-
tensification of the diapycnal mixing coefficient (e.g., Mc-
Dougall and Ferrari, 2017).

5.4 Resolution parameter sweep

In this section, we describe the changes in solutions due to
model resolution. We chose four different resolutions and ex-
plored the results. Figure 9 shows the solutions of MAME-
BUS after 30 model years. Each panel in Fig. 9 shows the
model state in the euphotic zone, averaged over the final
10 years of integration. All resolutions have the same setup
and forcing as described in Sects. 4 and 5. The top row shows
the potential temperature (6), the middle row shows the ni-
trate concentration, and the bottom row shows the phyto-
plankton concentration. The model grid resolution increases
from left to right, with the coarsest simulation run on a grid
of 32 points horizontally and vertically, and the highest-
resolution simulation run on a grid of 128 points horizontally
and vertically.

Increasing the resolution leads to an overall shoaling of
nutrients toward the surface. The largest overall change in
near-slope nutrient concentration occurs when the resolution
doubles from 32 to 64 horizontal points and vertical levels.
Increasing the resolution beyond a 64 x 64 grid does not sub-
stantially change the horizontal distribution of phytoplank-
ton. As referenced in Table 6, doubling the resolution in-
creases the model run time by a multiple of approximately
20. Thus, while the model can practically be run at higher
resolution, our tests show that intermediate resolution (64
horizontal and vertical levels) is sufficient to produce a fa-
vorable comparison with in situ data, without substantially
increasing the computation time.

6 Discussion and future work

In this paper, we described the formulation, implementation,
and main features of MAMEBUS, an idealized, meridionally
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Figure 6. Inputs of buoyancy diffusivity (a), isopycnal diffusivity (b), and diapycnal diffusivity (c) used in the reference solution to MAME-
BUS shown in Sect. 5. Note that the isopycnal and diapycnal diffusivities are shown over the entire domain, and the diapycnal diffusivities
are shown over the upper 75 m of the domain to highlight the boundary layer mixing and the mixing on the eastern side of the domain on the
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Figure 7. Model validation against in situ CalCOFI data taken along line 80 (point conception) during July 2015. The column on the left
shows output from the model under constant wind forcing and is averaged over the last 5 model years. The column on the right shows values
taken from CalCOFI and interpolated onto a o coordinate grid to allow for direct comparison. The dots in the panels are locations where the
data are sampled. This figure shows the comparison between potential temperature, 6 (a, b), nitrate (c, d), and chlorophyll concentration (e,

f).

averaged model of eastern boundary upwelling systems. The
solutions are determined by a general evolution equations
for materially conserved tracers (Sect. 2) and the fluid mo-
mentum equations under the time-dependent turbulent ther-
mal wind (T3W) approximation (Dauhajre and McWilliams,
2018). Itincludes parameterizations of mesoscale eddy trans-

Geosci. Model Dev., 14, 763-794, 2021

fer and surface and bottom boundary layer mixing (Sect. 2.3),
and a simple ecosystem formulation (Sect. 2.4). We further
detailed the algorithms and discretizations implemented in
the model (Sect. 3) and discussed reference model inputs
and solutions (Sect. 4). Finally, we performed a preliminary
validation based on observations from the California Current
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Figure 9. This figure shows the model output of temperature, nitrate, and chl with varying resolution. The model was run for 30 years, and
solutions shown are averaged over the final 30 years of the model run.

System, and we discussed the sensitivity of the model to hor-
izontal and vertical resolution (Sect. 5).

MAMEBUS represents a simple, physically consistent
tool in which to test and tune a variety of physical param-
eterizations and ecosystem model formulations. The ulti-
mate goals of this research include exploration of physical—
biogeochemical interactions in EBUS, mechanistic under-
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standing of the factors that control cross-shore gradients
in biogeochemical and ecological properties, and investiga-
tion of the processes that drive differences between distinct
EBUS:s.

Because of the 2-D framework, we acknowledge short-
comings to the model formulation, including physical aspects
like intensification of upwelling around topographic features,
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for example, resulting from variations in the wind-stress curl
(Castelao and Luo, 2018) or fine-scale ocean dynamics. Fur-
thermore, while we parameterize the effect of mesoscale ed-
dies on circulation, we do not account for submesoscale ed-
dies on the shelf, which could play an important role in tracer
transport (Dauhajre and McWilliams, 2018). We also do not
explicitly represent breaking internal waves and tides on the
shelf, which may play an important role in dissipating energy
and mixing tracers when the water column is shallow (Lamb,
2014).

In future studies, we plan to use MAMEBUS to explore
the effect of physical drivers such as wind stress, bathymetry,
stratification, and eddies in controlling the zonal distribution
of phytoplankton and food web processes, as informed by
a size-structured ecosystem model. Furthermore, we plan to
expand upon the physical framework in this paper by expand-
ing eddy parameterizations to include the effect of subme-
soscale eddies on the shelf, where the mesoscale eddy activ-
ity is inhibited. An aspect of MAMEBUS that requires fur-
ther investigation is the effect of meridional pressure gradi-
ents, which we neglected in our reference solutions in Sect. 5.
In reality, the presence of along-shore pressure gradients may
support interior across-shore transport away from the surface
and bottom boundary layers, with the potential to reshape the
coastal ecosystem.

With its limited computational cost, MAMEBUS can be
used to investigate a wide parameter space in EBUSs and de-
termine their sensitivity to a range of perturbations in ma-
jor physical forcings, from changes in wind stress to in-
creasing buoyancy forcing associated with climate change
(Rykaczewski and Dunne, 2010; Sarmiento et al., 1998).
Furthermore, by allowing coupling to a variety of biogeo-
chemical and ecosystem models, MAMEBUS can be used
to inform comprehensive regional models (Shchepetkin and
McWilliams, 2005), for which computational costs preclude
exhaustive sensitivity studies.

Geosci. Model Dev., 14, 763-794, 2021
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Appendix A: Decomposing mesoscale eddy
advective/diffusive fluxes

In this Appendix, we discuss the partitioning of the
mesoscale eddy tracer flux into components due to advection
and isopycnal diffusion, used in Sect. 2.1 to derive MAME-
BUS’s central tracer evolution equation, Eq. (9). We show
that the eddy tracer flux, u’c’, can be arbitrarily decomposed
into components directed along mean buoyancy surfaces and
along mean tracer surfaces. These components will later be
associated with eddy advection and isopycnal stirring, re-
spectively.

The effect of mesoscale eddies on the averaged tracer con-
centrations is given by the convergence of the eddy tracer
flux (Eq. 8):

=—v.(W),

and appears on the right-hand side of Eq. (6). Being quasi-
adiabatic flows, mesoscale eddies serve to stir material trac-
ers along isopycnal surfaces; this corresponds to an eddy
tracer flux directed along buoyancy surfaces (Redi, 1982).
Eddies also induce a “bolus” advective transfer of tracers,
a generalized “Stokes drift” that corresponds to an eddy
tracer flux directed along mean tracer isosurfaces (Gent
and McWilliams, 1990). Both of these effects are rou-
tinely parameterized in general circulation models (Griffies,
1998, 2018). To partition the eddy tracer flux between isopy-
cnal stirring and bolus advection, we therefore pose a decom-
position of u’c’ into components directed along mean isopy-
cnals and along mean tracer surfaces, respectively:

ac

o (Al)

eddies

W=O{Cfc +apTh. (A2)

Here, 7. and Ty, are unit vectors that point along mean ¢ sur-
faces and along mean b surfaces, respectively:

vb
|IVb||

Ve | R
X=——, Tp=)Yy X
[|Vell

A A

Tc=)

(A3)

Note that the x components of Ty, and T, are positive pro-
vided that b and € increase monotonically upward. By taking
the vector cross products 7. x Eq. (A2) and 7y, x Eq. (A2),
we can solve for the vector lengths o and oy,:

u'c x 1y uc X T
Q= —F5—F, p= 5——>—. (Ad)
Te X Tp Th X T¢
Then, using Egs. (A2)—(A4), we write Eq. (A1) as
dJc 2R _
— =—|VX—=Yy]) -Vc-V
ot eddies ”VC”
X (Ve )t (A3)
| ———(VC-Tp)Tp ).
(V- b) eI
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The first term on the right-hand side of Eq. (AS) takes the
form of an advection operator, in which we can identify the
eddy stream function
o= e _ w'c Vb

[IVcl| Vex Vb’
Note that this definition is ill-defined in the limit Ve x Vb —
0; in this limit, T, and 7. are parallel, the eddy tracer flux is
purely advective, and the stream function becomes

(AO6)

u'c’ x Ve

Ivel> -
The second term on the right-hand side of Eq. (AS5) has been
written in the form of the divergence of a flux along mean
buoyancy surfaces, with the isopycnal gradient operator (see
Sect. 2.1) appearing explicitly as

vt = (A7)

V)= (Vc- Tp)Tp. (A8)
We can then identify the isopycnal diffusivity «jgo as
Kiso = _# = _(W Vz)ﬂ
(VE-Tp) [IVb x Ve||?
w'c Ve
= T IVel|Pcos26” (A9)

where 6 is the angle between the vectors Vb and Ve.

While the above derivation is general, for application in
MAMEBUS, we must make assumptions about the eddy
tracer fluxes. Specifically, we assume (i) that approximately
identical eddy stream functions ¥* advect each different
model tracer, (ii) that the isopycnal diffusivity is positive (i.e.,
that eddy tracer fluxes are always directed down the mean
tracer gradients), and (iii) that the isopycnal diffusivity is ap-
proximately equal for different model tracers. These assump-
tions are satisfied in the limit of small-amplitude fluctuations
(u’ and ¢) (Plumb, 1979; Plumb and Ferrari, 2005b).

Appendix B: Derivation of time-variable
Adams-Bashforth methods

For a given tracer defined with an associated time tendency
equation of the form

L) (B1)
— = ,C .
ar
We integrate Eq. (B1) in time from [#,42, t+11]:
42 2
dc
Edr = f(z,c(r))dr. (B2)
tnt1 In+1

By the fundamental theorem of calculus,

In+2
/ f(z,c(r))dr. (B3)

Int1

c(tyy2) — c(tyy1) =
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We interpolate the right-hand side using a Lagrangian poly-
nomial of the form

p(t) = f(tn, ctn)) + ———

f — tnil — I f(tn+1 C(tn+1))

(B4)

Then using Eq. (B4) and substituting it into Eq. (B3), we
have

Ih42 hy2
/ f (T c(o)dr = / p(o)dr
In+1 th1
42
— It
= / ( "L F (1. (1)
Ih —Int1
In+1
T —
+—f(tn+ls C(tn+l))> dr
1 —
(t— tn+1)2
= | — ) (ty,c(t
2[ ty — tat1 S (tn, c(tn))
(.[ —t )2 Int2
A" [ (a1, ctag1))
tn+l N tn In41

Defining At 41 = t,4+1 — t,, We obtain

g2
Atpyo

/ [T e(@)dt = o———— Q2 f (tat1, ¢(tng1)) Alpy
2Atn+1

Int1

+ f(tn+1 s C(tn-i-l))Atn-i-Z
—f(tn, c(tn)) Aty 12). (BS)

Substituting Eq. (B3) into Eq. (BS) yields the full ABII time-
stepping scheme, given by Eq. (96).

For higher-order AB methods, we consider a sth-order La-
grangian polynomial of the form

s—1
P@) =Y (D) f (tatm, Cltntm)) (B6)
m=0
i T —Inyl
m(T) = _ B7
P (T) ll:([) thtm — In+l ( )
I#m

where setting s = 3 as the number of known points in the
interpolating polynomial results in the ABIII method. Then,
s — 1 is the degree of the polynomial. The general form of
higher-order AB methods is

c(tpys) — c(tnrs—1)
t+s s—1
> o (®) f (nms €(tgm))dT. (B8)
t+s—1 m=0

The algebra to solve for the full discrete form of the ABIII
method follows the derivation of the ABII method above. The
solution to the integration in Eq. (B8) is given by Eq. (95).
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Appendix C: Comparison of boundary layer
parameterizations with Ferrari et al. (2008)

Our representation of eddy advection and isopycnal stirring
in the surface mixed layer (SML) and bottom boundary layer
(BBL) is adapted from Ferrari et al. (2008) and is described
in Sect. 2.3.2. We now directly compare our SML/BBL
scheme against that of Ferrari et al. (2008) to highlight the
key differences.

As discussed in the “surface mixed layer” subsection, our
SML scheme leads to the same eddy stream function as that
of Ferrari et al. (2008), given by Eq. (29). In contrast, the
residual eddy tracer flux in the SML differs as follows:

(Kiso V| ©)FMCD = Kiso (Cx + SsmiCz) X

+ Kiso (SsmiCx + SsmiSincCz) Z, (Cla)
Kisov||z = Kiso (Cx + SsmlEz)f
+ i SomiE + S2uiE: ) 2. (C1b)

where “FMCD” denotes the formulation of Ferrari et al.
(2008). Thus, our Eq. (C1b) differs from Eq. (Cla) only
by the replacement Siy; by Sgm in the vertical eddy resid-
ual tracer flux. A drawback of using Siy is that typically the
vertical buoyancy gradient is very small in the SML, so the
form (Eq. Cla) may not be numerically stable. Ferrari et al.
(2008) propose a modification of the vertical component of
the tracer residual eddy flux to avoid dividing by small verti-
cal buoyancy gradients in the mixed layer:

(Kiso V|[C)FMCD - 2

w byb. zﬁ \.
= —KisoG(2) | —= 3 Cx + = c; )z (C2)
bl bl

Hym

However, this alternative breaks the symmetry of the diffu-
sion tensor, and requires the introduction of an additional
vertical structure function, G (z). Our formulation, Eq. (C3b),
retains the symmetry of the stress tensor and preserves con-
tinuity of the vertical flux and its derivative at z = —Hgy)
with the same structure function Ggn(z) (see Sect. 2.3.2).
It is also simpler to implement, as both the stream func-
tion (Eq. 29) and the residual eddy flux (Eq. C1lb) can be
written succinctly in terms of the effective slope (Eq. 28).

Another difference between our formulation and that of
Ferrari et al. (2008) arises in the eddy stirring of buoyancy in
the SML:

(Kisov\ll;)FMCD = Kiso (Ex + SsmIEz) x, (C3a)
Kisov||z = Kiso (Ex + Ssmle) x
+ Kiso (SsmlEx + S§m151> 2. (C3b)

The Ferrari et al. (2008) residual eddy buoyancy flux has no
vertical component, whereas ours does. This impacts the rate

https://doi.org/10.5194/gmd-14-763-2021



J. E. Moscoso et al.: MAMEBUSvV1.0

of available potential energy release in the SML by modify-
ing the total vertical eddy buoyancy flux:

-2

N b
w'b'EMCD = KgmGsmi (7)) =————, (Cda)
bZ z=—Hymi
-2
w'b' = KgmGsml(Z)— =
bz|z:—Hsm1
b,
+ KisoGsml (2) =————
bz l:=—Hy
b
1= Ggm(z) =———). (C4b)
bZ z=—Hymi

The key difference here is that our version (Eq. C4b) typi-
cally releases more potential energy and is not strictly posi-
tive definite; if b, > b, |.—_ Hey» then in principle w’d’ may
be negative. This corresponds to creation of potential energy,
whereas previous studies suggest that potential energy should
be consistently released in the SML (Colas et al., 2013).
However, by construction, the vertical derivative of this term
is zero at Z = —Hypy, and in any practical case b, will be
smaller than b_|,—_ H,, throughout the boundary layer. This
suggests that if the vertical eddy length scale A is positive
b,z <0, then our scheme releases potential energy every-
where. Note also that the GM component of the vertical eddy
buoyancy flux always releases potential energy.

Finally, we compare the horizontal component of the eddy
buoyancy flux in the SML.:

WFMCD = _Kgmz)m (C5a)

u't = _Kisozx + (Kgm - Kiso)SsmlEz' (CSb)

Whereas the Ferrari et al. (2008) scheme preserves strict lat-
eral downgradient diffusion, this is only true in our scheme
if Kgm = Kiso-

Further to this comparison with the formulation of Ferrari
et al. (2008), we note that the fluxes discussed above differ
substantially in the BBL over sloping topography. For exam-
ple, the vertical buoyancy flux becomes

-2
b ~ T
w'b’ = kgm Gl (2) =————— — KisoSebz (Se — Sint)-  (C6)
Z1z2=Tp+Hpbl

Thus, in general, the eddy buoyancy flux will act to create
potential energy (w’d’ < 0) unless the isopycnal slope Sin
is of the same sign as the bottom slope and larger in mag-
nitude. In order to avoid this, it would be necessary to set
kiso = 0 throughout the BBL. This is a separate considera-
tion from the orientation of the residual flux vector, which
must certainly lie parallel to the topography if the diffusivity
is nonzero.
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Code availability. The DOI for the MAMEBUS code is
https://doi.org/10.5281/zenodo.3866652 (Stewart and Moscoso,
2020).

This package includes the mamebus.c code along with example
setup and processing functions that are used in MATLAB.
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