Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-6025-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-6025-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
FABM-NflexPD 1.0: assessing an instantaneous acclimation approach for modeling phytoplankton growth
Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
Helmholtz-Zentrum Hereon, Institute of Coastal Systems – Analysis and Modeling, Geesthacht, Germany
Prima Anugerahanti
Earth SURFACE System Research Center, Research Institute for Global Change, JAMSTEC, Yokosuka, Japan
Sherwood Lan Smith
Earth SURFACE System Research Center, Research Institute for Global Change, JAMSTEC, Yokosuka, Japan
Related authors
Onur Kerimoglu, Markus Pahlow, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 16, 95–108, https://doi.org/10.5194/gmd-16-95-2023, https://doi.org/10.5194/gmd-16-95-2023, 2023
Short summary
Short summary
In classical models that track the changes in the elemental composition of phytoplankton, additional state variables are required for each element resolved. In this study, we show how the behavior of such an explicit model can be approximated using an
instantaneous acclimationapproach, in which the elemental composition of the phytoplankton is assumed to adjust to an optimal value instantaneously. Through rigorous tests, we evaluate the consistency of this scheme.
Prima Anugerahanti, Julien Palmieri, Chelsey A. Baker, Ekaterina Popova, and Andrew Yool
EGUsphere, https://doi.org/10.5194/egusphere-2025-5360, https://doi.org/10.5194/egusphere-2025-5360, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We used an ocean biogeochemistry model to investigate carbon removal potential of large-scale seaweed cultivation with multiple operational strategies and how it impacts the natural ocean biogeochemistry. Our results show that cultivation can increase atmospheric CO2 uptake, but at the expense of decreasing nutrients, phytoplankton production, and deoxygenation. These trade-offs need to be assessed before considering large-scale seaweed cultivation for CDR.
Onur Kerimoglu, Markus Pahlow, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 16, 95–108, https://doi.org/10.5194/gmd-16-95-2023, https://doi.org/10.5194/gmd-16-95-2023, 2023
Short summary
Short summary
In classical models that track the changes in the elemental composition of phytoplankton, additional state variables are required for each element resolved. In this study, we show how the behavior of such an explicit model can be approximated using an
instantaneous acclimationapproach, in which the elemental composition of the phytoplankton is assumed to adjust to an optimal value instantaneously. Through rigorous tests, we evaluate the consistency of this scheme.
Yoshikazu Sasai, Sherwood Lan Smith, Eko Siswanto, Hideharu Sasaki, and Masami Nonaka
Biogeosciences, 19, 4865–4882, https://doi.org/10.5194/bg-19-4865-2022, https://doi.org/10.5194/bg-19-4865-2022, 2022
Short summary
Short summary
We have investigated the adaptive response of phytoplankton growth to changing light, nutrients, and temperature over the North Pacific using two physical-biological models. We compare modeled chlorophyll and primary production from an inflexible control model (InFlexPFT), which assumes fixed carbon (C):nitrogen (N):chlorophyll (Chl) ratios, to a recently developed flexible phytoplankton functional type model (FlexPFT), which incorporates photoacclimation and variable C:N:Chl ratios.
Guillaume Le Gland, Sergio M. Vallina, S. Lan Smith, and Pedro Cermeño
Geosci. Model Dev., 14, 1949–1985, https://doi.org/10.5194/gmd-14-1949-2021, https://doi.org/10.5194/gmd-14-1949-2021, 2021
Short summary
Short summary
We present an ecological model called SPEAD wherein various phytoplankton compete for nutrients. Phytoplankton in SPEAD are characterized by two continuously distributed traits: optimal temperature and nutrient half-saturation. Trait diversity is sustained by allowing the traits to mutate at each generation. We show that SPEAD agrees well with a more classical discrete model for only a fraction of the cost. We also identify realistic values for the mutation rates to be used in future models.
Cited articles
Aksnes, D. L. and Egge, J.: A theoretical model for nutrient uptake in
phytoplankton, Mar. Ecol. Prog. Ser., 70, 65–72,
1991. a
Anderson, T. R. and Pondaven, P.: Non-redfield carbon and nitrogen cycling in
the Sargasso Sea: Pelagic imbalances and export flux, Deep-Sea Res. Pt.
I, 50, 573–591,
https://doi.org/10.1016/S0967-0637(03)00034-7, 2003. a
Anugerahanti, P., Kerimoglu, O., and Smith, S. L.: Enhancing Ocean
Biogeochemical Models With Phytoplankton Variable Composition, Front.
Mar. Sci., 8, 675428, https://doi.org/10.3389/fmars.2021.675428, 2021. a, b
Armstrong, R. A.: An optimization-based model of iron–light–ammonium
colimitation of nitrate uptake and phytoplankton growth, Limnol. Oceanogr.,
44, 1436–1446, https://doi.org/10.4319/lo.1999.44.6.1436, 1999. a
Ayata, S. D., Lévy, M., Aumont, O., Sciandra, A., Sainte-Marie, J.,
Tagliabue, A., and Bernard, O.: Phytoplankton growth formulation in marine
ecosystem models: Should we take into account photo-acclimation and variable
stoichiometry in oligotrophic areas?, J. Marine Syst., 125,
29–40, https://doi.org/10.1016/j.jmarsys.2012.12.010, 2013. a, b
Behrenfeld, M. J., Westberry, T. K., Boss, E. S., O'Malley, R. T., Siegel, D. A., Wiggert, J. D., Franz, B. A., McClain, C. R., Feldman, G. C., Doney, S. C., Moore, J. K., Dall'Olmo, G., Milligan, A. J., Lima, I., and Mahowald, N.: Satellite-detected fluorescence reveals global physiology of ocean phytoplankton, Biogeosciences, 6, 779–794, https://doi.org/10.5194/bg-6-779-2009, 2009. a
Bergeron, M. and Tremblay, J.-E.: Shifts in biological productivity inferred
from nutrient drawdown in the southern Beaufort Sea (2003–2011) and
northern BaffinBay (1997–2011), Canadian Arctic, Geophys. Res. Lett., 41,
3979–3987, https://doi.org/10.1002/2014GL059649.Received, 2014. a
Bonachela, J. A., Allison, S. D., Martiny, A. C., and Levin, S. A.: A model for variable phytoplankton stoichiometry based on cell protein regulation, Biogeosciences, 10, 4341–4356, https://doi.org/10.5194/bg-10-4341-2013, 2013. a
Branco, P., Egas, M., Elser, J. J., and Huisman, J.: Eco-Evolutionary Dynamics
of Ecological Stoichiometry in Plankton Communities, Am.
Nat., 192, E000–E000, https://doi.org/10.1086/697472, 2018. a
Bruggeman, J. and Bolding, K.: A general framework for aquatic biogeochemical
models, Environ. Modell. Softw., 61, 249–265,
https://doi.org/10.1016/j.envsoft.2014.04.002, 2014. a, b, c, d
Bruggeman, J. and Kooijman, S. A. L. M.: A biodiversity-inspired approach to
aquatic ecosystem modeling, Limonol. Oceanogr., 52, 1533–1544,
https://doi.org/10.4319/lo.2007.52.4.1533, 2007. a
Burchard, H., Bolding, K., Kühn, W., Meister, A., Neumann, T., and
Umlauf, L.: Description of a flexible and extendable physical-biogeochemical
model system for the water column, J. Marine Syst., 61, 180–211,
https://doi.org/10.1016/j.jmarsys.2005.04.011, 2006. a, b, c
Burmaster, D. E.: The Continuous Culture of Phytoplankton: Mathematical
Equivalence Among Three Steady-State Models, Am. Nat., 113,
123–134, https://doi.org/10.1086/283368, 1979. a, b, c, d
Burson, A., Stomp, M., Akil, L., Brussaard, C. P. D., and Huisman, J.:
Unbalanced reduction of nutrient loads has created an offshore gradient from
phosphorus to nitrogen limitation in the North Sea, Limnol.
Oceanogr., 61, 869–888, https://doi.org/10.1002/lno.10257, 2016. a
Button, D. K.: On the theory of control of microbial growth kinetics by
limiting nutrient concentrations, Deep-Sea Res., 25, 1163–1177,
https://doi.org/10.1016/0146-6291(78)90011-5, 1978. a, b, c
Chakraborty, S., Cadier, M., Visser, A. W., Bruggeman, J., and Andersen, K. H.:
Latitudinal Variation in Plankton Traits and Ecosystem Function, Global
Biogeochem. Cy., 32, e2020GB006564, https://doi.org/10.1029/2020GB006564, 2020. a
Chen, B. and Smith, S. L.: Optimality-based approach for computationally
efficient modeling of phytoplankton growth, chlorophyll-to-carbon, and
nitrogen-to-carbon ratios, Ecol. Model., 385, 197–212,
https://doi.org/10.1016/j.ecolmodel.2018.08.001, 2018. a
Christian, J. R.: Biogeochemical cycling in the oligotrophic ocean: Redfield
and non-Redfield models, Limnol. Oceanogr., 50, 646–657,
https://doi.org/10.4319/lo.2005.50.2.0646, 2005. a
Cloern, J., Grenz, C., and Vidergar-Lucas, L.: An empirical model of the
phytoplankton chlorophyll : carbon ratio – the conversion factor between
productivity and growth rate, Limnol. Oceanogr., 40, 1313–1321,
https://doi.org/10.4319/lo.1995.40.7.1313, 1995. a
Doney, S. C., Glover, D. M., and Najjar, R. G.: A new coupled, one-dimensional
biological-physical model for the upper ocean: Applications to the JGOFS
Bermuda Atlantic Time-series study (BATS) site, Deep-Sea Res. Pt. II, 43, 591–624,
https://doi.org/10.1016/0967-0645(95)00104-2, 1996. a
Dugdale, R.: Nutrient Limitation in the Sea: Dynamics, Identification and
Significance, Limnol. Oceanogr., 12, 685–695,
https://doi.org/10.4319/lo.1967.12.4.0685, 1967. a
Dutkiewicz, S., Cermeno, P., Jahn, O., Follows, M. J., Hickman, A. E., Taniguchi, D. A. A., and Ward, B. A.: Dimensions of marine phytoplankton diversity, Biogeosciences, 17, 609–634, https://doi.org/10.5194/bg-17-609-2020, 2020. a, b, c
Edelaar, P. and Bolnick, D. I.: Appreciating the Multiple Processes Increasing
Individual or Population Fitness, Trends Ecol. Evol., 34,
435–446, https://doi.org/10.1016/j.tree.2019.02.001, 2019. a
Flynn, K. J., St John, M., Raven, J. A., Skibinski, D. O., Allen, J. I.,
Mitra, A., and Hofmann, E. E.: Acclimation, adaptation, traits and
trade-offs in plankton functional type models: Reconciling terminology for
biology and modelling, J. Plankton Res., 37, 683–691,
https://doi.org/10.1093/plankt/fbv036, 2015. a, b
Follows, M. J. and Dutkiewicz, S.: Modeling Diverse Communities of Marine
Microbes, Annu. Rev. Mar. Sci., 3, 427–451,
https://doi.org/10.1146/annurev-marine-120709-142848, 2011. a
Geider, R. and La Roche, J.: Redfield revisited: variability of C:N:P in
marine microalgae and its biochemical basis, Eur. J. Phycol.,
37, 1–17, https://doi.org/10.1017/S0967026201003456, 2002. a, b, c
Geider, R., Maclntyre, H., and Kana, T.: A dynamic regulatory model of
phytoplanktonic acclimation to light, nutrients, and temperature, Limnol.
Oceanogr., 43, 679–694, https://doi.org/10.4319/lo.1998.43.4.0679, 1998. a, b, c
Gerloff, G. C. and Skoog, F.: Cell Contents of Nitrogen and Phosphorous as a
Measure of Their Availability for Growth of Microcystis Aeruginosa,
Ecology, 35, 348–353,
1954. a
Grover, J. P.: Is storage an adaptation to spatial variation in resource
availability?, Am. Nat., 173, E44–E61, https://doi.org/10.1086/595751, 2009. a, b
Guidi, L., Jackson, G. A., Stemmann, L., Miquel, J. C., Picheral, M., and
Gorsky, G.: Relationship between particle size distribution and flux in the
mesopelagic zone, Deep-Sea Res. Pt. I,
55, 1364–1374, https://doi.org/10.1016/j.dsr.2008.05.014, 2008. a
Halsey, K. H. and Jones, B. M.: Phytoplankton strategies for photosynthetic
energy allocation, Annu. Rev. Mar. Sci., 7, 265–297,
https://doi.org/10.1146/annurev-marine-010814-015813, 2015. a
Johnson, K. and Goody, R.: The Original Michaelis Constant: Translation of the
1913 Michaelis–Menten Paper, Biochemistry, 50, 8264–8269,
https://doi.org/10.1021/bi201284u, 2011. a
Johnson, K. S., Plant, J. N., Dunne, J. P., Talley, L. D., and Sarmiento,
J. L.: Annual nitrate drawdown observed by SOCCOM profiling floats and the
relationship to annual net community production, J. Geophys.
Res.-Oceans, 122, 6668–6683, https://doi.org/10.1002/2017JC012839, 2017. a
Kerimoglu, O.: OnurKerimoglu/fabm-nflexpd: Version 1.0 release candidate 0 (v1.0-rc0), Zenodo [code], https://doi.org/10.5281/zenodo.4761937, 2021. a
Kerimoglu, O., Straile, D., and Peeters, F.: Role of phytoplankton cell size
on the competition for nutrients and light in incompletely mixed systems.,
J. Theor. Biol., 300, 330–343,
https://doi.org/10.1016/j.jtbi.2012.01.044, 2012. a, b
Kerimoglu, O., Hofmeister, R., Maerz, J., Riethmüller, R., and Wirtz, K. W.: The acclimative biogeochemical model of the southern North Sea, Biogeosciences, 14, 4499–4531, https://doi.org/10.5194/bg-14-4499-2017, 2017. a, b, c
Kerimoglu, O., Große, F., Kreus, M., Lenhart, H.-J., and van Beusekom,
J. E.: A model-based projection of historical state of a coastal ecosystem:
relevance of phytoplankton stoichiometry, Sci. Total Environ.,
639, 1311–1323, https://doi.org/10.1016/j.scitotenv.2018.05.215, 2018. a, b
Kerimoglu, O. Anugerahanti, P., and Smith, S. L.: FABM-NflexPD 1.0: cyclic-equilibria simulated by three model variants in an idealized high-latitude 1D water column, SEANOE [data set], https://doi.org/10.17882/83699, 2021. a
Klausmeier, C., Litchman, E., Daufresne, T., and Levin, S.: Optimal
nitrogen-to-phosphorus stoichiometry of phytoplankton, Nature, 429,
171–174, https://doi.org/10.1029/2001GL014649, 2004. a, b
Kruskopf, M. and Flynn, K. J.: Chlorophyll content and fluorescence responses
cannot be used to gauge reliably phytoplankton biomass, nutrient status or
growth rate, New Phytol., 169, 525–536,
https://doi.org/10.1111/j.1469-8137.2005.01601.x, 2006. a
Kwiatkowski, L., Aumont, O., Bopp, L., and Ciais, P.: The Impact of Variable
Phytoplankton Stoichiometry on Projections of Primary Production, Food
Quality, and Carbon Uptake in the Global Ocean, Global Biogeochem. Cy., 32, 516–528, https://doi.org/10.1002/2017GB005799, 2018. a, b
Laufkötter, C., Vogt, M., Gruber, N., Aita-Noguchi, M., Aumont, O., Bopp, L., Buitenhuis, E., Doney, S. C., Dunne, J., Hashioka, T., Hauck, J., Hirata, T., John, J., Le Quéré, C., Lima, I. D., Nakano, H., Seferian, R., Totterdell, I., Vichi, M., and Völker, C.: Drivers and uncertainties of future global marine primary production in marine ecosystem models, Biogeosciences, 12, 6955–6984, https://doi.org/10.5194/bg-12-6955-2015, 2015. a, b
Laws, E. A. and Chalup, M. S.: A microalgal growth model, Limnol.
Oceanogr., 35, 597–608, https://doi.org/10.4319/lo.1990.35.3.0597, 1990. a
Litchman, E., Klausmeier, C. A., and Yoshiyama, K.: Contrasting size evolution
in marine and freshwater diatoms, P. Natl. Acad.
Sci. USA, 106, 2665–2670, 2009. a
Maar, M., Rindorf, A., Møller, E. F., Christensen, A., Madsen, K. S., and
van Deurs, M.: Zooplankton mortality in 3D ecosystem modelling considering
variable spatial–temporal fish consumptions in the North Sea, Prog.
Oceanogr., 124, 78–91, https://doi.org/10.1016/j.pocean.2014.03.002, 2014. a
Martiny, A. A. C., Pham, C. C. T. A., Primeau, F. F. W., Vrugt, J. A., Moore,
J. K., Levin, S. A., and Lomas, M. W.: Strong latitudinal patterns in the
elemental ratios of marine plankton and organic matter, Nat. Geosci.,
6, 279–283, https://doi.org/10.1038/ngeo1757, 2013. a
Mitra, A., Flynn, K. J., and Fasham, M. J. R.: Accounting for grazing dynamics
in nitrogen-phytoplankton-zooplankton models, Limnol. Oceanogr., 52,
649–661, https://doi.org/10.4319/lo.2007.52.2.0649, 2007. a
Mongin, M., Nelson, D. M., Pondaven, P., Brzezinski, M. A., and Tréguer,
P.: Simulation of upper-ocean biogeochemistry with a flexible-composition
phytoplankton model: C, N and Si cycling in the western Sargasso Sea,
Deep-Sea Res. Pt. I, 50, 1445–1480,
https://doi.org/10.1016/j.dsr.2003.08.003, 2003. a, b
Moore, J. K., Doney, S. C., Kleypas, J. A., Glover, D. M., and Fung, I. Y.: An
intermediate complexity marine ecosystem model for the global domain,
Deep-Sea Res. Pt. II, 49, 403–462,
https://doi.org/10.1016/S0967-0645(01)00108-4, 2002. a
Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics
and iron cycling in a global three-dimensional model, Global Biogeochem.
Cy., 18, GB4028, https://doi.org/10.1029/2004GB002220, 2004. a
Moreno, A. R. and Martiny, A. C.: Ecological Stoichiometry of Ocean Plankton,
Annu. Rev. Mar. Sci., 10, 43–69,
https://doi.org/10.1146/annurev-marine-121916-063126, 2018. a, b
Oschlies, A. and Schartau, A.: Basin-scale performance of a locally optimized
marine ecosystem model, Research, J. Marine, 63, 335–358,
https://doi.org/10.1016/b978-0-408-70700-8.50018-5, 2005. a, b
Pahlow, M.: Linking chlorophyll – nutrient dynamics to the Redfield N : C
ratio with a model of optimal phytoplankton growth, Mar. Ecol. Prog.
Ser., 287, 33–43, https://doi.org/10.3354/meps287033, 2005. a, b, c, d
Pahlow, M. and Oschlies, A.: Chain model of phytoplankton P, N and light
colimitation, Mar. Ecol. Prog. Ser., 376, 69–83,
https://doi.org/10.3354/meps07748, 2009.
a
Pahlow, M., Chien, C.-T., Arteaga, L. A., and Oschlies, A.: Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 1: Implementation and model behaviour, Geosci. Model Dev., 13, 4663–4690, https://doi.org/10.5194/gmd-13-4663-2020, 2020. a, b
Paulson, C. and Simpson, J.: Irradience measurements in the upper ocean,
J. Phys. Oceanogr., 7, 952–956, 1977. a
Platt, T. and Jassby, A. D.: the Relationship Between Photosynthesis and Light for Natural Assemblages of Coastal Marine Phytoplankton, J. Phycol., 12, 421–430, https://doi.org/10.1111/j.1529-8817.1976.tb02866.x, 1976. a
Redfield, A.: On the proportions of organic derivatives in sea water and their
relation to the composition of plankton, in: James Johnstone Memorial
Volume, edited by: Daniel, R., University Press of Liverpool, 177–192,
1934. a
Redfield, A.: The biological control of chemical factors in the environment,
Am. Sci., 46, 205–221, 1958. a
Sailley, S. F., Polimene, L., Mitra, A., Atkinson, A., and Allen, J. I.:
Impact of zooplankton food selectivity on plankton dynamics and nutrient
cycling, J. Plankton Res., 37, 519–529,
https://doi.org/10.1093/plankt/fbv020, 2015. a
Schourup-Kristensen, V., Sidorenko, D., Wolf-Gladrow, D. A., and Völker, C.: A skill assessment of the biogeochemical model REcoM2 coupled to the Finite Element Sea Ice–Ocean Model (FESOM 1.3), Geosci. Model Dev., 7, 2769–2802, https://doi.org/10.5194/gmd-7-2769-2014, 2014. a
Sharoni, S. and Halevy, I.: Nutrient ratios in marine particulate organic
matter, Sci. Adv., 6, 1–10, https://doi.org/10.1126/sciadv.aaw9371, 2020. a
Shuter, B.: A model of physiological adaptation in unicellular algae, J. Theor. Biol., 78, 519–552, 1979. a
Smith, S. L., Yamanaka, Y., Pahlow, M., and Oschlies, A.: Optimal uptake
kinetics: physiological acclimation explains the pattern of nitrate uptake by
phytoplankton in the ocean, Mar. Ecol. Prog. Ser., 384, 1–12,
https://doi.org/10.3354/meps08022, 2009. a, b
Smith, S. L., Pahlow, M., Merico, A., and Wirtz, K. W.: Optimality-based
modeling of planktonic organisms, Limnol. Oceanogr., 56,
2080–2094, https://doi.org/10.4319/lo.2011.56.6.2080, 2011. a, b, c
Smith, S. L., Pahlow, M., Merico, A., Acevedo-Trejos, E., Sasai, Y., Yoshikawa,
C., Sasaoka, K., Fujiki, T., Matsumoto, K., and Honda, M. C.: Flexible
phytoplankton functional type (FlexPFT) model: size-scaling of traits and
optimal growth, J. Plankton Res., 38, 977–992,
https://doi.org/10.1093/plankt/fbv038, 2016. a, b, c, d, e, f, g, h, i, j
Ward, B. A.: Assessing an efficient “Instant Acclimation” approximation of
dynamic phytoplankton stoichiometry, J. Plankton Res., 39, 803–814,
https://doi.org/10.1093/plankt/fbx040, 2017. a, b, c
Wirtz, K. W. and Kerimoglu, O.: Autotrophic Stoichiometry Emerging from
Optimality and Variable Co-limitation, Front. Ecol. Evol.,
4, 131, https://doi.org/10.3389/fevo.2016.00131, 2016. a, b, c
Short summary
In large-scale models, variations in cellular composition of phytoplankton are often insufficiently represented. Detailed modeling approaches exist, but they require additional state variables that increase the computational costs. In this study, we test an instantaneous acclimation model in a spatially explicit setup and show that its behavior is mostly similar to that of a variant with an additional state variable but different from that of a fixed composition variant.
In large-scale models, variations in cellular composition of phytoplankton are often...