Articles | Volume 14, issue 10
Geosci. Model Dev., 14, 6025–6047, 2021
https://doi.org/10.5194/gmd-14-6025-2021
Geosci. Model Dev., 14, 6025–6047, 2021
https://doi.org/10.5194/gmd-14-6025-2021
Model description paper
08 Oct 2021
Model description paper | 08 Oct 2021

FABM-NflexPD 1.0: assessing an instantaneous acclimation approach for modeling phytoplankton growth

Onur Kerimoglu et al.

Related authors

FABM-NflexPD 2.0: Testing an Instantaneous Acclimation Approach for Modelling the Implications of Phytoplankton Eco-physiology for the Carbon and Nutrient cycles
Onur Kerimoglu, Markus Pahlow, Prima Anugerahanti, and Sherwood Lan Smith
EGUsphere, https://doi.org/10.5194/egusphere-2022-493,https://doi.org/10.5194/egusphere-2022-493, 2022
Short summary
Interactive impacts of meteorological and hydrological conditions on the physical and biogeochemical structure of a coastal system
Onur Kerimoglu, Yoana G. Voynova, Fatemeh Chegini, Holger Brix, Ulrich Callies, Richard Hofmeister, Knut Klingbeil, Corinna Schrum, and Justus E. E. van Beusekom
Biogeosciences, 17, 5097–5127, https://doi.org/10.5194/bg-17-5097-2020,https://doi.org/10.5194/bg-17-5097-2020, 2020
Short summary
The acclimative biogeochemical model of the southern North Sea
Onur Kerimoglu, Richard Hofmeister, Joeran Maerz, Rolf Riethmüller, and Kai W. Wirtz
Biogeosciences, 14, 4499–4531, https://doi.org/10.5194/bg-14-4499-2017,https://doi.org/10.5194/bg-14-4499-2017, 2017
Short summary

Related subject area

Biogeosciences
Non-Redfieldian carbon model for the Baltic Sea (ERGOM version 1.2) – implementation and budget estimates
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022,https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary
Implementation of a new crop phenology and irrigation scheme in the ISBA land surface model using SURFEX_v8.1
Arsène Druel, Simon Munier, Anthony Mucia, Clément Albergel, and Jean-Christophe Calvet
Geosci. Model Dev., 15, 8453–8471, https://doi.org/10.5194/gmd-15-8453-2022,https://doi.org/10.5194/gmd-15-8453-2022, 2022
Short summary
Simulating long-term responses of soil organic matter turnover to substrate stoichiometry by abstracting fast and small-scale microbial processes: the Soil Enzyme Steady Allocation Model (SESAM; v3.0)
Thomas Wutzler, Lin Yu, Marion Schrumpf, and Sönke Zaehle
Geosci. Model Dev., 15, 8377–8393, https://doi.org/10.5194/gmd-15-8377-2022,https://doi.org/10.5194/gmd-15-8377-2022, 2022
Short summary
Modeling demographic-driven vegetation dynamics and ecosystem biogeochemical cycling in NASA GISS's Earth system model (ModelE-BiomeE v.1.0)
Ensheng Weng, Igor Aleinov, Ram Singh, Michael J. Puma, Sonali S. McDermid, Nancy Y. Kiang, Maxwell Kelley, Kevin Wilcox, Ray Dybzinski, Caroline E. Farrior, Stephen W. Pacala, and Benjamin I. Cook
Geosci. Model Dev., 15, 8153–8180, https://doi.org/10.5194/gmd-15-8153-2022,https://doi.org/10.5194/gmd-15-8153-2022, 2022
Short summary
Forest fluxes and mortality response to drought: model description (ORCHIDEE-CAN-NHA r7236) and evaluation at the Caxiuanã drought experiment
Yitong Yao, Emilie Joetzjer, Philippe Ciais, Nicolas Viovy, Fabio Cresto Aleina, Jerome Chave, Lawren Sack, Megan Bartlett, Patrick Meir, Rosie Fisher, and Sebastiaan Luyssaert
Geosci. Model Dev., 15, 7809–7833, https://doi.org/10.5194/gmd-15-7809-2022,https://doi.org/10.5194/gmd-15-7809-2022, 2022
Short summary

Cited articles

Aksnes, D. L. and Egge, J.: A theoretical model for nutrient uptake in phytoplankton, Mar. Ecol. Prog. Ser., 70, 65–72, 1991. a
Anderson, T. R. and Pondaven, P.: Non-redfield carbon and nitrogen cycling in the Sargasso Sea: Pelagic imbalances and export flux, Deep-Sea Res. Pt. I, 50, 573–591, https://doi.org/10.1016/S0967-0637(03)00034-7, 2003. a
Anugerahanti, P., Kerimoglu, O., and Smith, S. L.: Enhancing Ocean Biogeochemical Models With Phytoplankton Variable Composition, Front. Mar. Sci., 8, 675428, https://doi.org/10.3389/fmars.2021.675428, 2021. a, b
Armstrong, R. A.: An optimization-based model of iron–light–ammonium colimitation of nitrate uptake and phytoplankton growth, Limnol. Oceanogr., 44, 1436–1446, https://doi.org/10.4319/lo.1999.44.6.1436, 1999. a
Ayata, S. D., Lévy, M., Aumont, O., Sciandra, A., Sainte-Marie, J., Tagliabue, A., and Bernard, O.: Phytoplankton growth formulation in marine ecosystem models: Should we take into account photo-acclimation and variable stoichiometry in oligotrophic areas?, J. Marine Syst., 125, 29–40, https://doi.org/10.1016/j.jmarsys.2012.12.010, 2013. a, b
Download
Short summary
In large-scale models, variations in cellular composition of phytoplankton are often insufficiently represented. Detailed modeling approaches exist, but they require additional state variables that increase the computational costs. In this study, we test an instantaneous acclimation model in a spatially explicit setup and show that its behavior is mostly similar to that of a variant with an additional state variable but different from that of a fixed composition variant.