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Abstract. Coupled physical–biogeochemical models can
generally reproduce large-scale patterns of primary produc-
tion and biogeochemistry, but they often underestimate ob-
served variability and gradients. This is partially caused by
insufficient representation of systematic variations in the el-
emental composition and pigment density of phytoplank-
ton. Although progress has been made through approaches
accounting for the dynamics of phytoplankton composition
with additional state variables, formidable computational
challenges arise when these are applied in spatially explicit
setups. The instantaneous acclimation (IA) approach ad-
dresses these challenges by assuming that Chl : C : nutrient
ratios are instantly optimized locally (within each modeled
grid cell, at each time step), such that they can be resolved as
diagnostic variables. Here, we present the first tests of IA in
an idealized 1-D setup: we implemented the IA in the Frame-
work for Aquatic Biogeochemical Models (FABM) and cou-
pled it with the General Ocean Turbulence Model (GOTM) to
simulate the spatiotemporal dynamics in a 1-D water column.
We compare the IA model against a fully dynamic, otherwise
equivalently acclimative (dynamic acclimation; DA) variant
with an additional state variable and a third, non-acclimative
and fixed-stoichiometry (FS) variant. We find that the IA
and DA variants, which require the same parameter set, be-
have similarly in many respects, although some differences
do emerge especially during the winter–spring and autumn–
winter transitions. These differences however are relatively
small in comparison to the differences between the DA and
FS variants, suggesting that the IA approach can be used as
a cost-effective improvement over a fixed-stoichiometry ap-
proach. Our analysis provides insights into the roles of accli-

mative flexibilities in simulated primary production and nu-
trient drawdown rates, seasonal and vertical distribution of
phytoplankton biomass, formation of thin chlorophyll layers
and stoichiometry of detrital material.

1 Introduction

1.1 Modeling phytoplankton and their cellular
composition

In early ecosystem models, the elemental composition, i.e.,
proportion of carbon (C), nitrogen (N) and phosphorus (P)
content of phytoplankton, was generally assumed constant,
and at least since the work of Dugdale (1967) their growth
was typically described by the so-called “Monod” model
(Monod, 1949), which assumes a saturating response of the
rate of carbon assimilation (and hence of nutrient uptake)
to the ambient nutrient concentration, described by a rect-
angular hyperbolic function. Similarly, specific chlorophyll
(Chl) content, i.e., the Chl : C ratio, was assumed to be con-
stant when comparing the simulated phytoplankton biomass
against the in situ or satellite-based chlorophyll measure-
ments. In many primary production modules coupled to gen-
eral circulation models that are actively being used for var-
ious purposes to this date, phytoplankton C : Chl and/or C :
N : P ratios are assumed to be constant (see, e.g., the models
in Laufkötter et al., 2015).

The inadequacy of these simplifying assumptions was
made clear decades ago by the discovery that phytoplankton
elemental composition (e.g., Gerloff and Skoog, 1954) and
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chlorophyll content (e.g., Platt and Jassby, 1976) are vari-
able. Chl : C : N : P ratios of phytoplankton have since been
found to vary widely in many laboratory experiments (e.g.,
Kruskopf and Flynn, 2006) and field observations (e.g., Mar-
tiny et al., 2013; Burson et al., 2016). Since the work of Ca-
peron (1968) and Droop (1968), the so-called “quota” (or
variable internal stores or “Droop”) model has been widely
employed to describe the dynamics of carbon and nutrients
bound to phytoplankton, using a separate state variable for
each element or nutrient resolved. For describing variable
Chl : C ratios, acclimation models, most commonly that of
Geider et al. (1998), but also others (e.g., Pahlow and Os-
chlies, 2009; Wirtz and Kerimoglu, 2016) are being increas-
ingly employed in biogeochemical model frameworks. Such
models typically couple a description of variable N : C (or
other nutrient : C) with photo-acclimation, i.e., variation of
Chl : C, using one more state variable for Chl bound to phy-
toplankton (Moore et al., 2002; Schourup-Kristensen et al.,
2014; Kerimoglu et al., 2017; Kwiatkowski et al., 2018).
Some models assume a constant N : C ratio, while describ-
ing the variations in Chl : C, e.g., using only the photo-
acclimation portion (e.g., Moore et al., 2004) of the model
by Geider et al. (1998) or using an empirical function (e.g.,
Oschlies and Schartau, 2005) that was earlier proposed by
Cloern et al. (1995).

Models that account for variations in cellular composition
are in principle more likely to provide more realistic esti-
mates of phytoplankton biomass and biogeochemical fluxes:
when the variabilities in Chl : C and C : nutrient ratios are
realistically represented by the models, their calibration on
the basis of in situ and satellite Chl observations becomes
more accurate (Behrenfeld et al., 2009; Ayata et al., 2013;
Kerimoglu et al., 2017), and their estimates of biosynthe-
sis rates of C and nutrients, consequently the drawdown of
nutrients, and elemental composition of the export flux can
be better reproduced (Anderson and Pondaven, 2003; Mon-
gin et al., 2003), respectively. However, the mechanistic ba-
sis of some of the models remains questionable, given their
parameterization of certain processes using heuristic or em-
pirically inspired functions (Flynn et al., 2015). Moreover,
schemes that require additional state variables, due to the
need to calculate their transport as tracers, impose substan-
tial computational costs. Especially for models that contain
many phytoplankton functional types or clones (e.g., 350 in
Dutkiewicz et al., 2020), such additional computational costs
may severely limit the kinds of simulations and in silica ex-
periments that can be conducted.

1.2 An optimality-based resource allocation model

For the prediction of growth, nutrient uptake and acclimative
variations of pigment and nutrient content of phytoplankton
in response to changes in resource environment, such as the
availability of mineral nutrients and light, “resource alloca-
tion models” (RAMs) have been used (Shuter, 1979; Laws

and Chalup, 1990; Armstrong, 1999; Klausmeier et al., 2004;
Pahlow, 2005; Wirtz and Kerimoglu, 2016). This approach is
based on the expectation that evolution has produced organ-
isms that strive to maximize their net growth rate by opti-
mally allocating their resources to cellular functions. The de-
pendence of all such functions on common resources there-
fore implies ecophysiological trade-offs (Smith et al., 2011).
In this study, we specifically consider four physiological vari-
ables for describing the acclimative flexibilities involved in
phytoplankton growth, as described by Pahlow et al. (2013):

Q: N quota (i.e., N : C ratio [molN molC−1]) of phytoplank-
ton.

fV : fractional allocation (dimensionless) to the nutrient up-
take compartment (protoplast) to optimize the trade-off
between photosynthesis (µ) and nutrient uptake (V ), as
described by Pahlow and Oschlies (2013).

fA: fractional allocation (dimensionless) to affinity to op-
timize the trade-off between nutrient affinity (A) and
maximum uptake rate within the nutrient uptake com-
partment (Vmax), as described by Pahlow (2005) and
Smith et al. (2009).

θ̂ : Chl : C ratio in chloroplasts (θ̂ , [gChl molC−1]) to opti-
mize the trade-off between energy gained by light har-
vesting and energetic costs of chlorophyll synthesis and
maintenance, as described by Pahlow et al. (2013).

1.3 Instantaneous acclimation approach

As in most previous models of flexible phytoplankton com-
position, the above-mentioned model by Pahlow et al. (2013)
explicitly resolved the dynamics of the carbon, nitrogen, and
chlorophyll within phytoplankton biomass. This approach is
well suited for simulating the short-term (i.e., hours to days)
dynamics of growth and hence for testing model assumptions
against the results of batch culture experiments (e.g., Pahlow,
2005; Pahlow et al., 2013). Resolving the transient dynam-
ics is important for such short-term experiments, where the
response of phytoplankton may differ substantially in terms
of nutrient uptake vs. carbon-based growth and chlorophyll
synthesis.

By contrast, oceanic (or even freshwater) observations are
rarely available at such fine temporal resolution. The lack of
observations at sufficient temporal resolution to test short-
term model dynamics motivated the development of the in-
stantaneous acclimation (IA) approach (Smith et al., 2016)
as a way to potentially capture growth response at longer
timescales while requiring substantially fewer calculations.
IA is based on the balanced growth assumption, which Bur-
master (1979) showed was able to reconcile the ability of
the Droop, Monod and Michaelis–Menten models to capture
phytoplankton growth response at steady state, as measured
by continuous culture experiments. The key assumption is

Geosci. Model Dev., 14, 6025–6047, 2021 https://doi.org/10.5194/gmd-14-6025-2021



O. Kerimoglu et al.: FABM-NflexPD 1.0 6027

that growth and nutrient uptake are at all times strictly bal-
anced with respect to the internal C : N stoichiometry of the
cell (see Sect. 2.2 below for details). Based on this assump-
tion, IA calculates only one specific rate for both growth
and nutrient uptake. Smith et al. (2016) applied this assump-
tion in a 0-D (box) model, adequate for reproducing sparse
oceanic observations, but did not evaluate its performance
compared to fully dynamic models of flexible composition.

Ward (2017) compared the results of a phytoplankton
model with instantaneously adjusting quota against a fully
dynamic model with explicit state variables for each element
resolved, and a fixed-stoichiometry model, in a 0-D setup.
He found that for a wide range of realistic forcing dynam-
ics, the instantaneous approach yielded results practically
indistinguishable from the fully dynamic model, whereas
these results differed considerably from those of the fixed-
stoichiometry model. To our knowledge, the IA approach has
yet to be tested in a spatially explicit model, where the inclu-
sion of transport terms may lead to additional complications.
In a spatially structured environment, transport of cells with
a certain internal state to a zone where the typical (average)
cellular composition differs, can result in a spatial storage ad-
vantage (Grover, 2009). A typical example of this is nutrient-
replete cells (as represented by high N : C) at the deeper lay-
ers diffusing towards the surface mixed layer (SML) across
the thermocline where the cells are typically nutrient starved
(e.g., Kerimoglu et al., 2012). In principal, this effect can be
resolved only by explicitly tracing the constituents of the cell
dynamically.

1.4 Objectives of this study

This study presents a novel implementation of the IA ap-
proach in the Framework for Aquatic Biogeochemical Mod-
els (FABM; Bruggeman and Bolding, 2014) , and an assess-
ment of its behavior compared to two other established vari-
ants (Fig. 1): the first is the widely used, non-acclimative
fixed-stoichiometry (FS) variant, which resolves only the N
bound to phytoplankton explicitly. The second variant is the
dynamic acclimation (DA) variant, which resolves the C and
N bound to phytoplankton fully dynamically, with two state
variables. The comparisons of the three model variants were
conducted to answer the following two specific questions:
(i) how do the simulations performed with the IA variant dif-
fer from those of the fully dynamic DA variant, and (ii) com-
pared to the FS variant, do the results of the IA variant differ
substantially? While answering these questions, we aimed to
gain mechanistic understanding of the dynamics driving the
difference between the model results.

In the following sections, we describe the general struc-
ture of the model, the details of the physiological flexibilities
mentioned above for each model variant, and the setup to
simulate the model. Then we show the results of the simu-
lated patterns of phytoplankton in terms of carbon, nitrogen,
chlorophyll, cell quota (Q) and Chl : C ratio, as well as the

fractional allocations. We finally discuss the advantages, as
well as the challenges and limitations of implementing the
IA approach.

2 Model description

2.1 General structure

For describing the cycling of N, we consider a simple model
structure (Fig. 1) with four compartments: C and N bound
to phytoplankton (PhyC, PhyN), detritus (DetC, DetN), dis-
solved organic matter (DOC, DON) and dissolved inorganic
nitrogen (DIN). Note that our model does not resolve the dy-
namics of dissolved inorganic carbon (DIC) per se.

The coupled set of differential equations (s(x) short for
dx
dt ) that describe the dynamics of state variables are provided
in Eqs. (1)–(4), where each of the coupled C or N terms are
annotated with the processes they represent. The formal def-
inition and exact formulation of the flux terms (FFROM−TO)
in Eqs. (1)–(4) that are trivial (i.e., all except FDIN−PhyN and
FDIC−PhyC ) are provided in Table 1. For equations applying
only to a subset of our model variants, the variants are in-
dicated near the equation number in curly brackets ({}). In
addition, Table 2 provides an overview of how the model
variants differ.

s(PhyN)= FDIN−PhyN −FPhyN−DetN (1a)
s(PhyC)= FDIC−PhyC︸ ︷︷ ︸

Uptake

−FPhyC−DetC︸ ︷︷ ︸
Mortality

{DA} (1b)

s(DetN)= FPhyN−DetN −FDetN−DON (2a)
s(DetC)= FPhyC−DetC︸ ︷︷ ︸

Mortality

−FDetC−DOC︸ ︷︷ ︸
Hydrolysis

(2b)

s(DON)= FDetN−DON−FDON−DIN (3a)
s(DOC)= FDetC−DOC︸ ︷︷ ︸

Hydrolysis

− FDOC−DIC︸ ︷︷ ︸
Remineralization

(3b)

s(DIN)= FDON−DIN︸ ︷︷ ︸
Remineralization

−FDIN−PhyN︸ ︷︷ ︸
Nuptake

(4)

It should be noted that the PhyC is resolved as a state vari-
able only by the DA variant (Eq. 1b). The terms FDIN−PhyN
and FDIC−PhyC have central importance to this study and de-
serve explanation. FDIN−PhyN represents the net N flux from
the DIN to phytoplankton and is given by the product of the
phytoplankton carbon biomass, PhyC and the specific nutri-
ent uptake rate, V :

FDIN−PhyN = V ·PhyC. (5)
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Figure 1. Diagram of the FABM-NflexPD model. Abiotic components, dissolved organic matter (DOM), dissolved inorganic matter (DIM)
and Det are calculated by the module abio.F90, which are then coupled to the phytoplankton simulated by the module phy.F90 that
simulates the dynamics of PhyN, PhyC and PhyChl by the DA, IA and FS variants (see Sect. 2.2.2). Solid circles in the phytoplankton
module represent state variables, dashed circles/ellipsoids represent diagnostically calculated variables, and solid squares (for FS) represent
prescribed values. The DA variant estimates the N, C and Chl content of phytoplankton based on a resource allocation scheme, whereas the
FS variant estimates only N prognostically, while C and Chl are based on prescribed values of nitrogen quota (Q) and cellular Chl : C ratio
(θ ) (see the text).

For the FS and IA variants, balanced growth (Burmaster,
1979) is assumed, such that V is directly linked to net growth
rate, µ, via the nutrient quota, Q:

V = µ ·Q {FS, IA}, (6)

whereas for the DA variant, V is calculated explicitly
(Eq. 12). Net growth rate, µ, is obtained by subtracting the
respiration costs associated with chlorophyll maintenance
and synthesis, RChl, and nutrient uptake, RN, from the cel-
lular gross growth rate, µg (Eq. 13):

µ= µg−RChl−RN = µnet− ζN ·V, (7)

where ζN is the cost of N assimilation (Table 3) and
RChl is the cost of chlorophyll synthesis and maintenance
(Sect. 2.2.4).
FDIC−PhyC is required only by the DA variant that explic-

itly resolves the dynamics of PhyC (Eq. 1b). It is given by
the product of net growth rate, µ with PhyC, as is typical in
quota models (Caperon, 1968; Droop, 1968):

FDIC−PhyC = µ ·PhyC {DA}. (8)

2.2 Flexibilities represented by the model variants

We compare the behavior of three model variants that differ
in their representation of the physiological flexibilities. These
variants are as follows:

– DA explicitly describes the dynamics of nitrogen and
carbon bound to phytoplankton, and the acclimation
mechanisms introduced in Sect. 1.2, here as represented
by flexibilities in growth vs. nutrient uptake; nutrient

affinity vs. maximum uptake; and chlorophyll density
in chloroplasts; each of which are explained in detail in
the following sections. A full description of this variant
(including diazotrophy) can be found in Pahlow et al.
(2013).

– IA assumes that the nitrogen quota (molar N : C ratio)
adjusts instantaneously to its optimal value locally (i.e.,
at any point in time and space) but is otherwise identical
to the DA variant with respect to the acclimation mech-
anisms. A full description of this variant can be found
in Smith et al. (2016).

– FS assumes no physiological acclimation or quota vari-
ability whatsoever.

In the following, representations of the acclimative flexi-
bilities by each model variant are explained in detail.

2.2.1 Flexibility I: nutrient quota

Flexibility in the elemental composition of phytoplankton
(Q) is a result of acclimation processes, such as synthesis of
enzymes or pigments, which differ in elemental composition
(e.g., Geider and La Roche, 2002), in response to changes in
resource (light and nutrient) availability.

– For the dynamic acclimation variant, Q, is the ratio of
the phytoplankton N and C state variables:

Q=
PhyN

PhyC
{DA}. (9)

– For the instantaneous acclimation variant,Q is assumed
to adjust instantaneously to its balanced-growth opti-
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Table 1. Definitions, expansions/values and units of terms/symbols regarding the fluxes between model compartments.

Term/symbol Definition Expansion/value Units

FPhyN−DetN N flux from PhyN to DetN m ·Phy2
N mmolNm−3 d−1

FPhyC−DetC C flux from PhyC to DetC FPhyN−DetN/Q mmolCm−3 d−1

FDetN−DON N flux from DetN to DON rhyd ·DetN mmolNm−3d−1

FDetC−DOC C flux from DetC to DOC rhyd ·DetC mmolCm−3 d−1

FDON−DIN N flux from DON to DIN rrem ·DON mmolNm−3 d−1

FDOC−DIC C flux from DOC to DIC rrem ·DOC mmolNm−3 d−1

m Mortality rate coefficient 0.1 m3mmolN−1d−1

rhyd Hydrolysis rate constant 0.1 d−1

rrem Remineralization rate constant 0.1 d−1

mum (Qo) according to Pahlow and Oschlies (2013):

Qo
=
Q0

2

[
1+

√
1+

2

Q0(µ̂net/V̂ + ζN)

]
{IA}, (10)

where µ̂net and V̂ are the chloroplast-specific net growth
and protoplast-specific N uptake rates (Table 2), andQ0
and ζN and are the subsistence quota, and cost of N up-
take (Table 3), respectively. Note that this solution dif-
fers slightly from the solution proposed by Smith et al.
(2016), where the cost of chlorophyll maintenance and
synthesis was ignored (see Appendix A for details).

– In the fixed-stoichiometry variant,Q is a prescribed pa-
rameter (Table 2).

2.2.2 Flexibility II: growth vs. nutrient uptake

Given the high nitrogen content in the enzymes responsible
for both CO2 fixation and nutrient uptake and assimilation
(Geider and La Roche, 2002), we consider a trade-off in the
allocation of nitrogen between carbon fixation and nutrient
uptake for the acclimative variants, whereas this trade-off is
ignored for the FS variant.

– For the acclimative variants (DA and IA), following
Pahlow and Oschlies (2013), the trade-off is specified in
terms of the fraction of cellular nitrogen reserves allo-
cated to nitrogen uptake (fV ), which linearly increases
V and decreases µg, through decreasing the resources
available for carbon fixation, fC, which is interpreted
as the relative size of the chloroplast (Pahlow and Os-
chlies, 2013).

fC =

(
1−

Q0

2Q
− fV

)
{IA,DA}, (11)

where fV is the fractional allocation towards nutrient
uptake for the DA variant (see Eq. 6 for IA variant):

V = fV · V̂ {DA}, (12)

where V̂ is the protoplast-specific N uptake rate (see be-
low). The cellular gross growth rate is then determined
by scaling the gross growth rate within the chloroplast
µ̂g (see Sect. 2.2.4) by the relative size of the chloro-
plast, fC:

µg = fC · µ̂g. (13)

Note that, for calculating the effective flux from DIN to
PhyN (Eq. 5), only the DA variant uses V as calculated
by Eq. (12), while the IA variant calculates the uptake
rate from the growth rate, based on the balanced growth
assumption (Eq. 6). However, the IA variant still needs
the V as calculated by Eq. (12) for calculating the costs
of nutrient uptake (Eq. 7).

Both acclimative variants assume that fV maximizes the
net specific growth rate under balanced growth condi-
tions. Following Pahlow and Oschlies (2013), this opti-
mal value is found as (see Appendix A)

dµ
dfV
= 0⇒ fV =

(
Q0

2Q

)
− ζN(Q−Q0) {IA,DA}. (14)

– For the fixed-stoichiometry variant, the gross growth
rate, µg is obtained by the multiplication of µ̂g, for
FS, interpreted as the light-limited potential growth rate,
with a nutrient limitation term LN, formulated as a hy-
perbolic function of ambient DIN concentration, fol-
lowing the Michaelis–Menten–Monod model (Johnson
and Goody, 2011; Monod, 1949):

µg = µ̂g ·LN = µ̂g ·
DIN

KN+DIN
{FS}. (15)

Thus, for the FS variant, µ (Eq. 7), and hence, through
the balanced growth assumption, V (Eq. 6), are directly
linked to the external nutrient concentration (Eq. 15)
as in typical fixed-stoichiometry models. Given the fact
that both LN (Eq. 15) for the FS variant and fC (Eq. 11)
for the acclimative variants have an equivalent role (in
scaling µ̂g to µg), and they both represent nutrient lim-
itation, we consider them to be comparable, i.e., LN ∼

fC.
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Table 2. Summary of differences between model variants. n/a denotes “not applicable”. ∗ Prescribed; see Table 3.

Term Definition
Equation/definition

Units
IA DA FS

PhyC Carbon bound to phytoplankton PhyN/Q Eq. (1b) PhyN/Q mmolCm−3

FDIN−PhyN
N flux from DIN to PhyN Eq. (5) mmolNm−3 d−1

FDIC−PhyC
C flux from DIC to PhyN n/a Eq. (8) n/a mmolCm−3 d−1

fV Fractional allocation to uptake Eq. (14) ∗
−

V Specific N uptake rate Eq. (6) Eq. (12) Eq. (6) molNmolC−1 d−1

µ Cellular net growth rate Eq. (7) d−1

µg Cellular gross growth rate Eq. (13) d−1

µnet µg−RChl Eq. (7) d−1

µ̂g Gross growth rate within chloroplast Eq. (21) d−1

µ̂net Net growth rate within chloroplast µ̂g− R̂Chl d−1

Q N quota Eq. (10) PhyN/PhyC
∗ molNmolC−1

V̂ Protoplast-specific N uptake rate Eq. (16) molNmolC−1 d−1

fA Fractional allocation to affinity Eq. (18) n/a −

θ̂ Chl : C in chloroplasts Eq. (26) ∗ gChl molC−1

θ Chl : C in the entire cell Eq. (24) gChlmolC−1

RN Cost of N uptake Eq. (7) d−1

R̂Chl Cost of light harvesting within chloroplast Eq. (23) d−1

RChl Cellular cost of light harvesting Eq. (25) d−1

fC Fractional N allocation to C fixation Eq. (11) n/a −

LN Nutrient limitation term n/a Eq. (15) −

LI Light limitation Eq. (22) −

2.2.3 Flexibility III: nutrient affinity vs. maximum
uptake rate

– Originally introduced for describing the substrate up-
take by bacteria, “affinity” of a microorganism “can
be viewed as a measure of effective collusion between
substrate and transport site” (Button, 1978), which can
be practically found from the initial slope (i.e., before
saturation) of the uptake rate with respect to the sub-
strate concentration (Button, 1978). The term has been
used for describing the nutrient uptake by phytoplank-
ton (Aksnes and Egge, 1991) and recognized to be a
measure of competitive ability under low concentra-
tions. The maximum nutrient uptake rate, on the con-
trary, can taken to be a measure of competitiveness un-
der high nutrient concentrations. The protoplast-specific
N uptake rate, V̂ , can be described by a function of max-
imal uptake rate, V̂max, and nutrient affinity, Â:

V̂ =
V̂max · Â ·DIN

V̂max+ Â ·DIN
{IA,DA}. (16)

The acclimation variants introduce a trade-off between
affinity vs. maximum uptake rate. This trade-off is cap-
tured by the fractional allocation of resources to affin-
ity (fA), which increases affinity, Â= fAÂ0, while de-
creasing maximum uptake rate, V̂max = (1− fA)V̂0, so
that Eq. (16) becomes

V̂ =
(1− fA)V̂0 · fAÂ0 ·DIN

(1− fA)V̂0+ fAÂ0 ·DIN
{IA,DA}. (17)

fA is set to its optimum value, which maximizes V̂ , and
hence also V (Pahlow, 2005):

dV̂
dfA
= 0⇒ fA =

1+

√
Â0 ·DIN

V̂0

−1

{IA,DA}. (18)

– The fixed-stoichiometry variant ignores this trade-off
entirely, by describing the nutrient limitation with the
Michaelis–Menten–Monod function (Eq. 15). Follow-
ing Button (1978) and Smith et al. (2009), the KN pa-
rameter in Eq. (15) can be expressed as a function of
Vmax and Â, according to

KN =
V̂max

Â
=
(1− fA) · V̂0

fA · Â0
{FS}. (19)

Based on Eq. (19), corresponding KN values were di-
agnosed from the solution of the IA variant (i.e., us-
ing the locally optimized fA values as calculated with
Eq. (18), and Â0 and V̂0 parameters specified for the IA
and DA variants). The biomass-weighted spatiotempo-
ral averageKN value so obtained was prescribed for the
FS variant (Table 3).
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2.2.4 Flexibility IV: photo-acclimation

Photo-acclimation is based on the net carbon fixation rate
within the chloroplast, µ̂net (equivalent to A in Pahlow
and Oschlies, 2013), which is obtained by subtracting
the chloroplast-specific synthesis and maintenance costs of
chlorophyll, from the gross growth rate within the chloro-
plast, i.e.,

µ̂net = µ̂g− R̂Chl, (20)

where µ̂g is given by the product of day length as a fraction of
24 h, LD, potential turnover rate, µ̂0, and the light-saturation
of the photosynthetic apparatus, LI :

µ̂g = LDµ̂0LI . (21)

LI is a saturating function of daytime average light, Ī , and
chlorophyll density in chloroplasts, θ̂ :

LI = 1− exp

(
−αθ̂ Ī

µ̂0

)
, (22)

where α is light affinity. Returning to Eq. (20), R̂Chl is given
by

R̂Chl =
(
µ̂g+R

Chl
M

)
ζChlθ̂ , (23)

where RChl
M and ζChl are the costs of chlorophyll maintenance

and synthesis, respectively (Table 3).
Photo-acclimation is mainly represented in terms of the

chlorophyll density in chloroplasts, θ̂ . Increasing θ̂ reduces
light limitation (Eq. 22) but at the expense of greater respira-
tion costs (Eq. 23). In turn, for obtaining the cellular Chl : C
ratio, θ is calculated by multiplying θ̂ times fC, i.e., size of
the chloroplast:

θ = fC · θ̂ {IA,DA}. (24)

Similarly, the overall respiratory cost of maintaining cellu-
lar chlorophyll is obtained by multiplying the chloroplast-
specific cost by the size of the chloroplast:

RChl = fC ·R̂Chl {IA,DA}. (25)

Although θ (Eq. 24) is only a diagnostic quantity, RChl
(Eq. 25) directly determines the net growth rate through
Eq. (7). Therefore, scaling of the chloroplast-specific respi-
ration rate, R̂Chl, by fC can be considered to be an acclima-
tive quality implied by variable fV and Q, which, in combi-
nation (Eq. 11), determine the chlorophyll maintenance cost
through Eq. (25).

– In the acclimation variants (IA and DA), θ̂ is assumed to
adjust instantaneously to its optimal value, which maxi-
mizes µ̂net. Following Pahlow et al. (2013), this optimal
value is

θ̂ =
1
ζChl
+
µ̂0

αĪ

(
1−W0

[(
1+

RChl
M

LDµ̂0

)
exp

(
1+

αĪ

µ̂0ζChl

)])
, Ī > ĪC

0, Ī ≤ ĪC

{IA,DA}, (26)

where W0 is the 0 branch of the Lambert W func-
tion, Ī is the daytime average irradiance (i.e., Î =
Ī24h/LD), and ĪC is the critical daytime average irradi-
ance level, above which chlorophyll synthesis is worth-
while (Pahlow et al., 2013):

ĪC =
ζChlR

Chl
M

αLD
. (27)

– For the fixed-stoichiometry variant, θ̂ is prescribed as
the biomass-weighted average value calculated by the
IA variant. Considering that θ is typically a constant
“conversion factor” in classical, fixed-stoichiometry and
fixed-Chl : C models, in Eqs. (24) and (25), we assume
that the size of the chloroplast, fC, is constant too. For
the sake of consistency with the IA variant, fC for FS
is diagnosed from its expanded form, i.e., 1− Q0

2Q − fV
(Eq. 11). Hence, in addition to the prescribed value of
Q (see Sect. 2.2.1), the biomass-weighted mean of fV ,
as calculated by the IA variant is prescribed (Table 3).
Given the comparability of the terms (Sect. 2.2.2), diag-
nosing fC from LN comes into question, which is elab-
orated on in Appendix B.

2.2.5 Temperature scaling

Kinetic rate constants (m, rhyd, rrem in Table 1, and V̂0, Â,
Â0 and RChl

M in Table 3) are prescribed for a reference tem-
perature of Tr = 20 ◦C = 293.15K and scaled to the ambient
temperature in water, T (in K), according to the Arrhenius
function:

f (T )= exp
(
−Ea

R

[
1
T
−

1
Tr

])
, (28)

where the gas constant R = 8.3145 Jmol−1 K−1, and the ac-
tivation energy, Ea = 4.82×104 Jmol−1, such that every 10◦

increase or decrease in T approximately doubles or halves
the reference rates.

2.3 Coupling with the hydrodynamical host

The model is implemented in FABM (Bruggeman and Bold-
ing, 2014), so that it can be used, without modification,
in combination with various hydrodynamical hosts. In this
study, we performed simulations of an idealized water col-
umn, using the General Ocean Turbulence Model (i.e.,
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Table 3. Descriptions, values and units of model parameters regarding phytoplankton growth. Prescribed values for Q, KN, fV , and θ̂ are
based on the biomass-weighted averages estimated by the IA variant. All other parameter values are taken from within the published range
(Pahlow et al., 2013; Smith et al., 2016), without particular reference to species.

Term/symbol Definition Value Unit Used by

µ̂0 Potential maximum growth rate 5.0 d−1 all
Q0 Subsistence quota 0.039 mmolN molC−1 IA, DA
Â0 Potential maximum nutrient affinity 0.1 m3 mmolC−1 d−1 IA, DA
V̂0 Potential maximum N uptake rate 5.0 molNmolC−1 d−1 IA, DA
α Chl-specific slope of P–I curve 1.0 m2 E molCgChl−1 d−1 all
RChl

M Cost of chlorophyll maintenance 0.1 d−1 all
ζChl Cost of chlorophyll synthesis 0.5 mmolCgChl−1 all
ζN Cost of N uptake 0.6 molCmolN−1 all
Q N quota 0.084 molNmolC−1 FS
KN Half saturation constant for N uptake 4.84 mmolN m−3 FS
fV Fractional allocation to uptake 0.32 − FS
θ̂ Chl : C in chloroplasts 0.518 gChlmolC−1 FS

GOTM Burchard et al., 2006). GOTM calculates and pro-
vides the relevant physical quantities, such as I (needed in
Eq. 22) and T (needed in Eq. 28). I is attenuated with depth
(z) by various substances in water, according to

I (z)=I0

[
Aexp

(
−z

η1

)
+ (1−A)

exp

−z
η2
−

0∫
z

∑
i

kici(z
′)dz′

 , (29)

where A, η1 and η2 represent the differential attenuation
length scales of red and blue light (Burchard et al., 2006),
and ki is the specific attenuation coefficient of the biolog-
ical quantities, which we set as 0.03 m2 mmolN−1 for PhyN
and DetN. In order to account for background attenuation, we
set the “light extinction method” to “Jerlov type IB”, corre-
sponding to A= 0.67 η1 = 1.0 m, η2 = 17 m, characterizing
water of medium clarity (Paulson and Simpson, 1977). Our
results are qualitatively insensitive to these parameter set-
tings. Besides providing necessary environmental variables,
GOTM calculates the transport rates of the biological quan-
tities, according to the general equation (Burchard et al.,
2006):

∂ci

∂t
+
∂

∂z

(
wici −Kz

∂ci

∂z

)
= s(ci), (30)

where Kz is the eddy diffusivity calculated by GOTM, the
source terms, s(ci), correspond to Eqs. (1)–(4), and advec-
tion rates, wi , are all set to 0.0, except that of detritus for
which a sinking rate of −2.0 m d−1 was specified. Note that
the latter value was arbitrarily chosen to induce a downward
flux in this idealized setup, and that in reality, it depends on
the average size and density of detritus particles being mod-
eled and displays a vast range (Guidi et al., 2008).

Figure 2. Atmospheric variables. (a) Astronomically estimated in-
stantaneous irradiance at the water surface and (b) prescribed air
temperature.

2.4 Idealized setup and simulations

We consider an idealized water column of 100 m depth. In or-
der to mimic an environment that is characterized by strong
seasonality, with deep mixed layers in spring and summer
stratification, we force the model with astronomically calcu-
lated shortwave radiation at 60◦ N latitude and a repeating
annual cycle of air temperature that ranges between 4–20 ◦C
as described by a scaled sinusoidal function (Fig. 2).

All other meteorological variables (wind speed, air pres-
sure, humidity and cloud cover) are assumed to be constant,
and the model ignores precipitation and evaporation losses,
as well as tidal variations. Starting from initial conditions
and annually repeating meteorological forcing as described
above, each model variant was run for 3 years. The third-
year results were nearly identical to those for the second year,
indicating that an equilibrium annual cycle was reached. In
the following, we elaborate the seasonal dynamics during the
third year.

3 Results

Daytime-averaged irradiance, Ī and water temperature T
simulated by different model variants are very similar with
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subtle differences (Fig. 3a, d vs. b, e, vs. c, f), because each
variant calculates slightly different phytoplankton biomass
(see below), resulting in differences in attenuation of light
and associated heating. Seasonal and vertical distributions of
DIN as estimated by the model variants are similar (Fig. 3g–
i). DIN depletion (< 1 mmolN m−3) during summer is con-
fined to the upper 25 m as estimated by the FS variant,
whereas it extends 5–10 m deeper, as estimated by the IA
and DA variants.

With all three model variants, phytoplankton growth pat-
terns are characterized by an intense surface bloom in spring,
followed by a gradual deepening of the biomass maxima
(Fig. 4a–c). Biomass concentration as estimated by the IA
and DA variants during summer is greater than with the FS
variant (Fig. 4a, b, c). Compared to the FS variant, the ac-
climation response in the other two variants tends to pro-
duce steeper gradients over both depth and time, because of
combined dependencies on the three dynamically optimized
allocation factors (fA, fV , and θ̂ ). This effect is most pro-
nounced for PhyChl, which differs the most between the FS
and the other two variants. With the FS variant, given the
constant N : C (Q) and cellular Chl : C (θ ) (Fig. 4g, m), C,
N and Chl bound to phytoplankton clearly display identical
patterns (Fig. 4a, d, j; note that apparent differences in con-
tour plots are due to contour limits not matching these ratios).
IA and DA on the other hand simulate slightly different pat-
terns for C, N and Chl bound to phytoplankton (Fig. 4b, e, k
and c, f, l), because of the seasonally and vertically variable
Chl : C : N. Decoupling of PhyN from PhyC is mainly mono-
tonic and is driven by increasing Q with depth (Fig. 4h–i).
On the other hand, decoupling of PhyChl from PhyC follows
a more complex pattern, because of the unimodal distribution
of θ across the water column (Fig. 4n–o). As a result of this
unimodality, Chl simulated by the IA and DA variants forms
a distinct, thin layer below the thermocline (Fig. 4k–l).

During summer, θ̂ follows a complex but roughly uni-
modal distribution across depth (Fig. 5b–c): intermediate val-
ues at the surface first increase with depth to reach a maxi-
mum and then sharply decrease with increasing depth. The
low values of θ̂ towards the surface reflect the optimiza-
tion, which reduces pigment density when light is abundantly
available because of the chloroplast-specific respiratory costs
θ̂ (Eq. 23). This can be seen in the flattening of the light-
saturation function LI (Eq. 22). In the deep layers, as Ī ap-
proaches ĪC, irradiance becomes insufficient to support the
synthesis and maintenance of chlorophyll, and θ̂ rapidly con-
verges to 0. fA and fV simulated by the IA and DA variants
(Fig. 5e–f, h–i) increase with nutrient limitation (Fig. 5j–l) as
expected (Smith et al., 2016). The fraction of resources avail-
able for carbon fixation, fC, displays a similar pattern in all
model variants and is roughly the inverse of fV : high during
winter throughout the water column and in the deeper layers
during summer and low in the upper layers during summer
(Fig. 5j–l). For the FS variant, the pattern of the nutrient lim-
itation term, LN, is similar to the patterns of fC for IA and

DA variants (Fig. 5), although its magnitude in the summer is
higher than other variants, as can be explained by the incom-
plete DIN depletion (Fig. 3g; see below). Light saturation of
photosynthesis, LI, displays a similar pattern in all variants
(Fig. 5m–o) and mainly reflects irradiance levels (Fig. 3a–
c). However, compared to the FS variant, the intermediate LI
values in the IA and DA variants penetrate deeper (Fig. 5n, o
vs. m), because the optimization of θ̂ enhances light harvest-
ing ability at these intermediate depths (Fig. 5b, c).

During winter and spring blooms, the net cellular growth
rate, µ, as estimated by the FS variant, temporarily exceeds
those estimated by the acclimative variants (Fig. 6a–c; see
below for the explanation). The IA and DA variants estimate
higher nutrient uptake rates, V , in surface layers during the
spring bloom, and in deeper layers during summer (Fig. 6d–
f). Negative V in the bottom layers as estimated by the FS
and IA variants is a direct result of the balanced growth as-
sumption (Eq. 6) and can be interpreted as exudation. Res-
piratory costs of nutrient uptake, RN, (Fig. 6h–i) are much
lower than RChl (Fig. 6j–l). For the FS variant, RN drops be-
low 0 in the deeper (> 50 m) waters, implying negative respi-
ration, which is a model artifact, as a result of µ̂net becoming
negative (see Eq. A4 in Sect. A1) due to the fixed θ̂ . However,
these negative values are small and therefore do not have a
significant effect on the model results, as evidenced by a sen-
sitivity experiment, where µ̂net was constrained to positive
values for the FS variant (results not shown). In comparison
to the acclimative variants, RChl of the FS variant is smaller
during the spring bloom but larger during summer, the rea-
sons for which are explained below.

For the most part, primary production and relevant dynam-
ics take place within roughly the upper 50 m in the simu-
lated system (Figs. 4–6). A comparison of average quanti-
ties in this zone (Fig. 7), in combination with vertical pro-
files throughout the water column during different times of
the year (Fig. 8), as estimated by the three model variants,
reveals differences between model variants that are not re-
solved by the contour plots (Figs. 4–6). In both the IA and
DA variants, DIN concentrations are almost entirely depleted
before the onset of winter mixing in early November, with
minimum concentrations of ∼ 0.005 mmolNm−3 near the
surface. In the FS variant, DIN remains higher (minimum
concentration of∼0.7 mmolNm−3 near the surface (Figs. 7a,
8Ja, Na). Q and fC, as estimated by the IA and DA variants,
are nearly identical throughout the season (Fig. 7b, c), but
differences arise during winter. For DA, PhyC and PhyN, and
henceQ, become vertically homogeneous due to rapid turbu-
lent mixing (Figs. 4c, f, i, 8Fb). However, under the instan-
taneous acclimation assumption in the IA variant, no matter
how well mixed the water column may be, vertical gradi-
ents persist for the optimalQ values between the surface and
deeper layers during winter (Fig. 8Fb, Nb).

During winter and the spring bloom in March–April, nutri-
ent limitation is almost non-existent for the acclimative vari-
ants, as indicated by fC approaching unity (Fig. 7c), whereas
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Figure 3. Abiotic environment. (a–c) daytime-averaged photosynthetically active radiation, Ī [E m−2 d−1], (d–f) water temperature T [◦C]
and (g–i) DIN [mmolN m−3], as simulated by the FS (a, d, g); IA (b, e, h) and DA (c, f, i) variants.

for the FS variant, a degree of nutrient limitation persists (as
indicated by LN < fC), due to the saturating behavior of the
Monod function to the nutrient concentrations. During late
summer (July to October), nutrient limitation becomes less
severe for the FS variant than for the acclimative variants in
the surface layers (i.e.,LN > fC, Fig. 8Jc, Oc). The relatively
high LN (minimum: 0.12) of the FS variant results from the
incomplete DIN depletion as simulated by the FS variant
as mentioned above and the linear response of the Monod
function to substrate concentrations at low levels (Eq. 15). In
contrast, for the IA and DA variants, Q approaches Q0, and
fV approaches its maximum value of 0.5, causing (through
Eq. 11) severe nutrient limitation, as fC approaches zero
(minimum: 0.005) near the surface.

The cellular net growth rate, µ, as estimated by the FS
variant is slightly faster than those of the acclimative variants
during winter–spring near the surface (e.g., Fig. 8Ff, Mf) but
becomes slower right after the spring bloom (e.g., Fig. 8Af)
and stays low throughout the summer (Figs. 7f, 8Jf). It should
be noted that the chloroplast-specific growth rate, µ̂, which
is maximized for the acclimative variants through photo-
acclimative flexibility (Sect. 2.2.4), is always higher than that
calculated by the FS variant, as expected (not shown). As the
chloroplast-specific chlorophyll maintenance and synthesis
costs, R̂Chl is scaled to the cellular level (through multiplica-
tion with fC, Eq. 25), the resulting RChl for the FS becomes
lower than those of the acclimative variants, given that the
prescribed fC of the FS variant during this time period is
smaller than the dynamically calculated values by the accli-
mative variants (Figs. 7c; 8Fc, Mc). The lower RChl of the

FS variant, in turn, explains the higher µ during the spring
bloom (Fig. 7f). When the chloroplast size of the FS vari-
ant is assumed to be proportional to LN, as explained in the
Appendix B, estimated growth rate becomes similar to those
of the acclimative variants (Fig. B2f). During summer, this
effect becomes reversed: high RChl as estimated by the FS
variant in the surface layers (Fig. 6j vs. k–l) contributes to
the relatively low µ estimated by this variant (Figs. 7; 8Jf):
in addition to the higher µ̂, the IA and DA variants achieve
lower RChl (Fig. 6j–l) through lower θ̂ (Fig. 5a–c) and fC
(Figs. 7c, 8Jc) at the surface.

During the spring bloom, C bound to phytoplankton,
PhyC, simulated by the FS variant exceeds those of the IA
and DA variants (Fig. 7d), whereas the differences between
the N bound to phytoplankton, PhyN, as simulated by dif-
ferent variants are much smaller (Fig. 7e). This discrepancy
between C and N content of phytoplankton is due to the de-
coupling in the acclimative variants: due to the lower value of
the prescribed Q of the FS variant (based on the spatiotem-
poral average of the values simulated by IA) during winter–
spring season (Fig. 7b), a larger amount of C biomass can
be synthesized per N taken up in comparison to the acclima-
tive variants, explaining therefore the higher PhyC simulated
by the FS. The sensitivity of PhyC of the FS variant is evi-
denced also by a strong reduction of PhyC (in contrast to rel-
atively unaltered PhyN) during the spring bloom in response
to a doubling of the prescribed Q (not shown). During sum-
mer, the FS variant estimates considerably lower values of
PhyC compared to the IA and DA variants (Fig. 7d), whereas
the simulated PhyN concentrations remain similar (Fig. 7e).
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Figure 4. Phytoplankton C, N and Chl concentrations: (a–c) PhyC [mmolC m−3], (d–f) PhyN [mmolN m−3], (j–l) PhyChl [mgC m−3]; and
phytoplankton N : C (Q) and Chl : C (2) ratios: (g–i)Q [molN molC−1] and (m–o)2 [gChl gC−1], as simulated by the FS (left); IA (center)
and DA (right) variants.

Therefore, the higher PhyC concentrations simulated by the
acclimative variants during this period are promoted by lower
Q (Figs. 7b, 8Jb) in the surface layers.

Differences between the IA and DA variants emerge es-
pecially right after the spring bloom and autumn destratifi-
cation. After the spring bloom, growth rate simulated by the
IA variant (until May) becomes lower than that by the DA
variant (Fig. 7f) near the surface (Fig. 8Af). The main reason
for this difference is the slightly lower fC of the IA vari-
ant during the winter–spring period (i.e., from December to
May) near the surface (Fig. 8Fc, Mc, Ac) except for a short
period at the peak of the bloom (Fig. 7c). The lower fC of
IA during this period is, in turn, driven by slightly lower Q
(Figs. 7b, 8Mb, Ab), which also leads to slightly higher fV
(see Eq. 14). As pointed out above, the higher Q simulated
by the DA variant before the spring bloom near the surface
is maintained by the homogenizing effect of vertical trans-
port (which does not occur with the IA variant), and after the
spring bloom following the onset of stratification, the persis-
tently higher Q of the DA variant near the surface reflects

the lagged response captured by dynamically tracing C and
N content of phytoplankton.

Following the weakening of stratification in early Novem-
ber (Fig. 3), a new phytoplankton bloom develops, especially
as reflected by PhyN in all variants but also by PhyC as sim-
ulated by the DA variant (Fig. 7d, e). This bloom is driven
by the entrainment of DIN and phytoplankton biomass be-
low the thermocline into the SML (compare Fig. 8Oa, d, e
vs. Fig. 8Na, d, e). Under these nutrient-replenished con-
ditions, µ is predominantly limited by light, as in winter
(Fig. 8Ff), and therefore monotonically increases towards
the surface (Fig. 8Nf), as simulated by all variants. On the
other hand, vertical distribution of Q as simulated by the IA
and DA variants, becomes qualitatively different: due to the
rapid turbulent mixing of PhyC and PhyN as simulated by
the DA variant, Q is homogeneously distributed within the
SML (Fig. 8Nb), but such homogenization does not occur
in the IA variant, and Q is determined by the locally opti-
mized fV . Therefore, in the DA variant, a high nutrient up-
take at the bottom of the SML (Fig. 8Ng), in combination
with mixing within the SML, can support growth near the
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Figure 5. Phytoplankton physiological variables. (a–c) Chlorophyll density in chloroplasts, 2̂ [gChl gC−1]; (d–f) fractional allocation to
affinity, fA [–]; (g–i) fractional allocation to nutrient uptake, fV [–]; nutrient limitation term of the FS variant, LN [–] (j) and fractional
allocation to carbon fixation of the IA and DA variants, fC [–] (k–l); and (m–o) light saturation of photosynthesis, LI [–] as simulated by
the FS (left); IA (center) and DA (right) variants.

surface (through Q, Fig. 8Nb), whereas in IA, growth and
uptake dynamics are always coupled by definition and deter-
mined by local physiological states only, as in the FS variant.
The decoupling of (growth and uptake) rates and re-shuffling
of Q as simulated by the DA variant appear to allow faster
uptake of nutrients in comparison to the IA variant within the
SML (Fig. 8Ng). A related mechanism potentially contribut-
ing to the higher nutrient uptake rates is again a time-lag ef-
fect: in the DA variant, the nutrient-starved phytoplankton
(i.e., the low Q; see Fig. 8Ob) in the SML correspond to a
higher nutrient demand.

C : N of detritus, as estimated by the FS variant, ap-
proaches a constant equilibrium value throughout the water
column by the end of the first year and remains there during
the third year (Fig. 9a, d). This is as expected, and this value
is simply equal to the reciprocal of the prescribed constant
(N : C) quota of phytoplankton, calculated as the biomass-
weighted average of the Q estimated by the IA variant (Ta-
ble 3). The C : N ratio of detritus, as estimated by the IA
and DA variants, increases during summer (Fig. 9b, c and e,

f), driven by the lower phytoplankton quotas during summer
(Fig. 4).

Simulated process rates determining ecosystem function-
ing, such as the water-column-integrated net primary produc-
tion (NPP) and nutrient drawdown (NDD) rates, also dif-
fer between the model variants. FS estimates higher NPP
rates during winter and the spring bloom (Fig. 10a), con-
sistent with the higher PhyC it estimates during this pe-
riod (Fig. 7d). While the NPP estimates of IA and DA are
very close between the late summer (starting from Septem-
ber) to the spring bloom (in early March), right after the
spring bloom, IA estimates suddenly decrease, as a conse-
quence of reduced net specific growth rate, µ (Fig. 7f), as
was pointed out above. Interestingly, this difference between
the IA and DA is larger than the differences in µ and con-
trasts with the differences in PhyC averaged over the top
50 m (Fig. 7d, f) but can be explained by the higher verti-
cal covariance between the PhyC and µ in DA than in IA
(Fig. 8Ad, Af). Annual average NPP rates as estimated by the
FS (48.77 mmolCm−2 d−1) and IA (45.66 mmolCm−2 d−1)
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Figure 6. Phytoplankton growth, uptake and respiration rates. (a–c) Net growth rate, µ [d−1], (d–f): specific uptake rate, V
[mmolN mmolC−1 d−1] and respiration costs of (g–i) N uptake, RN [d−1] and (j–l) chlorophyll maintenance and synthesis, RChl [d−1]
as simulated by the FS (left); IA (center) and DA (right) variants.

Figure 7. Upper 50 m averages of critical variables. (a) DIN [mmolN m−3], (b) phytoplanktonQ [mmolN mmolC−1], (c) fC [–] (in addition
LN [–] for FS, shown with pale broken line), and (d) PhyC [mmolC m−3], PhyN [mmolN m−3] (e), and µ [d−1] (f), as simulated by the FS
(dashed green line), IA (fine-dashed dark blue line) and DA (continuous orange line) variants.

variants are, respectively, 8.1 % and 13.9 % smaller than
that of the DA variant (53.06 mmolCm−2 d−1). NDD rates
(Fig. 10b) are similar during the spring bloom, but the ac-
climative variants become higher during summer. After the
autumn mixing, NDD as simulated by the DA variant shows
a spike not well reproduced by the IA and FS variants,

which is driven by the fast uptake rates simulated by the
DA variant throughout the SML, contrasting with those sim-
ulated by the IA variant constrained to the surface layers
(Fig. 8Ng). Annual average NDD rate simulated by the DA
variant (4.78 mmolNm−2 d−1) is the highest, followed by the
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Figure 8. Vertical profiles on 1 February (indicated as F in panel label), March (M), April (A), July (J), and 15 October (O) and November
(N) for DIN [mmolN m−3] (a), phytoplankton Q [mmolN mmolC−1] (b), fC [–] (c), PhyC [mmolC m−3] (d), PhyN [mmolN m−3] (e),
µ [d−1] (f), and V [molN molN−1 d−1] (g) as simulated by the IA (fine-dashed dark blue line), DA (continuous orange line) and the FS
(dashed green line) variants, when the prescribed 2 (Table 3) is scaled with fC, according to Eq. (24).

8.2% lower IA (4.39 mmolNm−2 d−1) and 14.3 % lower FS
(4.1 mmolNm−2 d−1) variants.

4 Discussion

4.1 Modeling variable phytoplankton composition

Elemental composition and pigment density of phytoplank-
ton are known to vary, at both the organismal and community
levels (Halsey and Jones, 2015), as demonstrated in the lab-
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Figure 9. Detrital C : N [molC molN−1] (a–c) in the entire water column and (d–f) in the bottom layer (d–f), as simulated by the FS (a, d);
IA (b, e) and DA (c, f) variants.

Figure 10. (a) Water-column-integrated NPP rate
[mmolC m−2 d−1] and (b) water-column-integrated NDD rate
[mmolN m−2 d−1], as simulated by the IA (fine-dashed dark blue
line), DA (continuous orange line) and the FS (dashed green line)
variants.

oratory and under in situ conditions (Moreno and Martiny,
2018). Such variations in phytoplankton and hence detrital
C : nutrient ratios have implications for C and nutrient ex-
port fluxes, including the functioning of the biological carbon
pump in the ocean. Notwithstanding, in many biogeochem-
ical models coupled to general circulation models, primary
producers are still unrealistically represented with a constant
“Redfield” C : N : P ratio and/or constant Chl : C ratio (see,
e.g., the models used in Laufkötter et al., 2015). More de-
tailed “quota” models exist; however, these approaches are
often challenged by two major limitations: (i) dependence on
formulations that lack a clear mechanistic basis, and (ii) their
requirement for additional state variables, which increase
computational costs.

A concrete example of the first problem, i.e., dependence
on heuristic formulations, is the down-regulation of nutri-
ent uptake, which is needed to avoid unrealistically high nu-
trient quotas in a Droop scheme. Often, down-regulation is
formulated as some function (linear, e.g., Grover, 1991 or
non-linear, e.g., Geider et al., 1998) of “relative quota”, with
reference to a prescribed maximum value. The acclimation
scheme used in this study (IA and DA variants), requires

no such explicit down-regulation term nor any prescribed
maximum quota value. This is because the optimization of
growth, subject to the growth vs. nutrient uptake trade-off
(Sect. 2.2.2), accomplishes this regulation by balancing the
marginal benefits of investing into nutrient uptake vs. pho-
tosynthesis. This RAM approach, which links various cellu-
lar functions via trade-offs, has proven successful at repro-
ducing various Chl : C : N : P measurements obtained in lab-
oratory experiments (e.g., Klausmeier et al., 2004; Pahlow
et al., 2013; Wirtz and Kerimoglu, 2016). Furthermore, given
its mechanistic basis, this approach can be expected to re-
produce biological feedbacks more realistically (Flynn et al.,
2015).

Earlier studies had pointed out that representation of vari-
ables in Chl : C : N ratios of phytoplankton in models re-
sulted in better reproduction of field observations (e.g.,
Doney et al., 1996; Christian, 2005; Ayata et al., 2013; Chen
and Smith, 2018). Consistent with those studies, implemen-
tation of the model introduced here for simulating two olig-
otrophic ocean sites suggested that the portability of phyto-
plankton growth models is enhanced by the variable cellular
composition (Anugerahanti et al., 2021). As demonstrated by
these studies, 1-D setups, as we also used here, are ideal com-
putational environments for examining the behavior of phy-
toplankton growth models: while resolving the essential fea-
tures of aquatic environments, foremost the seasonally vari-
able vertical structuring of resources and transport rates, they
increase the computational costs minimally in comparison
to the 3-D models. On the other hand, realistic representa-
tion of the horizontal gradients or investigation of the ef-
fects of phytoplankton on the biogeochemical functioning at
larger scales does require 3-D setups. Recent applications of
these models in realistic 3-D setups (Kerimoglu et al., 2017;
Pahlow et al., 2020) have indicated that accounting for ac-
climation enhances the ability of models to reproduce field
observations and large scale patterns. Moreover, a consistent
representation of phytoplankton composition allows identifi-
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cation of potential alterations in trophic transfer efficiencies
as mediated by changes in food quality of prey in response to
environmental change (Kerimoglu et al., 2018; Kwiatkowski
et al., 2018).

Regarding the second problem, i.e., the computational
costs of resolving additional state variables, Smith et al.
(2016) proposed the instantaneous acclimation approach, ac-
cording to which the elemental composition of phytoplank-
ton varies but instantaneously, such that tracking these varia-
tions do not require additional state variables. As in Smith
et al. (2016), we considered the same specific acclima-
tion mechanisms of Pahlow et al. (2013) but under the as-
sumption that the N quota adjusts to an optimal value lo-
cally, under strictly “balanced growth” (Burmaster, 1979, see
Sect. 2.2.1). While at steady-state, this is a natural conse-
quence of any “Droop-like” model (Burmaster, 1979), as-
suming this behavior to hold under transient conditions is
merely an approximation. Ward (2017), using a classical
Droop approach, showed that this approximation holds well
under a wide range of conditions in a 0-D (box) setup. Here,
for the first time, we have tested this approach in an idealized
1-D setup and shown that in many respects the IA model and
the fully explicit DA variant behave similarly. Our prelimi-
nary experiments demonstrated that, even in an environment
characterized by periodic perturbations of stratification dur-
ing summer, the behavior of the two variants remains similar
(results not shown). This is significant considering that IA
requires only one state variable, whereas DA requires two
state variables. Thus, it can be concluded that IA provides
improved realism over a computationally equivalent FS ap-
proach, which ignores variations in cellular composition. For
simulating a few years of the dynamics of the single phy-
toplankton group in a 1-D setup as we did here, differences
in computational costs relative to the fully dynamic variant
are nearly negligible, but for simulating decades/centuries or
millennia in a 3-D setup (e.g., as in Pahlow et al., 2020),
and/or when multiple phytoplankton clones/types (e.g., with
different sizes) are considered (e.g., 350 in Dutkiewicz et al.,
2020), differences in computational costs can indeed be sub-
stantial.

4.2 Qualitative vs. quantitative differences between
model variants

The capacity to store nutrients is known to be an advanta-
geous trait for phytoplankton in temporally fluctuating en-
vironments, where greater nutrient storage capacity, e.g.,
by larger cells, during the nutrient-replete phase provides
a competitive advantage during subsequent periods of nu-
trient scarcity (Grover, 1991; Litchman et al., 2009). Sim-
ilarly, diffusion or active movement of nutrient-rich cells
from the nutrient-replete to nutrient-rich environments, e.g.,
from bottom towards surface layers, has been shown to favor
species with greater storage capacities (Grover, 2009; Ker-
imoglu et al., 2012). The IA model presented in this study

cannot capture this effect, since according to this approach
(i) growth and nutrient uptake rates are always proportional
(by definition of the “balanced growth” assumption); thus,
differential benefits along a space or time continuum can-
not be combined through re-shuffling of physiological states.
(ii) Nutrient quotas do not have inertia, and hence lagged re-
sponse, as they are instantaneously adjusted to the local (light
and nutrient) resource conditions, unlike in the DA variant
where Q is dynamically traced (by the virtue of dynamically
tracing both PhyC and PhyN). In fact, the DA variant we con-
sidered here presumably has a weaker storage capacity com-
pared to a classical Droop model, because in our acclimative
approach, allocation of resources to maximize growth can be
expected to suppress “luxury consumption” (Droop, 1968) of
nutrients. Finally, it should be noted that because of the dif-
ferences in the formulation of the uptake in the IA (Eq. 6) and
DA (Eq. 12) variants, and the complex interdependencies be-
tween the physiological states and process rates involved (Q,
fV , fC µ, V , V̂ , DIN), comparison of the response of the two
variants is not straightforward during such transient phases,
and a fuller understanding will require further analysis and
experimentation.

Some of the differences in phytoplankton growth dynam-
ics, as simulated by the acclimative IA and DA variants and
the non-acclimative FS variant, could be reconciled by tun-
ing the parameters. For instance, the amount of phytoplank-
ton biomass, or the extent of nutrient depletion as simulated
by the FS variant, can be increased by specifying higher re-
source affinities (e.g., lower KN or higher α) to make up
for the deficiency in the formulation of light-limited growth
(Oschlies and Schartau, 2005). However, improvements in
these specific aspects typically result in greater discrepan-
cies in other aspects, such as the timing and magnitude of the
spring bloom, or winter concentrations of nutrients and phy-
toplankton. In other words, in terms of model performance,
trade-offs exist between multiple objectives. Such trade-offs
become more obvious when attempting to simulate multiple
environments characterized by different resource conditions
(e.g., multiple sites or the same site in two different time pe-
riods) with a single parameter set (Anugerahanti et al., 2021).
How acclimative flexibilities impact the sensitivity of models
to parameter perturbations remains an open question.

The RAM approach used here, as in “adaptive dynam-
ics” approaches (Follows and Dutkiewicz, 2011), ambigu-
ously reflects processes at multiple organismal scales. For
instance, higher fA and fV and lower θ̂ at the surface
layers during summer (Fig. 5), which agrees with lower
light harvesting and higher nutrient harvesting investment
as found by Bruggeman and Kooijman (2007), can be at-
tributed to (i) evolutionary adaptation of new species (which
would be more relevant in a longer-term simulation), (ii) se-
lection among existing species that had been pre-adapted
to these conditions and (iii) individual-level acclimation.
Optimality-based acclimative models can thus capture some
key community-level effects of evolutionary and ecological
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dynamics, without explicitly resolving competing species or
groups (Smith et al., 2011). The same idea underlies the re-
cent work of Chakraborty et al. (2020), where they described
the changes in community composition by assuming that the
trophic strategy of the entire plankton community is opti-
mized instantaneously.

Some features, such as the dense and thin chlorophyll lay-
ers at the thermocline as captured by the acclimative variants
(Fig. 4), seem qualitatively irreproducible by the FS vari-
ant even for a single site and time period. This is because
multiple dependencies are necessary for capturing this fea-
ture, namely the unimodal distribution of chlorophyll den-
sity over depth (Fig. 4) and the steep increase in chloroplast
size with depth near the thermocline (Fig. 5), as well as the
thermocline being the best compromise between light and
nutrient limitation (Fig. 5). The FS variant includes only the
last dependency, because it lacks acclimation, and is there-
fore unable to produce such thin chlorophyll layers. When
the chloroplast size is assumed to vary and diagnosed by
the nutrient limitation term, such that the vertical Chl : C in-
creases monotonically with depth, the vertical distribution of
Chl can be partially captured (Appendix B).

We also found differences in system-level metrics such as
NPP and NDD (e.g., Bergeron and Tremblay, 2014; Johnson
et al., 2017) rates as simulated by different variants. For both
metrics, DA estimates were about 10 % higher than the FS
and IA variants, with FS estimates systematically skewed to-
wards earlier in the season. It should be noted that, for the
FS variant, prescribed Q, which, in this study was based on
the results of the IA variant but normally is effectively a free
parameter (although the common approach is to set it to the
Redfield proportions), largely determines the estimated PhyC
and related quantities, such as NPP rates. For instance, dou-
bling the Q of FS results in only a few percent further un-
derestimation (relative to DA) of the NDD rate (annual aver-
age: 3.89, instead of the original 4.1 mmolNm−2 d−1, which
corresponds to 18.6 % lower than the DA estimate, instead
of the original 14.3 %), whereas it leads to more than 50 %
lower estimates of NPP rate (23.26 mmolCm−2 d−1) in com-
parison to that of the DA variant. Some FS variants are based
on C and not N as in this study (i.e., the explicit state variable
is the C bound to phytoplankton). For those models, instead
of the NPP, NDD rates may be more sensitive to prescribed
Q. In contrast to the FS variant, with the IA variant, the total
C and N content, and growth and nutrient uptake rates of the
phytoplankton (thus, the NPP and NDD rates) are determined
by the same set of parameters governing the fully explicit DA
variant.

4.3 Physiological flexibility and environmental
feedbacks

The well-known links between the composition of phyto-
plankton and the biogeochemistry of their ambient environ-
ments imply feedbacks, which are important in ecology, en-

vironmental science and water quality studies. These feed-
backs can be mediated by both physiological acclimation and
evolutionary adaptation (Moreno and Martiny, 2018), with
the latter typically understood to operate on much longer
timescales. However, acclimation and adaptation do inter-
act in eco-evolutionary dynamics, and for plankton they may
even occur on similar timescales (Smith et al., 2011; Ede-
laar and Bolnick, 2019). Disentangling their effects is chal-
lenging, and debate continues as to the relative roles of ac-
climation and evolutionary adaptation in determining the
observed patterns of variation. For example, although Sha-
roni and Halevy (2020) attribute observed seasonal varia-
tions in the elemental composition of detritus to seasonal
sorting among various well-adapted species, that conclusion
was based on the assumption that acclimation implies a lack
of nutrient limitation, which is not the assumption underly-
ing most acclimative models, including ours. For example,
the near-zero values of fC in the upper 25 m during sum-
mer months (Fig. 5k, l) indicate extreme nutrient limitation,
which prevents growth in the surface layers (Fig. 6b, c). In
any case, only models that account for the relevant flexibili-
ties and variations in the composition of phytoplankton can
be expected to capture such feedbacks in a general yet real-
istic sense, which is necessary to correctly assess the relative
roles of plankton-related processes in biogeochemical cycles.

An important link between flexibility and environmental
feedbacks is the role of phytoplankton in determining the el-
emental composition of particulate matter (Redfield, 1934).
Key mechanisms involve the activities of nitrogen fixers and
denitrifiers (Redfield, 1958). However, given the differences
in stoichiometry of macromolecules involved in various cel-
lular functions (Geider and La Roche, 2002), a consistent de-
scription of the acclimation of phytoplankton is necessary to
represent realistically the variabilities in elemental compo-
sition of particulate matter and hence export fluxes. Fixed-
stoichiometry models erroneously predict constant elemental
composition of detrital matter production, as demonstrated
by our FS variant in this study. The so-called Droop models
have been shown to capture the observed seasonal increase in
detrital C : N ratios during summer, reflecting nutrient limita-
tion of phytoplankton (e.g., Mongin et al., 2003). Represent-
ing the growth and uptake terms consistently using the RAM
framework, the DA variant resolves the seasonal and vertical
variations in the elemental composition of particulate matter
(Fig. 9). With some exceptions, estimates of the IA variant
are nearly identical to those of the DA variant, thereby im-
plying that a more realistic representation of these can be
achieved at no additional computational cost compared to a
fixed-stoichiometry models.

4.4 Present implementation, challenges and
perspectives

Moving a coupled hydrodynamic–biogeochemical models
from a 0-D setup to a spatially explicit setup can be error
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prone and time consuming. FABM provides an easy-to-use
coupling layer that connects a hydrodynamic model with
multiple biogeochemical submodels. FABM specifies how
the these models communicate by separating the hydrody-
namics and biogeochemical models, with FABM acting as
a glue layer in between. The biogeochemical model in this
framework operates locally in space where the local source
and sink terms are computed based on the local state and en-
vironment, making it feasible to scale up from 0-D to n-D
and swap different hydrodynamic models. FABM also pro-
vides mechanisms to pass other environmental data, such
as temperature, salinity and pH, from different submodules,
as long as the biogeochemical models register any depen-
dencies during initialization. Therefore, complex description
of the biogeochemical models can be partitioned into sev-
eral submodules. The modular implementation of our model
in FABM, specifically the isolation of the phytoplankton
module (Fig. 1), is expected to facilitate studies with mul-
tiple phytoplankton types. For example, without changing
the model code or recompiling but just through changing a
configuration file, it is possible to include further types (see
Bruggeman and Bolding, 2014), which can be parameter-
ized, e.g., according to cell size (as in, e.g., Smith et al., 2016;
Dutkiewicz et al., 2020). Moreover, the isolated phytoplank-
ton module can be relatively easily coupled with or incorpo-
rated into existing models, especially those implemented in
FABM.

Currently, the model simplistically accounts for the graz-
ing losses to higher trophic levels with a quadratic mortality
term (Table 1), without describing explicitly the dynamics of
predators. This limitation may prohibit realistic applications
to highly productive ecosystems, where the strength of top-
down control exhibits strong seasonality (e.g., Maar et al.,
2014; Sailley et al., 2015). However, this problem can be
easily resolved by adapting an existing zooplankton module
available for FABM, such as the N-only resolving module
in the nutrient–phytoplankton–zooplankton–detritus (NPZD)
example provided in the standard FABM library (Brugge-
man and Bolding, 2014). An explicit consideration of zoo-
plankton can expected to introduce additional complexities:
depending on how zooplankton C and N co-limitation is de-
scribed, variabilities in phytoplankton stoichiometry may af-
fect zooplankton growth (e.g., Mitra et al., 2007; Branco
et al., 2018; Kerimoglu et al., 2018), and in turn, depending
on the parameterization of zooplankton excretion and rem-
ineralization processes, subsequent phytoplankton blooms
may occur. While it was our explicit aim to avoid such com-
plicated indirect effects and focus on the direct effects of
acclimation mechanisms on phytoplankton growth in this
study, coupling the presented model to a larger ecosystem
model including herbivores and their predators would allow
investigating the propagation of these effects throughout the
food web in a cost-effective manner.

For simplicity, we have traced only N here fully (e.g., no
explicit DIC but only DIN; see Eq. 4) and the model is there-

fore conservative with respect to N but not with respect to C.
When multiple nutrient elements in the dissolved inorganic
material pool (e.g., C, N, and P) are resolved, maintaining
mass balance becomes more complicated under the IA as-
sumption (see Smith et al., 2016; Ward, 2017). A FABM
implementation of a carbon-based version of the model that
resolves the C and N cycles is being currently developed,
which we are planning to present in a separate study. The ex-
tended model will be able to resolve C, N, P and micronu-
trient cycles based on a common mass-balance formalism
and therefore allow us to investigate the validity of assum-
ing instantaneous optimization of C : N : P :micronutrient
ratios under various environmental conditions (relevantly,
see Bonachela et al., 2013). However, for various ecological
applications, especially those resolving multiple phytoplank-
ton types, tracing only one nutrient element, as in the current
study, may be sufficient and more convenient.

In the current study, we focused on the differences be-
tween the fully acclimative IA and DA variants, and an en-
tirely non-acclimative variant. Our acclimation scheme con-
sists of four acclimative flexibilities: variability of internal
nutrient quota, optimization of uptake vs. growth trade-off,
optimization of maximum uptake vs. affinity trade-off and
optimization of chlorophyll density in chloroplast density
(and as an additional half step, size of the chloroplast; see
Appendix B). In a future study, we are planning to investigate
the relative importance of each of these flexibilities for the
organismal fitness under various environmental conditions:
such an assessment would not only help the model devel-
opers to prioritize the research needs but may also provide
insights into the evolution of these acclimative flexibilities.

5 Conclusions

In this study, we present a FABM implementation of the
“NflexPD” model and the behavior of three variants it can
emulate: a fixed-stoichiometry (FS) variant that lacks any
acclimative flexibility and explicitly tracks only N bound to
phytoplankton; a dynamic acclimation (DA) variant that re-
solves various acclimative flexibilities by explicitly tracking
the C and N in phytoplankton; and the instantaneous accli-
mation (IA) variant that resolves the same flexibilities as the
DA variant but by tracking the N in phytoplankton as in the
FS variant.

By applying the NflexPD model coupled to an idealized,
1-D water column model, we aimed to understand (i) whether
and how the behavior of the IA and DA variants differ; and
(ii) whether and how the behavior of the acclimative variants
differ from the non-acclimative, fixed-stoichiometry variant.
With regard to the first of our objectives, we found that be-
havior of IA is stable and in many respects very similar to
that of DA, although differences arise during the spring and
autumn transitions, due to the lagged response and vertical
transport of nutrient quotas in the DA variant. With this,
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our study provides a proof of concept that the IA approach
is applicable in spatially explicit setups and hints at condi-
tions under which deviations from the fully explicit variant
can be expected. With regard to the second objective, we
found substantial differences between the behavior of the FS
and acclimative variants: with the particular parameteriza-
tion we showcased here, the acclimative variants estimated
smaller spring blooms but sustained growth during summer
and stronger nitrogen depletion in the surface layers, as well
as steeper chlorophyll layers at the thermocline; and unlike
the FS variant, they can reproduce the variabilities in C : N
of particulate matter. Moreover, a subset of quantities esti-
mated by the FS variant, such as the phytoplankton biomass
and NPP rates, was found to be strongly sensitive to the pre-
scribed parameters such as Q, which in this study was de-
rived as a spatiotemporal average from the IA variant but
is typically an adjustable parameter, thus implying a higher
degree of freedom. These qualitative differences provide in-
sights on the impact of acclimative flexibilities on model re-
sponse and their ecosystem-scale implications. The model
implementation presented here tracks only N as dissolved
nutrient, which restricts its utility in biogeochemical studies
that require a complete representation of the cycling of mul-
tiple elements, but it can be readily used in various ecological
contexts.

Appendix A: Details of derivations

A1 RN for FS variant

According to Eq. (7), RN = ζN ·V . For the DA and IA vari-
ants, V can be calculated externally (Eq. 12); hence, it can be
RN. For the FS variant on the other hand, there is no explicit
solution for V , but it can only be calculated as a function
of µ, (V = µ ·Q, Eq. 6), and since µ in turn depends on RN
(µ= µnet−RN, Eq. 7),RN cannot be directly calculated. Ex-
panding the terms in Eq. (7) according to Eqs. (6), (13) and
(20) yields

µ= µ̂net ·LN− ζN ·µ ·Q. (A1)

Reorganizing yields

µ=
µ̂net ·LN

1+ ζN ·Q
. (A2)

Substituting this with µ in

RN = ζN ·V = ζN ·µ ·Q, (A3)

we obtain a V -independent expression for RN:

RN = ζN ·
µ̂net ·LN

1+ ζN ·Q
·Q. (A4)

It can be verified that, when this term is substituted in µ=
µnet−RN, it yields µ= µnet−ζN ·µ ·Q= µnet−ζN ·V , i.e.,
Eq. (7), implying that using RN in Eq. (A4) for the FS variant
makes Eq. (7) valid for the FS variant as well.

A2 Optimal Q and fV

In Eq. (7), substituting µg , RN and RChl with the expanded
forms in Eqs. (13), (20) and (25), respectively, and subse-
quently expanding θ , using Eq. (24) yields

µ= fCµ̂g − ζNfV V̂ − (µ̂g +R
Chl
M )ζChlθ̂fC. (A5)

Reorganizing yields

µ= fC

[
µ̂g(1− ζChlθ̂ )− ζChlθ̂R

Chl
M

]
− ζNfV V̂ . (A6)

Substituting the term in square brackets with µ̂net based on
Eq. (7) and expanding fC using Eq. (11) yields

µ=

(
1−

Q0

2Q
− fV

)
µ̂net− ζNfV V̂ . (A7)

At this point, it can be readily recognized that Eq. (A7) is
equivalent to Eq. (5) in Pahlow and Oschlies (2013), with the
only difference being their denotation of µ̂net as µ̂I . Note that
their formulation of respiration losses within the chloroplast
as a fraction of gross growth with respect to chloroplast (i.e.,
µ̂I = µ̂Ig(1−ζ

C) in their notation) differs from the more pre-
cise formulation we used here, which considers a base loss
rate independent of gross growth. However, considering that
µ̂net (just like their µ̂I ) is independent of Q and fV ) the so-
lutions provided by Pahlow and Oschlies (2013) for f oV (i.e.,
their Eq. 9, our Eq. 14) and Q (their Eq. 10, our Eq. 10) can
be directly used only after replacing µ̂I in the original solu-
tions with µ̂net for the latter.

Appendix B: FS variant with a variable chloroplast size

Given the similar roles of fC in the IA and DA variants
and the nutrient limitation term, LN, in the FS variant for
calculating µg (see Sect. 2.2.2), LN can be considered as a
proxy for the relative size of the chloroplast. Therefore, fC
in Eqs. (24) and (25) can be replaced by LN for scaling the
chloroplast-specific chlorophyll density and respiration costs
in order to represent spatiotemporal variations of the cellular
Chl : C ratio and proportional respiration costs.

When this is done, unlike the original results shown in the
main text (Fig. 4m), a spatiotemporally variable Chl : C ra-
tio (Fig. B1c) is obtained. Monotonically increasing LN with
depth during summer (Fig. 5j) reduces Chl at the surface and
enhances it at the deeper layers relative to the Chl pattern ob-
tained with constant Chl : C (compare Fig. 4m vs. Fig. B1a).
However, due to the missing unimodal signal through θ̂ as
accounted for by the IA and DA variants (see Fig. 5b, c),
the resulting Chl pattern is still qualitatively different from
those estimated by the truly acclimative variants (compare
Fig. B1a vs. Fig. 4k, l). Furthermore, the relatively higher
value of LN during the spring bloom under nutrient-rich con-
ditions (Fig. 5j) relative to the prescribed, constant value of
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Figure B1. Phytoplankton (a) Chl concentration, PhyChl [mgC m−3]; (b) net growth rate,µ [d−1]; (c) Chl : C,2 [gChl gC−1]; (d) respiration
cost of chlorophyll maintenance and synthesis, RChl [d−1] as simulated by the FS variant, when the prescribed 2 (Table 3) is scaled with
fC, according to Eq. (24).

Figure B2. Like Fig. 7 but when, for the FS variant, prescribed θ̂ (Table 3) is scaled with LN, i.e., replacing fC with LN in Eq. (24).

fC = 0.44 used for the case with constant chloroplast size
(hence, constant Chl : C) shown in the main text as yielded by
the prescribed values of fV , Q and Q0 (Table 3 and Eq. 11),
results in greater RChl (compare Fig. B1d vs. Fig. 6j). Hence,
net cellular growth rate, µ, becomes slightly lower than in
the constant chloroplast case during the spring bloom (com-
pare Fig. B1b vs. Fig. 6a). On the other hand, during summer,
relatively lower values of LN make RChl lower and µ greater
compared to the constant chloroplast case.

The dynamics of the PhyC within the top 50 m as simu-
lated with this flavor of the FS variant with variable chloro-
plast size are almost identical to those simulated by the stan-
dard, “vanilla” version with constant chloroplast size (com-
pare Fig. B2d with 7d). Relatively higher RChl at nutrient-
rich conditions during winter and early spring makes the
winter PhyC concentrations (Fig. B2d) lower in comparison
to the standard case (Fig. 7d). On the other hand, relatively
lower RChl at nutrient-scarce summer conditions makes the

PhyC concentrations (Fig. B2d) slightly higher than the stan-
dard case (Fig. 7d). As a result, the average DIN concentra-
tions in the surface layers at 50 m become slightly lower than
the standard case (Fig. B2a vs. Fig. 7a), which is better ob-
served in lower LN (Fig. B2c vs. Fig. 7c) due to the strong
response of the function at low concentrations.

Despite the differences in details explained above, espe-
cially based on the preserved qualitative differences in sim-
ulated PhyC concentrations between the FS and acclimative
variants, it can be concluded that the overall conclusions are
insensitive to the assumption regarding the size of the chloro-
plast of the FS variant.

Code availability. For running the model and reproducing the re-
sults presented in this study, FABM and GOTM need to be down-
loaded and installed. See https://github.com/fabm-model/fabm/
wiki/GOTM (last access: 4 October 2021). for the instructions. The
version of the FABM-NflexPD used in this paper has been stored
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in a Zenodo repository at https://doi.org/10.5281/zenodo.4761937
(Kerimoglu, 2021). Instructions for compiling FABM-NflexPD for
GOTM-FABM and a 0-D setup are provided in README.md. The
“src” folder contains the Fortran codes. The model was imple-
mented as two separate modules: the “phy.F90” module that de-
scribes phytoplankton growth and the “abio.F90” module that de-
scribes everything other than phytoplankton (Fig. 1). The phyto-
plankton module can reproduce the behavior of all three different
variants considered in the paper through optional parameters. The
“testcases” folder contains the configuration (yaml) file that was
used to produce the results presented in this paper, thereby provid-
ing examples of how each variant can be initiated.

Data availability. The underlying research data can be accessed
from https://doi.org/10.17882/83699 (Kerimoglu et al., 2021).
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