Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-6547-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-6547-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
HydrothermalFoam v1.0: a 3-D hydrothermal transport model for natural submarine hydrothermal systems
Zhikui Guo
Key Laboratory of Submarine Geosciences, MNR, Second Institute of Oceanography, MNR, Hangzhou 310012, China
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3, 24159 Kiel, Germany
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3, 24159 Kiel, Germany
Chunhui Tao
CORRESPONDING AUTHOR
Key Laboratory of Submarine Geosciences, MNR, Second Institute of Oceanography, MNR, Hangzhou 310012, China
School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, China
Related authors
No articles found.
Guilherme W. S. de Melo, Ingo Grevemeyer, Sibiao Liu, Marcia Maia, and Lars Rüpke
EGUsphere, https://doi.org/10.5194/egusphere-2025-1826, https://doi.org/10.5194/egusphere-2025-1826, 2025
Short summary
Short summary
The St. Paul Transform System on the equatorial Mid-Atlantic Ridge is a seismically active multi-fault system. This study re-examines the focal depths of 35 earthquakes (Mw 5.3-6.9) from Transforms A, B, and C. The data suggest that the seismogenic zone ranges from 5 to 18 km deep, with the deepest occurring in cooler lithosphere around the center of the transform segments. This challenges earlier hypotheses and indicates a global pattern of cooler mantle in center of oceanic transform faults.
Zhongmin Zhu, Jinsong Shen, Chunhui Tao, Xianming Deng, Tao Wu, Zuofu Nie, Wenyi Wang, and Zhaoyang Su
Geosci. Instrum. Method. Data Syst., 10, 35–43, https://doi.org/10.5194/gi-10-35-2021, https://doi.org/10.5194/gi-10-35-2021, 2021
Short summary
Short summary
A new multicomponent electrical field observation system based on an autonomous underwater vehicle (AUV) was introduced for the measurement of seafloor self-potential. The system was tested in a lake and the multicomponent self-potential data were collected. The new SP system can be applied to marine SP observations, providing an efficient and low-noise SP acquisition method for marine resources and environmental investigations.
Cited articles
Andersen, C., Rüpke, L., Hasenclever, J., Grevemeyer, I., and Petersen, S.:
Fault geometry and permeability contrast control vent temperatures at the
Logatchev 1 hydrothermal field, Mid-Atlantic Ridge, Geology, 43, 51–54,
https://doi.org/10.1130/G36113.1, 2015. a
Barreyre, T., Olive, J. A., Crone, T. J., and Sohn, R. A.: Depth-Dependent
Permeability and Heat Output at Basalt-Hosted Hydrothermal Systems Across
Mid-Ocean Ridge Spreading Rates, Geochem. Geophy. Geosy., 19,
1259–1281, https://doi.org/10.1002/2017gc007152, 2018. a, b
Carpio, J. and Braack, M.: The effect of numerical methods on the simulation of
mid-ocean ridge hydrothermal models, Theor. Comp. Fluid
Dyn., 26, 225–243, https://doi.org/10.1007/s00162-011-0232-z, 2012. a
Cathles, L. M.: A Capless 350°C Flow Zone Model to Explain Megaplumes,
Salinity Variations, and High-Temperature Veins in Ridge Axis Hydrothermal
Systems, Econ. Geol., 88, 1977–1988, 1993. a
Coumou, D., Driesner, T., and Heinrich, C. A.: The structure and dynamics of
mid-ocean ridge hydrothermal systems, Science, 321, 1825–1828,
https://doi.org/10.1126/science.1159582, 2008. a, b, c
Coumou, D., Driesner, T., Weis, P., and Heinrich, C. A.: Phase separation,
brine formation, and salinity variation at Black Smoker hydrothermal systems,
J. Geophys. Res.-Sol. Ea., 114, B03212,
https://doi.org/10.1029/2008jb005764, 2009. a, b, c
Crone, T. J. and Wilcock, W. S. D.: Modeling the effects of tidal loading on
mid-ocean ridge hydrothermal systems, Geochem. Geophy. Geosy., 6,
1–25, https://doi.org/10.1029/2004gc000905, 2005. a
Crone, T. J., Tolstoy, M., and Stroup, D. F.: Permeability structure of young
ocean crust from poroelastically triggered earthquakes, Geophys. Res.
Lett., 38, 1–5, https://doi.org/10.1029/2011gl046820, 2011. a
deMartin, B. J., Canales, R. A. R., Canales, J. P., and Humphris, S. E.:
Kinematics and geometry of active detachment faulting beneath the
Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic
Ridge, Geology, 35, 711–714, https://doi.org/10.1130/G23718A.1, 2007. a
Driesner, T.: The system H2O–NaCl. Part II: Correlations for molar volume,
enthalpy, and isobaric heat capacity from 0 to 1000 C, 1 to 5000 bar, and 0
to 1 XNaCl, Geochim. Cosmochim. Ac., 71, 4902–4919,
https://doi.org/10.1016/j.gca.2007.05.026, 2007. a
Driesner, T.: The interplay of permeability and fluid properties as a first
order control of heat transport, venting temperatures and venting salinities
at mid-ocean ridge hydrothermal systems, Geofluids, 10, 132–141,
https://doi.org/10.1111/j.1468-8123.2009.00273.x, 2010. a
Driesner, T. and Heinrich, C. A.: The system H2O–NaCl. Part I: Correlation
formulae for phase relations in temperature–pressure–composition space from
0 to 1000 C, 0 to 5000 bar, and 0 to 1 XNaCl, Geochim. Cosmochim.
Ac., 71, 4880–4901, https://doi.org/10.1016/j.gca.2006.01.033, 2007. a
Dunn, R. A., Toomey, D. R., and Solomon, S. C.: Three-dimensional seismic
structure and physical properties of the crust and shallow mantle beneath the
East Pacific Rise at 9 degrees 30'N, J. Geophys. Res., 105,
23537–23555, 2000. a
Elderfield, H. and Schultz, A.: Mid-ocean ridge hydrothermal fluxes and the
chemical composition of the ocean, Annu. Rev. Earth Pl.
Sc., 24, 191–224, https://doi.org/10.1146/annurev.earth.24.1.191,
1996. a
Faak, K., Coogan, L. A., and Chakraborty, S.: Near conductive cooling rates in
the upper-plutonic section of crust formed at the East Pacific Rise, Earth
Planet. Sc. Lett., 423, 36–47, https://doi.org/10.1016/j.epsl.2015.04.025,
2015. a
Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K.,
Müthing, S., Nuske, P., Tatomir, A., Wolff, M., and Helmig, R.: DuMux: DUNE
for multi-phase, component, scale, physics,... flow and transport in porous
media, Adv. Water Resour., 34, 1102–1112,
https://doi.org/10.1016/j.advwatres.2011.03.007, 2011. a
Fontaine, F. J., Wilcock, W. S. D., Foustoukos, D. E., and Butterfield, D. A.:
A Si-Cl geothermobarometer for the reaction zone of high-temperature,
basaltic-hosted mid-ocean ridge hydrothermal systems, Geochem.
Geophy. Geosy., 10, 5, https://doi.org/10.1029/2009gc002407, 2009. a
Fontaine, F. J., Cannat, M., Escartin, J., and Crawford, W. C.: Along-axis
hydrothermal flow at the axis of slow spreading Mid-Ocean Ridges: Insights
from numerical models of the Lucky Strike vent field (MAR), Geochem.
Geophy. Geosy., 15, 2918–2931, https://doi.org/10.1002/2014GC005372, 2014. a, b
Garg, S. and Pritchett, J.: On pressure-work, viscous dissipation and the
energy balance relation for geothermal reservoirs, Adv. Water
Resour., 1, 41–47, https://doi.org/10.1016/0309-1708(77)90007-0, 1977. a
German, C. and Seyfried, W.: Hydrothermal Processes, in: Treatise on
Geochemistry, Elsevier, 191–233,
https://doi.org/10.1016/B978-0-08-095975-7.00607-0, 2014. a
German, C. R., Casciotti, K. A., Dutay, J.-C., Heimbürger, L. E., Jenkins,
W. J., Measures, C. I., Mills, R. A., Obata, H., Schlitzer, R., Tagliabue,
A., Turner, D. R., and Whitby, H.: Hydrothermal impacts on trace element and
isotope ocean biogeochemistry, Philos. T. Roy.
Soc. A, 374, 20160035,
https://doi.org/10.1098/rsta.2016.0035, 2016. a
Germanovich, L. N., Lowell, R. P., and Astakhov, D. K.: Stress-dependent
permeability and the formation of seafloor event plumes, J.
Geophys. Res.-Sol. Ea., 105, 8341–8354,
https://doi.org/10.1029/1999jb900431, 2000. a
Geuzaine, C. and Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with
built-in pre-and post-processing facilities, Int. J.
Nume. Meth. Eng., 79, 1309–1331, https://doi.org/10.1002/nme.2579,
2009. a, b
Grevemeyer, I., Hayman, N. W., Lange, D., Peirce, C., Papenberg, C.,
Van Avendonk, H. J. A., Schmid, F., de La Peña, L. G., and Dannowski, A.:
Constraining the maximum depth of brittle deformation at slow- and
ultraslow-spreading ridges using microseismicity, Geology, 47, 1069–1073,
https://doi.org/10.1130/g46577.1, 2019. a
Hannington, M., Jamieson, J., Monecke, T., Petersen, S., and Beaulieu, S.: The
abundance of seafloor massive sulfide deposits, Geology, 39, 1155–1158,
https://doi.org/10.1130/g32468.1, 2011. a
Horgue, P., Soulaine, C., Franc, J., Guibert, R., and Debenest, G.: An
open-source toolbox for multiphase flow in porous media, Comput. Phys.
Commun., 187, 217–226, https://doi.org/10.1016/j.cpc.2014.10.005, 2015. a
Ingebritsen, S., Geiger, S., Hurwitz, S., and Driesner, T.: Numerical
simulation of magmatic hydrothermal systems, Rev. Geophys., 48, RG1002,
https://doi.org/10.1029/2009RG000287, 2010. a, b, c
Jamieson, J. W., Clague, D. A., and Hannington, M. D.: Hydrothermal sulfide
accumulation along the Endeavour Segment, Juan de Fuca Ridge, Earth
Planet. Sc. Lett., 395, 136–148, https://doi.org/10.1016/j.epsl.2014.03.035,
2014. a
Jasak, H.: Error analysis and estimation for the finite volume method with
applications to fluid flows., PhD thesis, Imperial College of Science,
Technology and Medicine,
available at: https://spiral.imperial.ac.uk/bitstream/10044/1/8335/1/Hrvoje_Jasak-1996-PhD-Thesis.pdf (last access: 21 December 2020),
1996. a, b
Jupp, T. and Schultz, A.: A thermodynamic explanation for black smoker
temperatures, Nature, 403, 880–883, https://doi.org/10.1038/35002552, 2000. a, b, c
Jupp, T. E. and Schultz, A.: Physical balances in subseafloor hydrothermal
convection cells, J. Geophys. Res.-Sol. Ea., 109, B05101,
https://doi.org/10.1029/2003jb002697, 2004. a
Kipp, K. L., Hsieh, P. A., and Charlton, S. R.: Guide to the Revised
Ground-Water Flow and Heat Transport Simulator: HYDROTHERM–Version 3, US
Department of the Interior, US Geological Survey,
available at: http://pubs.usgs.gov/tm/06A25/ (last access: 21 December 2020), 2008. a
Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J.-O., Fischer, T.,
Görke, U. J., Kalbacher, T., Kosakowski, G., McDermott, C., et al.:
OpenGeoSys: an open-source initiative for numerical simulation of
thermo-hydro-mechanical/chemical (THM/C) processes in porous media,
Environ. Earth Sci., 67, 589–599, https://doi.org/10.1007/s12665-012-1546-x,
2012. a
Lewis, K. and Lowell, R.: Numerical modeling of two-phase flow in the NaCl-H2O
system: Introduction of a numerical method and benchmarking, J.
Geophys. Res.-Sol. Ea., 114, B05202, https://doi.org/10.1029/2008JB006029,
2009a. a, b
Lewis, K. and Lowell, R.: Numerical modeling of two-phase flow in the NaCl-H2O
system: 2. Examples, J. Geophys. Res.-Sol. Ea., 114, B08204,
https://doi.org/10.1029/2008JB006030, 2009b. a, b
Lie, K.-A.: An introduction to reservoir simulation using MATLAB/GNU Octave:
user guide for the MATLAB Reservoir Simulation Toolbox (MRST), Cambridge
University Press, https://doi.org/10.1017/9781108591416,
2019. a
Lister, C. R. B.: Penetration of water into hot rock, Geophys. J.
Roy. Astr. S., 39, 465–509,
https://doi.org/10.1111/j.1365-246X.1974.tb05468.x, 1974. a, b
Lowell, R. P.: Modeling continental and submarine hydrothermal systems, Rev.
Geophys., 29, 457–476, https://doi.org/10.1029/91rg01080, 1991. a
Lowell, R. P., Farough, A., Germanovich, L. N., Hebert, L. B., and Horne, R.: A
Vent-Field-Scale Model of the East Pacific Rise 9 degrees 50' N
Magma-Hydrothermal System, Oceanography, 25, 158–167, 2012. a
Middleton, J. L., Langmuir, C. H., Mukhopadhyay, S., McManus, J. F., and
Mitrovica, J. X.: Hydrothermal iron flux variability following rapid sea
level changes, Geophys. Res. Lett., 43, 3848–3856,
https://doi.org/10.1002/2016gl068408, 2016. a
Moukalled, F., Mangani, L., and Darwish, M.: The finite volume method in
computational fluid dynamics, Springer, vol. 113,
https://doi.org/10.1007/978-3-319-16874-6_21, 2016. a
Olive, J. A. and Crone, T. J.: Smoke Without Fire: How Long Can Thermal
Cracking Sustain Hydrothermal Circulation in the Absence of Magmatic Heat?,
J. Geophys. Res.-Sol. Ea., 123, 4561–4581,
https://doi.org/10.1029/2017jb014900, 2018. a
Orgogozo, L.: RichardsFoam2: A new version of RichardsFoam devoted to the
modelling of the vadose zone, Comput. Phys. Commun., 196, 619–620, https://doi.org/10.1016/j.cpc.2015.07.009,
2015. a
Pruess, K., Oldenburg, C., and Moridis, G.: TOUGH2 user's guide, version 2.1.
Earth sciences division, Lawrence Berkeley National Laboratory University of
California, Berkeley, California (USA),
available at: https://www.osti.gov/biblio/751729-tough2-user-guide-version (last access: 21 December 2020),
1999. a
Pye, J.: Freesteam project, available at:
https://sourceforge.net/projects/freesteam/ (last access: 21 December 2020), 2010. a
Schlindwein, V. and Schmid, F.: Mid-ocean-ridge seismicity reveals extreme
types of ocean lithosphere, Nature, 535, 276–279, https://doi.org/10.1038/nature18277,
2016. a
Schmeling, H., Marquart, G., and Grebe, M.: A porous flow approach to model
thermal non-equilibrium applicable to melt migration, Geophys. J.
Int., 212, 119–138, https://doi.org/10.1093/gji/ggx406, 2018. a
Singh, S. and Lowell, R. P.: Thermal response of mid-ocean ridge hydrothermal
systems to perturbations, Deep-Sea Res. Pt. II, 121, 41–52, https://doi.org/10.1016/j.dsr2.2015.05.008, 2015.
a
Stein, A. and Stein, S.: Constraints on hydrothermal heat flux through the
oceanic lithosphere from global heat flow, J. Geophys. Res.,
99, 3081–3095, 1994. a
Tagliabue, A., Bopp, L., Dutay, J. C., Bowie, A. R., Chever, F., Jean-Baptiste,
P., Bucciarelli, E., Lannuzel, D., Remenyi, T., Sarthou, G., Aumont, O.,
Gehlen, M., and Jeandel, C.: Hydrothermal contribution to the oceanic
dissolved iron inventory, Nat. Geosci., 3, 252–256,
https://doi.org/10.1038/Ngeo818,
2010. a
Tao, C., Seyfried, W. E., J., Lowell, R. P., Liu, Y., Liang, J., Guo, Z., Ding,
K., Zhang, H., Liu, J., Qiu, L., Egorov, I., Liao, S., Zhao, M., Zhou, J.,
Deng, X., Li, H., Wang, H., Cai, W., Zhang, G., Zhou, H., Lin, J., and Li,
W.: Deep high-temperature hydrothermal circulation in a detachment faulting
system on the ultra-slow spreading ridge, Nat. Commun., 11, 1300,
https://doi.org/10.1038/s41467-020-15062-w, 2020. a, b
Theissen-Krah, S., Iyer, K., Rüpke, L. H., and Morgan, J. P.: Coupled
mechanical and hydrothermal modeling of crustal accretion at intermediate to
fast spreading ridges, Earth Planet. Sc. Lett., 311, 275–286,
2011. a
Theissen-Krah, S., Rüpke, L. H., and Hasenclever, J.: Modes of crustal
accretion and their implications for hydrothermal circulation, Geophys.
Res. Lett., 43, 1124–1131, https://doi.org/10.1002/2015GL067335, 2016. a
Vehling, F., Hasenclever, J., and Rüpke, L.: Implementation Strategies for
Accurate and Efficient Control Volume-Based Two-Phase Hydrothermal Flow
Solutions, Transport Porous Med., 121, 233–261,
https://doi.org/10.1007/s11242-017-0957-2, 2018. a
Weis, P., Driesner, T., Coumou, D., and Geiger, S.: Hydrothermal, multiphase
convection of H2O-NaCl fluids from ambient to magmatic temperatures: a new
numerical scheme and benchmarks for code comparison, Geofluids, 14, 347–371,
https://doi.org/10.1111/gfl.12080, 2014. a, b, c, d
Weller, H. G., Tabor, G., Jasak, H., and Fureby, C.: A tensorial approach to
computational continuum mechanics using object-oriented techniques, Comput.
Phys., 12, 620–631, https://doi.org/10.1063/1.168744, 1998. a
Wilcock, W. S. D.: Physical response of mid-ocean ridge hydrothermal systems to
local earthquakes, Geochem. Geophy. Geosy., 5, 11,
https://doi.org/10.1029/2004gc000701, 2004. a, b
Zyvoloski, G. A., Robinson, B. A., Dash, Z. V., and Trease, L. L.: Summary of
the models and methods for the FEHM application-a finite-element heat-and
mass-transfer code, Tech. rep., Los Alamos National Lab., NM (US),
available at: https://www.osti.gov/biblio/14903 (last access: 21 December 2020), 1997. a
Short summary
We present the 3-D hydro-thermo-transport model HydrothermalFoam v1.0, which we designed to provide the marine geosciences community with an easy-to-use and state-of-the-art tool for simulating mass and energy transport in submarine hydrothermal systems. HydrothermalFoam is based on the popular open-source platform OpenFOAM, comes with a number of tutorials, and is published under the GNU General Public License v3.0.
We present the 3-D hydro-thermo-transport model HydrothermalFoam v1.0, which we designed to...