Articles | Volume 13, issue 1
Model description paper
31 Jan 2020
Model description paper |  | 31 Jan 2020

CobWeb 1.0: machine learning toolbox for tomographic imaging

Swarup Chauhan, Kathleen Sell, Wolfram Rühaak, Thorsten Wille, and Ingo Sass

Related authors

GeoLaB – Geothermal Laboratory in the crystalline Basement: synergies with research for a nuclear waste repository
Thomas Kohl, Ingo Sass, Olaf Kolditz, Christoph Schüth, Wolfram Rühaak, Jürgen Schamp, Judith Bremer, Bastian Rudolph, Katharina Schätzler, and Eva Schill
Saf. Nucl. Waste Disposal, 2, 135–136,,, 2023
Short summary
Demonstrating the possibility of safe operation in the first phase of the site selection procedure in Germany
Michael Werres, Frederik Fahrendorf, Thomas Lohser, and Wolfram Rühaak
Saf. Nucl. Waste Disposal, 2, 179–180,,, 2023
Short summary
A new tool to automatise the characterisation of fracture networks from 3D point cloud data
Lionel Bertrand, Claire Bossennec, Wan-Chiu Li, Cédric Borgese, Bruno Gavazzi, Matthis Frey, Yves Géraud, Marc Diraison, and Ingo Sass
EGUsphere,,, 2023
Short summary
Expected and deviating evolutions in representative preliminary safety assessments – a focus on glacial tunnel valleys
Paulina Müller, Eva-Maria Hoyer, Anne Bartetzko, and Wolfram Rühaak
E&G Quaternary Sci. J., 72, 73–76,,, 2023
Short summary
TransPyREnd: a code for modelling the transport of radionuclides on geological timescales
Christoph Behrens, Elco Luijendijk, Phillip Kreye, Florian Panitz, Merle Bjorge, Marlene Gelleszun, Alexander Renz, Shorash Miro, and Wolfram Rühaak
Adv. Geosci., 58, 109–119,,, 2023
Short summary

Related subject area

Solid Earth
AdaHRBF v1.0: gradient-adaptive Hermite–Birkhoff radial basis function interpolants for three-dimensional stratigraphic implicit modeling
Baoyi Zhang, Linze Du, Umair Khan, Yongqiang Tong, Lifang Wang, and Hao Deng
Geosci. Model Dev., 16, 3651–3674,,, 2023
Short summary
PySubdiv 1.0: open-source geological modeling and reconstruction by non-manifold subdivision surfaces
Mohammad Moulaeifard, Simon Bernard, and Florian Wellmann
Geosci. Model Dev., 16, 3565–3579,,, 2023
Short summary
Reconstructing tephra fall deposits via ensemble-based data assimilation techniques
Leonardo Mingari, Antonio Costa, Giovanni Macedonio, and Arnau Folch
Geosci. Model Dev., 16, 3459–3478,,, 2023
Short summary
IMEX_SfloW2D v2: a depth-averaged numerical flow model for volcanic gas-particle flows over complex topographies and water
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, and Samantha Engwell
Geosci. Model Dev. Discuss.,,, 2023
Revised manuscript accepted for GMD
Short summary
ClinoformNet-1.0: stratigraphic forward modeling and deep learning for seismic clinoform delineation
Hui Gao, Xinming Wu, Jinyu Zhang, Xiaoming Sun, and Zhengfa Bi
Geosci. Model Dev., 16, 2495–2513,,, 2023
Short summary

Cited articles

Al-Raoush, R. and Papadopoulos, A.: Representative elementary volume analysis of porous media using X-ray computed tomography, Powder Technol., 200, 69–77,, 2010. 
Altman, Y.: Accelerating MATLAB Performance, CRC Press, 2014. 
Amigó, E., Gonzalo, J., Artiles, J., and Verdejo, F.: A comparisonof extrinsic clustering evaluation metrics based on formal con-straints, Inform. Retrieval, 12, 461–486, 2009. 
Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., and Zhan, X.: Digital rock physics benchmarks – Part I: Imaging and segmentation, Comput. Geosci., 50, 25–32,, 2013a. 
Short summary
We present CobWeb 1.0, a graphical user interface for analysing tomographic images of geomaterials. CobWeb offers different machine learning techniques for accurate multiphase image segmentation and visualizing material specific parameters such as pore size distribution, relative porosity and volume fraction. We demonstrate a novel approach of dual filtration and dual segmentation to eliminate edge enhancement artefact in synchrotron-tomographic datasets and provide the computational code.