Articles | Volume 13, issue 1
https://doi.org/10.5194/gmd-13-315-2020
https://doi.org/10.5194/gmd-13-315-2020
Model description paper
 | 
31 Jan 2020
Model description paper |  | 31 Jan 2020

CobWeb 1.0: machine learning toolbox for tomographic imaging

Swarup Chauhan, Kathleen Sell, Wolfram Rühaak, Thorsten Wille, and Ingo Sass

Data sets

Synchrotron tomography dataset of Gas Hydrate S. Chauhan, K. Sell, Kathleen, F. Enzmann, W. Rühaak, T. Wille, I. Sass, and M. Kersten https://doi.org/10.5281/zenodo.2390943

Model code and software

CobWeb 1.0: machine learning tool box for tomographic imaging S. Chauhan, K. Sell, Kathleen, W. Rühaak, T. Wille, I. Sass https://doi.org/10.5281/zenodo.2390943

Video supplement

CobWeb 1.0 Demo S. Chauhan, K. Sell, Kathleen, W. Rühaak, T. Wille, I. Sass https://doi.org/10.5281/zenodo.2390943

Download
Short summary
We present CobWeb 1.0, a graphical user interface for analysing tomographic images of geomaterials. CobWeb offers different machine learning techniques for accurate multiphase image segmentation and visualizing material specific parameters such as pore size distribution, relative porosity and volume fraction. We demonstrate a novel approach of dual filtration and dual segmentation to eliminate edge enhancement artefact in synchrotron-tomographic datasets and provide the computational code.