Articles | Volume 13, issue 7
https://doi.org/10.5194/gmd-13-2959-2020
https://doi.org/10.5194/gmd-13-2959-2020
Methods for assessment of models
 | 
08 Jul 2020
Methods for assessment of models |  | 08 Jul 2020

Surrogate-assisted Bayesian inversion for landscape and basin evolution models

Rohitash Chandra, Danial Azam, Arpit Kapoor, and R. Dietmar Müller

Related authors

Efficiency and robustness in Monte Carlo sampling for 3-D geophysical inversions with Obsidian v0.1.2: setting up for success
Richard Scalzo, David Kohn, Hugo Olierook, Gregory Houseman, Rohitash Chandra, Mark Girolami, and Sally Cripps
Geosci. Model Dev., 12, 2941–2960, https://doi.org/10.5194/gmd-12-2941-2019,https://doi.org/10.5194/gmd-12-2941-2019, 2019
Short summary
Bayesian geological and geophysical data fusion for the construction and uncertainty quantification of 3D geological models
Hugo K. H. Olierook, Richard Scalzo, David Kohn, Rohitash Chandra, Ehsan Farahbakhsh, Gregory Houseman, Chris Clark, Steven M. Reddy, and R. Dietmar Müller
Solid Earth Discuss., https://doi.org/10.5194/se-2019-4,https://doi.org/10.5194/se-2019-4, 2019
Revised manuscript not accepted

Related subject area

Numerical methods
A joint reconstruction and model selection approach for large-scale linear inverse modeling (msHyBR v2)
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot M. Miller, and Arvind K. Saibaba
Geosci. Model Dev., 17, 8853–8872, https://doi.org/10.5194/gmd-17-8853-2024,https://doi.org/10.5194/gmd-17-8853-2024, 2024
Short summary
Assimilation of snow water equivalent from AMSR2 and IMS satellite data utilizing the local ensemble transform Kalman filter
Joonlee Lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee
Geosci. Model Dev., 17, 8799–8816, https://doi.org/10.5194/gmd-17-8799-2024,https://doi.org/10.5194/gmd-17-8799-2024, 2024
Short summary
The Paleochrono-1.1 probabilistic model to derive a common age model for several paleoclimatic sites using absolute and relative dating constraints
Frédéric Parrenin, Marie Bouchet, Christo Buizert, Emilie Capron, Ellen Corrick, Russell Drysdale, Kenji Kawamura, Amaëlle Landais, Robert Mulvaney, Ikumi Oyabu, and Sune Olander Rasmussen
Geosci. Model Dev., 17, 8735–8750, https://doi.org/10.5194/gmd-17-8735-2024,https://doi.org/10.5194/gmd-17-8735-2024, 2024
Short summary
Explicit stochastic advection algorithms for the regional-scale particle-resolved atmospheric aerosol model WRF-PartMC (v1.0)
Jeffrey H. Curtis, Nicole Riemer, and Matthew West
Geosci. Model Dev., 17, 8399–8420, https://doi.org/10.5194/gmd-17-8399-2024,https://doi.org/10.5194/gmd-17-8399-2024, 2024
Short summary
Enhancing Single-Precision with Quasi Double-Precision: Achieving Double-Precision Accuracy in the Model for Prediction Across Scales-Atmosphere (MPAS-A) version 8.2.1
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2986,https://doi.org/10.5194/egusphere-2024-2986, 2024
Short summary

Cited articles

Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E., Hutton, E. W. H., Nudurupati, S. S., and Istanbulluoglu, E.: The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds, Geosci. Model Dev., 10, 1645–1663, https://doi.org/10.5194/gmd-10-1645-2017, 2017. a
Ampomah, W., Balch, R., Will, R., Cather, M., Gunda, D., and Dai, Z.: Co-optimization of CO2 EOR and Storage Processes under Geological Uncertainty, Energy Proc., 114, 6928–6941, 2017. a
Asher, M. J., Croke, B. F., Jakeman, A. J., and Peeters, L. J.: A review of surrogate models and their application to groundwater modeling, Water Resour. Res., 51, 5957–5973, 2015. a
Bittner, E., Nußbaumer, A., and Janke, W.: Make life simple: Unleash the full power of the parallel tempering algorithm, Phys. Rev. Lett., 101, 130603, https://doi.org/10.1103/PhysRevLett.101.130603, 2008. a
Bottou, L.: Stochastic gradient learning in neural networks, Proc. Neuro-Nımes, 91, 12, 1991. a
Download
Short summary
Forward landscape and sedimentary basin evolution models pose a major challenge in the development of efficient inference and optimization methods. Bayesian inference provides a methodology for estimation and uncertainty quantification of free model parameters. In this paper, we present an application of a surrogate-assisted Bayesian parallel tempering method where that surrogate mimics a landscape evolution model. We use the method for parameter estimation and uncertainty quantification.