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Abstract. The complex and computationally expensive na-
ture of landscape evolution models poses significant chal-
lenges to the inference and optimization of unknown model
parameters. Bayesian inference provides a methodology for
estimation and uncertainty quantification of unknown model
parameters. In our previous work, we developed parallel tem-
pering Bayeslands as a framework for parameter estima-
tion and uncertainty quantification for the Badlands land-
scape evolution model. Parallel tempering Bayeslands fea-
tures high-performance computing that can feature dozens
of processing cores running in parallel to enhance computa-
tional efficiency. Nevertheless, the procedure remains com-
putationally challenging since thousands of samples need to
be drawn and evaluated. In large-scale landscape evolution
problems, a single model evaluation can take from several
minutes to hours and in some instances, even days or weeks.
Surrogate-assisted optimization has been used for several
computationally expensive engineering problems which mo-
tivate its use in optimization and inference of complex geo-
scientific models. The use of surrogate models can speed up
parallel tempering Bayeslands by developing computation-
ally inexpensive models to mimic expensive ones. In this pa-
per, we apply surrogate-assisted parallel tempering where the
surrogate mimics a landscape evolution model by estimating
the likelihood function from the model. We employ a neural-
network-based surrogate model that learns from the history
of samples generated. The entire framework is developed in a
parallel computing infrastructure to take advantage of paral-
lelism. The results show that the proposed methodology is ef-
fective in lowering the computational cost significantly while
retaining the quality of model predictions.

1 Introduction

The Bayesian methodology provides a probabilistic approach
for the estimation of unknown parameters in complex mod-
els (Sambridge, 1999; Neal, 1996; Chandra et al., 2019b).
We can view a deterministic geophysical forward model as
a probabilistic model via Bayesian inference, which is also
known as Bayesian inversion, which has been used for land-
scape evolution (Chandra et al., 2019a, c), geological reef
evolution models (Pall et al., 2020), and other geoscien-
tific models (Sambridge, 1999, 2013; Scalzo et al., 2019;
Olierook et al., 2020). Markov chain Monte Carlo (MCMC)
sampling is typically used to implement Bayesian inference
that involves the estimation and uncertainty quantification
of unknown parameters (Hastings, 1970; Metropolis et al.,
1953; Neal, 2012, 1996). Parallel tempering MCMC (Mari-
nari and Parisi, 1992; Geyer and Thompson, 1995) features
multiple replicas to provide a balance between exploration
and exploitation, which makes them suitable for irregular
and multimodal distributions (Patriksson and van der Spoel,
2008; Hukushima and Nemoto, 1996). In contrast to canoni-
cal sampling methods, we can implement parallel tempering
more easily in a parallel computing architecture (Lamport,
1986).

Our previous work presented parallel tempering
Bayeslands for parameter estimation and uncertainty
quantification for landscape evolution models (LEMs)
(Chandra et al., 2019c). Parallel tempering Bayeslands
features parallel computing to enhance computational
efficiency of inference for the Badlands LEM. Although we
used parallel computing, the procedure was computationally
challenging since thousands of samples were drawn and
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evaluated (Chandra et al., 2019c). In large-scale LEMs,
running a single model can take several hours, to days or
weeks, and usually thousands of model runs are required
for inference of unknown model parameters. Hence, it is
important to enhance parallel tempering Bayeslands, which
can also be applicable for other complex geoscientific
models. One of the ways to address this problem is through
surrogate-assisted estimation.

Surrogate-assisted optimization refers to the use of statisti-
cal and machine learning models for developing approximate
simulation or surrogate of the actual model (Jin, 2011). Since
typically optimization methods lack a rigorous approach for
uncertainty quantification, Bayesian inversion becomes as
an alternative choice particularly for complex geophysical
numerical models (Sambridge, 2013, 1999). The major ad-
vantage of a surrogate model is its computational efficiency
when compared to the equivalent numerical physical for-
ward model (Ong et al., 2003; Zhou et al., 2007). In the
optimization literature, surrogate utilization is also known
as response surface methodology (Montgomery and Vernon
M. Bettencourt, 1977; Letsinger et al., 1996) and applicable
for a wide range of engineering problems (Tandjiria et al.,
2000; Ong et al., 2005) such as aerodynamic wing design
(Ong et al., 2003). Several approaches have been used to im-
prove the way surrogates are utilized. Zhou et al. (2007) com-
bined global and local surrogate models to accelerate evolu-
tionary optimization. Lim et al. (2010) presented a general-
ized surrogate-assisted evolutionary computation framework
to unify diverse surrogate models during optimization and
taking into account uncertainty in estimation. Jin (2011) re-
viewed a range of problems such as single, multi-objective,
dynamic, constrained, and multimodal optimization prob-
lems (Diaz-Manriquez et al., 2016). In the Earth sciences, ex-
amples for surrogate-assisted approaches include modelling
water resources (Razavi et al., 2012; Asher et al., 2015), at-
mospheric general circulation models (Scher, 2018), compu-
tational oceanography (van der Merwe et al., 2007), carbon-
dioxide (CO;) storage and oil recovery (Ampomah et al.,
2017), and debris flow models (Navarro et al., 2018).

Given that Bayeslands is implemented using parallel
computing, the challenge is in implementing surrogates
across different processing cores. Recently, we developed
surrogate-assisted parallel tempering for Bayesian neural
networks, which used a global-local surrogate framework
to execute surrogate training in the master processing core
that manages the replicas running in parallel (Chandra et al.,
2020). The global surrogate refers to the main surrogate
model that features training data combined from different
replicas running in parallel cores. Local surrogate model
refers to the surrogate model in the given replica that in-
corporates knowledge from the global surrogate to make a
prediction given new input parameters. Note that the training
only takes place in the global surrogate, and the prediction
or estimation for pseudo-likelihood only takes place in the
local surrogates. The method gives promising results where
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prediction performance is maintained while lowering com-
putational time using surrogates.

In this paper, we present an application of surrogate-
assisted parallel tempering (Chandra et al., 2020) for
Bayesian inversion of LEMs using parallel computing in-
frastructure. We use the Badlands LEM model (Salles et al.,
2018) as a case study to demonstrate the framework. Over-
all, the framework features the surrogate model, which mim-
ics the Badlands model and estimates the likelihood func-
tion to evaluate the proposed parameters. We employ a neural
network model as the surrogate that learns from the history
of samples from the parallel tempering MCMC. We apply
the method to several selected benchmark landscape evolu-
tion and sediment transport/deposition problems and show
the quality of the estimation of the likelihood given by the
surrogate when compared to the actual Badlands model.

2 Background and related work
2.1 Bayesian inference

Bayesian inference is typically implemented by employing
MCMC sampling methods that update the probability for
a hypothesis as more information becomes available. The
hypothesis is given by a prior probability distribution (also
known as the prior) that expresses one’s belief about a quan-
tity (or free parameter in a model) before some data are taken
into account. Therefore, MCMC methods provide a proba-
bilistic approach for estimation of free parameters in a wide
range of models (Kass et al., 1998; van Ravenzwaaij et al.,
2016). The likelihood function is a way to evaluate the sam-
pled parameters for a model with given observed data. In or-
der to evaluate the likelihood function, one would need to run
the given model, which in our case is the Badlands model.
The likelihood function is used with the Metropolis criteria
to either accept or reject a proposal. When accepted, the pro-
posal becomes part of the posterior distribution, which es-
sentially provides the estimation of the free parameter with
uncertainties. The sampling process is iterative and requires
that thousands of samples are drawn until convergence. In
our case, convergence is defined by a predefined number of
samples or until the likelihood function has reached a specific
value.

2.2 Badlands model and Bayeslands framework

LEMs incorporate different driving forces such as tectonics
or climate variability (Whipple and Tucker, 2002; Tucker and
Hancock, 2010; Salles et al., 2018; Campforts et al., 2017;
Adams et al., 2017) and combine empirical data and concep-
tual methods into a set of mathematical equations. Badlands
(basin and landscape dynamics) (Salles et al., 2018; Salles
and Hardiman, 2016) is an example of such a model that can
be used to reconstruct landscape evolution and associated
sediment fluxes (Howard et al., 1994; Hobley et al., 2011).
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Figure 1. Location of (a) Continental-Margin problem shown taken from Te Waipounamu/South Island of Aotearoa/New Zealand. (b) Tas-
mania, Australia, with latitude and longitude information shown in degrees.

Table 1. In the given landscape evolution problems, the run time represents approximately the duration for one model to run on a single
CPU. The length and width are given in kilometres (km), which are represented by the specified number of points (pts) as defined by the

resolution (Res.) factor.

Evo. Length Width Res. Run-
Topography (years) (km, pts) (km, pts) factor time (s)
Continental-Margin 1000000  (136.0, 136)  (123.0, 123) 1 3.0
Synthetic-Mountain 1000000  (202.0,202) (102.0, 102) 1 5.0
Tasmania 1000000  (523.0,523) (554.0,554) 1 71.3

Badlands LEM model (Salles et al., 2018) simulates land-
scape evolution and sediment transport/deposition with given
parameters such as the precipitation rate and rock erodibility
coefficient. The Badlands LEM simulates landscape dynam-
ics, which requires an initial topography exposed to climate
and geological factors over time.

Bayeslands essentially provides the estimation of un-
known Badlands parameters with Bayesian inference via
MCMC sampling (Chandra et al., 2019c). We use the final or
present-day topography at time 7 and expected sediment de-
posits at selected intervals to evaluate the quality of propos-
als during sampling. In this way, we constrain the set of un-
known parameters () using ground-truth data (D). The prior
distribution (also known as prior) refers to one’s belief in the
distribution of the parameter without taking into account the
evidence or data. Bayeslands estimates 6 so that the simu-
lated topography by Badlands can resemble the ground-truth
topography D to some degree. Bayeslands samples the pos-
terior distribution p(6|D) using principles of Bayes’ rule
pioy = OO,

D)
where, p(D|6) is the likelihood of the data given the parame-
ters, p(0) is the prior, and p(D) is a normalizing constant and
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equal to f pDI0) p(6)d6. We note that the prior ratio cancels
out since we use a uniform distribution for the priors.

3 Methodology
3.1 Benchmark landscape evolution problems

We select two benchmark landscape problems from paral-
lel tempering Bayeslands (Chandra et al., 2019c) that are
adapted from earlier work (Chandra et al., 2019a). These
include Continental-Margin (CM) and Synthetic-Mountain
(SM), which are chosen due to the computational time taken
for running a single model since they use less than 5s
to run a single model on a single central processing unit
(CPU). These problems are well suited for a parameter evalu-
ation for the proposed surrogate-assisted Bayesian inversion
framework. In order to demonstrate an application which is
computationally expensive, we introduce another problem,
which features the landscape evolution of Tasmania in Aus-
tralia for a million years that features the region shown in
Fig. 1b. The Synthetic-Mountain landscape evolution is a
synthetic problem, while the Continental-Margin problem is
a real-world problem based on the topography of a region
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Figure 2. Synthetic-Mountain: initial and eroded ground-truth topography after a million years of evolution. Continental-Margin: initial and
eroded ground-truth topography and sediment after 1 million years. The erosion—deposition that forms sediment deposition after 1 million
years is also shown. Note that x axis represents the latitude; y axis represents the longitude, and that aligns with Fig. 1a. The elevation
in metres (m) is given by the z axis, which is further shown as a colour bar. The Synthetic-Mountain problem does not align with actual
landscape.
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Figure 3. Tasmania: initial and eroded ground-truth topography along with erosion—deposition that shows sediment deposition after 1 million
years evolution. Note that x axis represents the latitude; y axis represents the longitude, and that aligns with Fig. 1b for the Tasmania problem.
The elevation in metres (m) is given by the z axis, which is further shown as a colour bar.

along the eastern margin of Te Waipounamu/South Island of
Aotearoa/New Zealand as shown in Fig. 1a. We use Badlands
to evolve the initial landscape with parameter settings given
in Tables 1 and 2 and create the respective problems synthetic
ground-truth topography.

The initial and synthetic ground-truth topographies along
with erosion/deposition for these problems appear in Figs. 2
and 3, respectively. Note that the figure shows that the

https://doi.org/10.5194/gmd-13-2959-2020

Synthetic-Mountain is flat in the beginning, then given a con-
stant uplift rate, along with weathering with constant pre-
cipitation rate, which creates the mountain topography. We
use present-day topography as the initial topography in the
Continental-Margin and Tasmania problems, whereas we use
a synthetic flat region for Synthetic-Mountain initial topogra-
phy. The problems involve an erosion—deposition model his-
tory that is used to generate synthetic ground-truth data for

Geosci. Model Dev., 13, 2959-2979, 2020
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Table 2. True values of parameters.

R. Chandra et al.: Surrogate-assisted Bayeslands

Rainfall Uplift

Topography (ma~1) Erod. nvalue mvalue Marine Surface (mma~!)

Continental-Margin 15 50x107° 1.0 0.5 0.5 0.8 -

Synthetic-Mountain 15 50x107° 1.0 0.5 - - 1.0

Tasmania 15 50x107° 1.0 0.5 0.5 0.8 -

Table 3. Prior distribution range of model parameters.
Rainfall

Topography (ma~1) Erod. nvalue m value Marine Surface Uplift
Continental-Margin ~ [0,3.0] [3.0 x 10_6, 7.0 x 10_6] [0, 2.0] [0,2.0] 1[0.3,0.7] [0.6,1.0] -
Synthetic-Mountain ~ [0,3.0] [3.0x107%,7.0x107°]  [0,2.0] [0, 2.0] - - [0.1, 1.7]
Tasmania [0,3.01 [3.0x107%,7.0x 1076 [0,2.01 [0,2.0] [0.3,0.7] [0.6,1.0] -

the final model state that we then attempt to recover. Hence,
the likelihood function given in the following subsection
takes both the landscape topography and erosion—deposition
ground truth into account. The Continental-Margin and Tas-
mania cases feature six free parameters (Table 2), whereas
the Synthetic-Mountain features five free parameters. Note
that the marine diffusion coefficients are absent for the
Synthetic-Mountain problem since the region does not cover
or overlap with coastal and marine areas. The main reason
behind choosing the two benchmark problems is due to their
nature, i.e. the Synthetic-Mountain problem features uplift
rate, which is not present in the Continental-Margin prob-
lem. The Continental-Margin problem features other param-
eters such as the marine coefficients. The Tasmania problem
features a much bigger region; hence, it takes more compu-
tational time for running a single model. The common fea-
ture in all three problems is that they model both the ele-
vation and erosion/deposition topography. Furthermore, we
draw the priors from a uniform distribution with a lower and
upper limit given in Table 3.

3.2 Bayeslands likelihood function

The Bayeslands likelihood function evaluates Badlands to-
pography simulation along with the successive erosion—
deposition, which denotes the sediment thickness evolution
through time. More specifically, the likelihood function eval-
uates the effect of the proposals by taking into account the
difference between the final simulated Badlands topogra-
phy and the ground-truth topography. The likelihood func-
tion also considers the difference between the simulated and
ground-truth sediment thickness at selected time intervals,
which has been adapted from previous work (Chandra et al.,
2019c) and is given as follows. The initial topography is de-
noted by Do with Dy = (Dqy,..., Do,,), Where s; corre-
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sponds to site s;, with the coordinates given by the latitude
u; and longitude v;.

We assume an inverse gamma (IG) prior 72~
IG(v/2,2/v) and integrate it so that the likelihood for
the topography at time t = T is

v+1

n Do 71— for(@ 2\ "2
L1(0>o<]"[(1+( il f‘“T())) , (1)

iz v

where v is the number of observations, and the subscript “1”
in L1(@) denotes that it is the landscape likelihood to distin-
guish it from a sediment likelihood.

Although Badlands produces successive time-dependent
topographies, only the final topography D7 is used for the
calculation of the elevation likelihood since little ground-
truth information is available for the detailed evolution
of surface topography. In contrast, the time-dependence
of sedimentation can be used to ground-truth the time-
dependent evolution of surface process models that include
sediment transportation and deposition. The sediment ero-
sion/deposition values at time (z;) are simulated (predicted)
by the Badlands model given set of parameters, 6, plus some
Gaussian noise as follows:

25,0 =85, )+ ;. with ;¢ ~ (0, ). )

The sediment likelihood L (@), after integrating out XZ, be-
comes

v+1

T J st —8s; 0 2\ 2
Ls(0)o<1_[1_[<1+—(z“”t i‘-"’( ))) : 3)

t=1j=1

The combined likelihood takes both elevation and sedi-
ment/deposition into account

L(0) = Ls(0) x L1(9) “4)

https://doi.org/10.5194/gmd-13-2959-2020
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Figure 4. Surrogate-assisted Bayeslands using the parallel tempering MCMC framework. We carry out the training in the master (manager)
process, which features the global surrogate model. The replica processes provide the surrogate training dataset to the master process using
inter-process communication. We employ a neural network model for the surrogate model. After training, we transfer the knowledge (neural
network weights) to each of the replicas to enable estimation of pseudo-likelihood. Refer to Algorithm 1 for further details.

Note that although we used the log-likelihood version in
our actual implementation, we refer to it as the likelihood
throughout the paper.

3.3 Surrogate-assisted Bayeslands

The surrogate model learns from the relationship between the
set of input parameters and the response given by the true

https://doi.org/10.5194/gmd-13-2959-2020

(Badlands) model. The input is the set of proposals by the
respective replica samplers in the parallel tempering MCMC
sampling algorithm. We refer to the likelihood estimation by
the surrogate model as the pseudo-likelihood.

We need to take into account the cost of inter-process com-
munication in parallel computing environment to avoid com-
putational overhead. As given in our previous implementa-

Geosci. Model Dev., 13, 2959-2979, 2020
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Table 4. Neural network architecture for the different problems.

Train  Test

Dataset Input  Output size  size
Continental-Margin 6 1 8073 879
Synthetic-Mountain 5 1 8073 879

tion (Chandra et al., 2019c), the swap interval refers to the
number of iterations after which each replica pauses and can
undergo a replica transition. After the swap proposal is ac-
cepted or rejected, the respective replica sampling is resumed
while undergoing Metropolis transition in between the swap
intervals. We incorporate the surrogate-assisted estimation
into the multicore parallel tempering algorithm. Our previous
work (Chandra et al., 2020) used a surrogate interval that de-
termines the frequency of training by collecting the history of
past samples with their likelihood from the respective repli-
cas. We need a swap interval of several samples when dealing
with small-scale models that take a few seconds to run; how-
ever for large models, we recommend having a swap interval
of 1.

Taking into account that the true model is represented as
y = f(x), the surrogate model provides an approximation in
the form $ = f(x); such that y =  + e, where e represents
the difference or error. The task of the surrogate model is
to provide an estimate for the pseudo-likelihood by training
from the history of proposals, which is given by the set of
input X, ¢ and likelihood y,, where “s” represents the sample
and “r” represents the replica. Hence, we create the training
dataset ® for the surrogate by fusion of x; ¢ across all the
replica for a given surrogate interval ¥, which can be formu-
lated as follows:

b = (Xl,s’--
)\‘: (yl,Ss"

.y XM,SJFT//)
o yM,S-Hﬂ)’ (5)

"XI,S+1//1 o XMss -

s Yls+s oo YM 55 - -

where, X; ¢ represents the set of parameters proposed at sam-
ple “s”, yr.s =log (p(ylXr,s)) is the likelihood, which is de-
pendent on data and the Badlands model, and M is the total
number of replicas. ® denotes the training surrogate dataset,
which features input ® and response A at the end of every
surrogate interval denoted by s + . Therefore, we give the
pseudo likelihood as y = f (®), where f is the prediction
from the surrogate model. The likelihood in training data is
altered, with respect of the temperature, since it has been
changed by taking Ljocal/T; for given replica “r”. We undo
this change by multiplying the likelihood by the respective
replica temperature level taken from the geometric tempera-
ture ladder.

We present surrogate-assisted Bayeslands in Algorithm 1,
which features parallel processing of the ensemble of repli-
cas. The highlighted region in the colour pink of the Algo-
rithm 1 shows different processing cores running in parallel,
shown in Fig. 4 where the manager process is highlighted.

Geosci. Model Dev., 13, 2959-2979, 2020
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Due to multiple parallel processing replicas, it is not straight-
forward to implement when to terminate sampling. Hence,
the termination condition waits for all the replica processes
to end as it monitors the number of active or alive replica pro-
cesses in the manager process. We begin by setting the num-
ber of alive replicas in the ensemble (alive = M) and then the
replicas that sample 6, are assigned values using a uniform
distribution [—«, «]; where o defines the range of the respec-
tive parameters. We then assign the user-defined parameters,
which include the number of replica samples Rpyax, swap-
interval Rgwap, surrogate interval, v/, and surrogate probabil-
ity Sprob, Which determines the frequency of employing the
surrogate model for estimating the pseudo-likelihood.

The samples that cover the first surrogate interval makes
up the initial surrogate training data ®, which feature all the
replicas. We then train the surrogate to estimate the pseudo-
likelihood when required according to the surrogate proba-
bility. Figure 4 shows how the manager processing unit con-
trols the respective replicas, which samples for the given sur-
rogate interval. Then, the algorithm calculates the replica
transition probability for the possibility of swapping the
neighbouring replicas. The information flows from replica
process to manager process using signal() via inter-process
communication given by the replica process as shown in
Stage 2.2, 3.1, and 4.0 of Algorithm 1, and further shown
in Fig. 4.

To enable better estimation for the pseudo-likelihood, we
retrain the surrogate model for remaining surrogate interval
blocks until the maximum time (Rpax). We train the surro-
gate model only in the manager process and the algorithm
passes the surrogate model copy with the trained parameters
to the ensemble of replica processes for predicting or estimat-
ing the pseudo-likelihood. The samples associated with the
true-likelihood only becomes part of the surrogate training
dataset. In Stage 1.4 of Algorithm 1, the pseudo-likelihood
(Lsurrogate) provides an estimation with given proposal 6.
Stage 1.5 calculates the likelihood moving average of past
three likelihood values, Lpast = mean(Lg—1, Ls—1, Ls—2). In
Stage 1.6, we combine the moving average likelihood with
the pseudo-likelihood to give a prediction that considers the
present replica proposal and taking into account the past,
Liocal = (0.5 X Lurrogate) + 0.5 X Lpast. The surrogate train-
ing can consume a significant portion of time, which is de-
pendent on the size of the problem in terms of the number of
parameters and also the type of surrogate model used, along
with the training algorithm. We evaluate the trade-off be-
tween quality of estimation by pseudo-likelihood and over-
all cost of computation for the true likelihood function for
different types of problems.

We validate the quality of estimation from the surrogate
model by the root-mean-squared error (RMSE), which con-
siders the difference between the true likelihood and the
pseudo-likelihood. This can be seen as a regression prob-
lem with multi-input (parameters) and a single output (like-
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Table 5. Evaluation of surrogate training accuracy.

2967

Dataset Batch Transfer and train Train from scratch
ratio SGD \ Adam SGD \ Adam
MSE  Time(s) | MSE  Time(s) MSE  Time(s) | MSE  Time(s)
Continental-Margin 0.1 0.0198 19.40 | 0.0209 31.23 0.0199 88.17 | 0.0206 122.41
0.2 0.0197 26.95 | 0.0211 56.84 0.0197 67.74 | 0.0199 100.49
0.3 0.0199 25.53 | 0.0212 61.41 0.0197 70.71 | 0.0205 268.16
0.4 0.0195 70.42 | 0.0193 48.28 0.0194 46.07 | 0.0188 140.90
Synthetic-Mountain 0.1 0.0161 40.38 | 0.0097 54.45 0.0161 282.0 | 0.0081 347.94
0.2 0.0134 52.87 0.007 70.65 0.0139  185.025 0.007 857.38
0.3 0.0129  65.105 | 0.0088  73.035 0.0123 179.36 | 0.0088 543.019
0.4 0.0164 50.14 | 0.0048 87.67 0.0066 149.26 | 0.0038 653.85
Table 6. Convergence diagnosis (PSRF score) for Continental-Margin problem.
Mean
Proposal  Method Precip. Erod. m value nvalue c-marine c-surface R score
RW PT-Bayeslands 1.50 1.6 1.14 4.82 2.62 1.56 2.21
ARW PT-Bayeslands 1.26 1.55 1.26 1.63 1.38 1.13 1.37
RW SAPT-Bayeslands 4.06 1.70 6.57 1.51 1.46 1.49 2.80
ARW SAPT-Bayeslands 1.33 2.88 1.22 2.46 1.03 1.30 1.70
lihood). Hence, we report the surrogate prediction quality by scheme using
l n n N 2
RMSEcjey = ZZ (g (QT,i,j) —8T.i,j (9))
X m ‘
i=1j=1
1 ny m n 2
RMSEwo = | == (£(6) ~ 7 (61))

where y; and y; are the true likelihood and the pseudo-
likelihood values, respectively. N is the number of cases the
surrogate has used during sampling.

We further note that the framework uses parallel tempering
MCMC in the first stage of sampling and then transforms into
the second stage where the temperature ladder is changed
such that T; = 1, for all replicas, i =1, 2, ..., M. This strat-
egy enables exploration in the first stage and exploitation in
the second stage. We combine the respective replica poste-
rior distributions once the termination condition is met and
show their mean and standard deviation of the prediction in
the results.

We evaluate the prediction performance by comparing the
predicted/simulated Badlands landscape with the ground-
truth data using the root-mean-squared error (RMSE). We
compute the RMSE for the elevation (elev) and sediment
erosion/deposition (sed) at each iteration of the sampling
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where 0 is an estimated value of 6, and 6 is the true value
representing the synthetic ground truth. f(.) and g(.) repre-
sent the outputs of the Badlands model, while m and n rep-
resent the size of the selected topography. v is the number
of selected points from sediment erosion/deposition over the
selected time frame, n;.

3.4 Surrogate model

To choose a particular surrogate model, we need to con-
sider the computational resources for training the model dur-
ing the sampling process. The literature review showed that
Gaussian process models, neural networks, and radial basis
functions (Broomhead and Lowe, 1988) are popular choices
for surrogate models. We note that Badlands LEM features
about a dozen free parameters in one of the simplest cases;
this increases when taking into account spatial and temporal
dependencies. For instance, the precipitation rate for a mil-
lion years can be represented by a single parameter or by 10
different parameters that capture every 100 000 years for 10

Geosci. Model Dev., 13, 2959-2979, 2020



2968

Table 7. Evaluation for Continental-Margin problem.

R. Chandra et al.: Surrogate-assisted Bayeslands

Method Sprob ¥  RMSEgey RMSEcey RMSEeq RMSEgq Time (s)
(mean) (SD) (mean) (SD)
PT-Bayeslands N/A  N/A 78.80 10.03 3591 11.36 3243.30
SAPT-Bayeslands ~ 0.20  0.05 75.53 9.89 35.68 10.93  3082.53
SAPT-Bayeslands ~ 0.40 0.05 80.22 15.63 44.72 16.52  2450.77
SAPT-Bayeslands  0.60  0.05 82.04 8.23 44.33 13.37  1859.52
SAPT-Bayeslands ~ 0.80  0.05 79.30 26.70 43.29 18.68  1149.63
SAPT-Bayeslands ~ 0.20 0.10 76.92 11.59 48.19 11.46  3075.31
SAPT-Bayeslands  0.40 0.10 82.43 11.58 46.47 12.55 2494.13
SAPT-Bayeslands  0.60 0.10 80.12 12.08 47.80 19.05 1934.34
SAPT-Bayeslands ~ 0.80  0.10 88.81 20.61 51.12 14.26  1148.80
SAPT-Bayeslands ~ 0.20  0.15 44.90 33.54 23.95 19.86  2914.06
SAPT-Bayeslands 040 0.15 73.64 8.05 38.53 10.02  2495.56
SAPT-Bayeslands  0.60 0.15 83.38 8.45 51.15 19.07 1986.51
SAPT-Bayeslands  0.80 0.15 84.73 10.04 39.78 14.44  1294.64
Table 8. Performance comparison for respective problems and methods. N/A: not applicable.
Problem Method Sprob ¥ RMSEgey RMSEgey RMSEgy RMSEq Time (s)
(mean) (SD) (mean) (SD)
Continental-Margin ~ PT-Bayeslands N/A N/A 78.80 10.03 3591 11.36 3243.30
SAPT-Bayeslands  0.60  0.05 82.0 8.23 44.33 13.37 1859.52
Synthetic-Mountain ~ PT-Bayeslands N/A  N/A 106.10 48.24 20.34 24.02 8474.67
SAPT-Bayeslands  0.60  0.05 104.88 5.51 11.87 8.69 4161.43
Tasmania PT-Bayeslands N/A  N/A 172.64 10.74 3.90 0.50  600293.61
SAPT-Bayeslands ~ 0.60 0.05 179.67 19.71 391 0.10 22194241

different regions, which can account for 1000 parameters in-
stead of 1. Considering hundreds or thousands of unknown
Badlands model parameters, the surrogate model needs to
be efficiently trained without taking lots of computational
resources. The flexibility of the model to have incremental
training is also needed, and hence, we rule out Gaussian pro-
cess models since they have limitations in training when the
size of the dataset increases to a certain level (Rasmussen,
2004). Therefore, we use neural networks as the choice of
the surrogate model, and the training data and neural network
model is formulated as follows.

We denote the surrogate model training data by & and A,
which is shown in Eq. (5), where & is the input, and A is the
desired output of the model. The prediction of the model is
denoted by %. We use a feedforward neural network as the
surrogate model. Given input X;, f(X;) is computed by the
feedforward neural network with one hidden layer defined
by the function

H 1
fx) =g<80 +Zv,,~g<8h +dehx,>>, 6)
h=1 d=1
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where 8, and J; are the bias weights for the output o and
hidden 4 layer, respectively. v; is the weight which maps the
hidden layer & to the output layer. wyy, is the weight which
maps X; to the hidden layer /4, and g(.) is the activation func-
tion for the hidden and output layer units. We use ReLU
(rectified linear unitary function) as the activation function.
The learning or optimization task then is to iteratively update
the weights and biases to minimize the cross-entropy loss
J(W,b). This can be done using gradient update of weights
using the Adam (adaptive moment estimation) learning algo-
rithm (Kingma and Ba, 2014) and stochastic gradient descent
(Bottou, 1991, 2010). We experimentally evaluate them for
training the feedforward network for the surrogate model in
the next section.

3.5 Proposal distribution

Bayeslands features random-walk (RW) and adaptive-
random-walk (ARW) proposal distributions which will be
evaluated further for surrogate-assisted Bayeslands in our
experiments. In our previous work (Chandra et al., 2019a),
ARW showed better convergence properties when com-
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Figure 5. Topography cross section and erosion—deposition prediction for 10 chosen points (selected coordinates denoted by location iden-
tifier, ID, number) for Continental-Margin problem from results summarized in Table 8.

pared to RW proposal distribution. The RW proposal dis-
tribution features ¥ as the diagonal matrix, so that ¥ =
diag(olz, e 0123), where o is the step size of the jth element
of the parameter vector @. The step size for 6; is a combina-
tion of a fixed step size ¢, which is common to all parame-
ters, multiplied by the range of possible values for parameter
0j;hence o; = (aj —bj) x ¢, where a; and b; represent the
maximum and minimum limits of the prior for 6; given in
Table 2. In our experiments, the RW proposal distribution
employs fixed step size, ¢ = 0.05,

The ARW proposal distribution features adaptation of the
diagonal matrix ¥ at every K interval of within-replica
sampling. It allows for the dependency between elements
of @ and adapts during sampling (Haario et al., 2001). We
adapt the elements of ¥ for the posterior distribution us-
ing the sample covariance of the current chain history X =
cov({8', ..., 01~y +diag(a2, ..., 2%), where 0'"] is the ith
iterate of @ in the chain, and A ; is the minimum allowed step
sizes for each parameter 6;.

3.6 Design of experiments

We demonstrate effectiveness of surrogate-assisted parallel
tempering (SAPT-Bayeslands) framework for selected Bad-
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lands LEMs taken from our previous study (Chandra et al.,
2019c).

We first investigate the effects of different surrogate
training procedures and parameter evaluation for SAPT-
Bayeslands using smaller synthetic problems. Afterwards,
we apply the methodology to a larger landscape evolution
problem, which is Tasmania, Australia. We design the exper-
iments as follows.

1. We generate a dataset for training and testing the sur-
rogate for the Synthetic-Mountain and Continental-
Margin landscape evolution problems. We use the neu-
ral network model for the surrogate and evaluate differ-
ent training techniques.

2. We evaluate if the transfer of knowledge from previous
surrogate interval is better than no transfer of knowledge
for Synthetic-Mountain and Continental-Margin prob-
lems. Note this is done only with the data generated
from the previous step.

3. We provide convergence diagnosis for the RW and

ARW proposal distributions in PT-Bayeslands and
SAPT-Bayeslands.

Geosci. Model Dev., 13, 2959-2979, 2020
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Figure 6. Topography cross section and erosion—deposition prediction for 10 chosen points (selected coordinates denoted by location iden-
tifier (ID) number) for Synthetic-Mountain problem from results summarized in Table 8.

4. We integrate the surrogate model into Bayeslands and
evaluate the effectiveness of the surrogate in terms of es-
timation of the likelihood and computational time. Due
to the computational requirements, we only consider the
Continental-Margin problem.

5. We then apply SAPT-Bayeslands to all the given prob-
lems and compare with PT-Bayeslands.

We use Keras neural networks library (Gulli and Pal,
2017) for implementation of the surrogate. We provide the
open-source software package that implements Algorithm 1
along with benchmark problems and experimental results !.

We use a geometric temperature ladder with a maximum
temperature of Tp.x =2 for determining the temperature
level for each of the replicas. In trial experiments, the se-
lection of these parameters depended on the performance in
terms of the number of accepted samples and prediction ac-
curacy of elevation and sediment/deposition. We use replica-
exchange or swap interval value; Rgywap = 3 samples that de-
termine when to check whether to swap with the neighbour-
ing replica. In previous work (Chandra et al., 2019c), we

1 Surrogate-assisted Bayeslands: https://github.com/
intelligentEarth/surrogateBayeslands, last access: 6 July 2020

Geosci. Model Dev., 13, 2959-2979, 2020

observed that increasing the number of replicas up to a cer-
tain point does not necessarily mean that we get better per-
formance in terms of the computational time or prediction
accuracy. In this work, we limit the number of replicas to
Ruum = 8 for all experiments with maximum of 5000 sam-
ples.

We use a 50 % burn in, which discards the portion of sam-
ples in the parallel tempering MCMC stage as done in our
previous work (Chandra et al., 2019a).

4 Results
4.1 Surrogate accuracy

To implement the surrogate model, we need to evaluate the
training algorithm, such as Adam and stochastic gradient de-
scent (SGD). Furthermore, we also evaluate specific param-
eters, such as the size of the surrogate interval (batch ratio),
the neural network topology for the surrogate, and the effec-
tiveness of either training from scratch or utilizing previous
knowledge for surrogate training (transfer and train). We cre-
ate a training dataset from the cases where the true likelihood
was used, which compromises the history of the set of pa-

https://doi.org/10.5194/gmd-13-2959-2020
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Figure 7. Topography cross section and erosion—deposition prediction for 10 chosen points (selected coordinates denoted by location iden-
tifier, ID, number) for Tasmania problem from results summarized in Table 8.
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Algorithm 1: Surrogate-assisted Bayeslands

Data: Ground-truth topography dataset

Result: Posterior distribution of unknown parameters 6 ( precipitation and erodibilit;

for each replica v in M do
while (i < Ryq.) do
Stage 1.0: Metropolis Transition
for each s in 1) do
1.1 Random-walk, 0% =0, + ¢
1.2 Ljpeqr calculate:
Draw « from a Uniform distribution [0,1]
if kK < Sprop and s > ¢ then
Estimate Ljocq; from local surrogate’s prediction, Lgurrogate
1.3 Copy global surrogate knowledge to local surrogate
1.4 Predict Lgurrogate value with the proposed ;.
1.5 Lpast = mean(Lg_1, Ls_1, Ls_2)
1.6 ASSigl’l Llocal = (0~5 * Laurrogate) + 0.5 * Lpast
1.7 Save Ls = Liocar
else
| Liocar = true-likelihood, given by the Likelihood function in Equation 4
end
1.8 Draw « from uniform distribution [0,1]
if o < Ligear(0s — 0%) then
| Update replica state, 05 < 6%
end
1.9 Increment 4

end

end
Stage 6: Combine predictions and posterior from respective replicas in the ensemble.

Geosci. Model Dev., 13, 2959-2979, 2020 https://doi.org/10.5194/gmd-13-2959-2020
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rameters proposed with the corresponding likelihood. This is
done for standalone evaluation of the surrogate model, which
further ensures that the experiments are reproducible since
different experimental runs create different datasets depend-
ing on the exploration during sampling. We then evaluate
the neural network model designated for the surrogate using
two major training algorithms which featured the Adam op-
timizer and stochastic gradient descent. The parameters that
define the neural network surrogate model used for the ex-
periments are given in Table 4. Note that the train size in
Table 4 refers to the maximum size of the dataset. The train-
ing is done in batches where the batch ratio determines the
training dataset size, as shown in Table 5.

Table 5 presents the results for the experiments that
took account of the training data collected during sam-
pling for two benchmark problems (Continental-Margin and
Synthetic-Mountain). Note that we report the mean value
of the mean-squared-error (MSE) for the given batch ra-
tio from 10 experiments. The batch ratio is taken, in rela-
tion to the maximum number of samples across the chains
(Rmax/Rnum). We normalize the likelihood values (out-
comes) in the dataset to the range [0,1]. In most cases, the ac-
curacy of the neural network is slightly better when training
from scratch with combined data; however, there is a consid-
erable trade-off with the time required to train the network.
The results show that the transfer and train methodology, in
general, requires much lower computational time when com-
pared to training from scratch with combined data. Moreover,
in comparison to SGD and Adam training algorithms, we ob-
serve that SGD achieves slightly better accuracy than Adam
for Continental-Margin problem. However, Adam, having an
adaptive learning rate, outperforms SGD in terms of the time
required to train the network. Thus, we can summarize that
transfer and train method is better since it saves significant
computation time with a minor trade-off with accuracy.

4.2 Convergence diagnosis

The Gelman—Rubin diagnostic (Gelman and Rubin, 1992)
is one of the popular methods used for evaluating con-
vergence by analysing the behaviour of multiple Markov
chains. The assessment is done by comparing the estimated
between-chain and within-chain variances for each parame-
ter, where large differences between the variances indicate
non-convergence. The diagnosis reports the potential scale
reduction factor (PSRF), which gives the ratio of the current
variance in the posterior variance for each parameter com-
pared to that being sampled, and the values for the PSRF
near 1 indicates convergence. We analyse five experiments
for each case using different initial values for 5000 samples
for each problem configuration.

Table 6 presents the convergence diagnosis using the
PSREF score for RW and ARW proposal distributions for PT-
Bayeslands and SAPT-Bayeslands. We notice that ARW has
a lower PSRF score (mean) when compared to the RW pro-
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posal distribution, which indicates better convergence. We
also notice that the ARW SAPT-Bayeslands maintains con-
vergence with a PSRF score close to ARW PT-Bayeslands
when compared to rest of the configurations. This suggests
that although we use surrogates, convergence can be main-
tained up to a certain level, which is better than RW PT-
Bayeslands.

4.3 Surrogate-assisted Bayeslands

We investigate the effect of the surrogate probability (Sprob)
and surrogate interval () on the prediction accuracy
(RMSEg|ey and RMSEg.q) and computational time. Note that
we report the prediction accuracy mean and standard de-
viation (mean and SD) of accepted samples over the sam-
pling time after removing the burn-out period. We report
the computational time in seconds (s). Table 7 presents the
performance of the respective methods (PT-Bayeslands and
SAPT-Bayeslands) with respective parameter settings for the
Continental-Margin problem. In SAPT-Bayeslands, we ob-
serve that there is not a major difference in the accuracy of el-
evation or erosion/deposition given different values of Sprob.
Nevertheless, there is a significant difference in terms of the
computational time where higher values of S0, save com-
putational time. Furthermore, we notice that there is not a
significant difference in the prediction accuracy given differ-
ent values of ¥, which suggests that the selected values are
sufficient.

We select a suitable combination of the set of parame-
ters evaluated in the previous experiment (Sprob = 0.6 and
¥ = 0.05) and apply them to rest of the problems. Table 8
gives a comparison of performance for Continental-Margin
and Synthetic-Mountain problems, along with the Tasma-
nia one, which is a bigger and more computationally ex-
pensive problem. We notice that the performance of SAPT-
Bayeslands is similar to PT-Bayeslands, while a significant
portion of computational time is saved.

Figures 5, 6, and 7 provide a visualization of the elevation
prediction accuracy when compared to actual ground truth
between the given methods from results given in Table 8. We
also provide the prediction accuracy of erosion/deposition
for 10 chosen points taken at selected locations. Although
both methods provide erosion/deposition prediction for four
successive time intervals, we only show the final time inter-
val. In both the Continental-Margin and Synthetic-Mountain
problems, we notice that the prediction accuracy of PT-
Bayeslands is very similar to SAPT-Bayeslands, and the Bad-
lands prediction of the topography is close to ground truth,
within the credible interval. This indicates that the use of sur-
rogates has been beneficial where no major loss in accuracy
in prediction is given. In the case of the Tasmania problem,
there is a loss in Badlands prediction accuracy, which could
be due to the size of the problem. Nevertheless, this loss is not
that clear from results in Table 8. It could be that the topog-
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raphy prediction is mostly inconsistent at the cross section
where it features mountainous regions.

Figures 8 and 9 show the true likelihood and prediction
by the surrogate for the Continental-Margin and Synthetic-
Mountain problems, respectively. We notice that at certain
intervals given in Fig. 8, given by different replica, there is
inconsistency in the predictions. Moreover, Fig. 9 shows that
the log-likelihood is very chaotic, and hence there is diffi-
culty in providing robust prediction at certain points in the
time given by samples for the respective replica.

4.4 Discussion

We observe that the surrogate probability is directly related
to the computational performance; this is obvious since com-
putational time depends on how often we use the surrogate.
Our concern is the prediction performance, especially while
increasing the use of the surrogate as it could lower the ac-
curacy, which can result in a poor estimation of the param-
eters. According to the results, the accuracy is well retained
given a higher probability of using surrogates. In the cross
section presented in the results for Continental-Margin and
Synthetic-Mountain problems, we find that there is not much
difference in the accuracy given in prediction by the SAPT-
Bayeslands when compared to PT-Bayeslands. Moreover, in
the application to a more computationally intensive prob-
lem (Tasmania), we find that a significant reduction in com-
putational time is achieved. Although we demonstrated the
method using small-scale models that run within a few sec-
onds to minutes, the computational costs of continental-scale
Badlands models are extensive. For instance, the computa-
tional time for a 5 km resolution for the Australian continent
Badlands model for 149 million years is about 72 h; hence,
in the case when thousands of samples are required, the use
of surrogates can be beneficial. We note that improved ef-
ficiency of the surrogate-assisted Bayeslands comes at the
cost of accuracy for some problems (in case of the Tasma-
nia problem), and there is a trade-off between accuracy and
computational time.

In future work, rather than a global surrogate model, we
could use the local surrogate model on its own, where the
training only takes place in the local surrogates by relying
on the history of the likelihood and hence taking a univariate
time series prediction approach using neural networks. Our
primary contribution is in terms of the parallel-computing-
based open-source software and the proposed underlying
framework for incorporating surrogates, taking into account
complex issues such as inter-process communication. This
opens the road to using different types of surrogate models
while using the underlying framework and open-source soft-
ware. Given that the sediment erosion/deposition is temporal,
other ways of formulating the likelihood could be possible;
for instance, we could have a hierarchical Bayesian model
with two stages for MCMC sampling (Chib and Carlin, 1999;
Wikle et al., 1998).

Geosci. Model Dev., 13, 2959-2979, 2020
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The initial evaluation for the setup surrogate model shows
that it is best to use a transfer learning approach where
the knowledge from the past surrogate interval is utilized
and refined with new surrogate data. This consumes much
less time than accumulating data and training the surrogate
from scratch at every surrogate interval. We note that in the
case when we use the surrogate model for pseudo-likelihood,
there is no prediction given by the surrogate model. The pre-
diction (elevation topography and erosion—deposition) dur-
ing sampling are gathered only from the true Badlands model
evaluation rather than the surrogate. In this way, one could
argue that the surrogate model is not mimicking the true
model; however, we are guiding the sampling algorithm to-
wards forming better proposals without evaluation of the true
model. A direction forward is in incorporating other forms of
surrogates, such as running a low-resolution Badlands model
as the surrogate, which would be computationally faster in
evaluating the proposals; however, limitations in terms of the
effect of resolution setting on Badlands topography simula-
tion may exist.

Furthermore, computationally efficient implementations
of landscape evolution models that only feature landscape
evolution (Braun and Willett, 2013) could be used as the
surrogate, while we could use Badlands model that fea-
tures both landscape evolution and erosion/deposition as the
true model. We could also use computationally efficient im-
plementations of landscape evolution models that consider
parallel processing (Hassan et al., 2018) in the Bayeslands
framework. In this case, the challenge would be in allocat-
ing specialized processing cores for Badlands and others for
parallel tempering MCMC.

We adapted the surrogate framework developed for ma-
chine learning (Chandra et al., 2020) with a different pro-
posal distribution instead of using gradient-based proposals.
Gradient-based parameter estimation has been very popular
in machine learning due to availability of gradient informa-
tion. Due to the complexity in geological or geophysical nu-
merical forward models, it is challenging to obtain gradients,
which has been the case for the Badlands landscape evo-
lution model. We used random-walk and adaptive-random-
walk proposal distributions which have limitations; hence,
we need to incorporate advanced meta-heuristic techniques
to form non-gradient-based proposals for efficient search.
Our study is limited to a relatively small set of free param-
eters, and a significant challenge would be to develop surro-
gate models with an increased set of parameters.

5 Conclusions

We presented a novel application of surrogate-assisted par-
allel tempering that features parallel computing for land-
scape evolution models using Badlands. Initially, we exper-
imented with two different approaches for training the sur-
rogate model, where we found that a transfer learning-based
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approach is beneficial and could help reduce the computa-
tional time of the surrogate. Using this approach, we pre-
sented the experiments that featured evaluating certain key
parameters of the surrogate-based framework. In general, we
observed that the proposed framework lowers the computa-
tional time significantly while maintaining the required qual-
ity in parameter estimation and uncertainty quantification.

In future work, we envision applying the proposed frame-
work to more complex applications such as the evolution
of continental-scale landscapes and basins over millions of
years. We could use the approach for other forward mod-
els such as those that feature geological reef development
or lithospheric deformation. Furthermore, the posterior dis-
tribution of our parameters requires multimodal sampling
methods; hence, a combination of meta-heuristics for pro-
posals with surrogate-assisted parallel tempering could im-
prove exploration features and also help in lowering the com-
putational costs.

https://doi.org/10.5194/gmd-13-2959-2020

2975

Geosci. Model Dev., 13, 2959-2979, 2020



2976

Appendix A: Parallel tempering MCMC

Parallel tempering MCMC features massive parallelism with
enhanced exploration capabilities. It features several replicas
with slight variations in the acceptance criteria through re-
laxation of the likelihood with a temperature ladder that af-
fects the replica sampling acceptance criterion. The replicas
associated with higher temperature levels have more chance
in accepting weaker proposals, which could help in escap-
ing a local minimum. Given an ensemble of M replicas de-
fined by a temperature ladder, we define the state by X =
X1, X2, ..., XM, Where x; is the replica at temperature level 7;.
We construct a Markov chain to sample proposal x; and eval-
uate it using the likelihood L (x;) for each replica defined by
temperature level 7;. At each iteration, the Markov chain can
feature two types of transitions that include the Metropolis
transition and the replica transition.

In the Metropolis transition phase, we independently sam-
ple each replica to perform local Monte Carlo moves as de-
fined by the temperature ladder for the replica by relaxing or
changing the likelihood in relation to the temperature level
L(x;)/T;. We sample configuration x; from a proposal dis-
tribution g; (.|x;). The Metropolis—Hastings ratio at tempera-
ture level 7; is given by

Liocal (x,~ — xl*) =exp (—%(L (xl*) —L(x,~))>, (Al)
l

where L represents the likelihood at the local replica. We ac-

cept the new state with probability, min(1, Ligcal (x; — x7)).

The detailed balance condition holds for each MCMC

replica; therefore, it holds for the ensemble system (Calder-

head, 2014).

In the replica transition phase, we consider the exchange of
the current state between two neighbouring replicas based on
the Metropolis—Hastings acceptance criteria. Hence, given a
probability «, we exchange a pair of replica defined by two
neighbouring temperature levels, T; and 7; 1.

Xj <> Xit1 (A2)

The exchange of neighbouring replicas provides an effi-
cient balance between local and global exploration (Sam-
bridge, 2013). The temperature ladder and replica exchange
have been of the focus of investigation in the past (Calvo,
2005; Liu et al., 2005; Bittner et al., 2008; Patriksson and
van der Spoel, 2008), and there is a consensus that they need
to be tailored for different types of problems given by their
likelihood landscape. In this paper, the selection of tempera-
ture spacing between the replicas is carried out using a geo-
metric spacing methodology (Vousden et al., 2015), given as
follows:

Ty = Toax /MY, (A3)

where i =1,...,M and Ty, is maximum temperature,
which is user defined and dependent on the problem.
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Al Training the neural network surrogate model

We note that stochastic gradient descent maintains a single
learning rate for all weight updates, and typically the learn-
ing rate does not change during the training. Adam (adap-
tive moment estimation) learning algorithm (Kingma and Ba,
2014) differs from classical stochastic gradient descent, as
the learning rate is maintained for each network weight and
separately adapted as learning unfolds. Adam computes in-
dividual adaptive learning rates for different parameters from
estimates of first and second moments of the gradients. Adam
features the strengths of root mean square propagation (RM-
Sprop) and adaptive gradient algorithm (AdaGrad) (Kingma
and Ba, 2014; Duchi et al., 2011). Adam has shown bet-
ter results when compared to stochastic gradient descent,
RMSprop, and AdaGrad. Hence, we consider Adam as the
designated algorithm for the neural-network-based surrogate
model. We formulate the learning procedure through weight
update for iteration number ¢ for weights W and biases b by

O—1=[Wi—1,b-1]

& =Vol (©:_1)

my=p1-m_1+{1—pB1) g

v =P v—1+ (11— po)- g

g =m;/(1—B])

v =,/ (1 - ﬂé)

O =01 — i/ (Vi +e), (A4)
where m; and v, are the, respectively, first and second mo-

ment vectors for iteration ¢; 81 and S, are constants € [0, 1];
« is the learning rate, and € is a close to zero constant.
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Code availability. We provide open-source code along with
data and sample results to motivate further work in this
area: https://github.com/intelligentEarth/surrogateBayeslands
(last access: 6 July 2020, intelligentEarth, 2020);
https://doi.org/10.5281/zenodo.3892277 (Chandra, 2020).
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