Articles | Volume 12, issue 9
https://doi.org/10.5194/gmd-12-4013-2019
https://doi.org/10.5194/gmd-12-4013-2019
Model description paper
 | 
12 Sep 2019
Model description paper |  | 12 Sep 2019

Simulating barrier island response to sea level rise with the barrier island and inlet environment (BRIE) model v1.0

Jaap H. Nienhuis and Jorge Lorenzo-Trueba

Related authors

A global open-source database of flood-protection levees on river deltas (openDELvE)
Jaap H. Nienhuis, Jana R. Cox, Joey O'Dell, Douglas A. Edmonds, and Paolo Scussolini
Nat. Hazards Earth Syst. Sci., 22, 4087–4101, https://doi.org/10.5194/nhess-22-4087-2022,https://doi.org/10.5194/nhess-22-4087-2022, 2022
Short summary
Altered surface hydrology as a potential mechanism
for subsidence in coastal Louisiana
Jaap H. Nienhuis, Torbjörn E. Törnqvist, and Gilles Erkens
Proc. IAHS, 382, 333–337, https://doi.org/10.5194/piahs-382-333-2020,https://doi.org/10.5194/piahs-382-333-2020, 2020
Short summary
Late Holocene differential subsidence and relative sea level rise in the Tabasco Delta, Mexico
Kees Nooren, Kim M. Cohen, Jaap H. Nienhuis, and Wim Z. Hoek
Proc. IAHS, 382, 149–153, https://doi.org/10.5194/piahs-382-149-2020,https://doi.org/10.5194/piahs-382-149-2020, 2020
Short summary
A global delta dataset and the environmental variables that predict delta formation on marine coastlines
Rebecca L. Caldwell, Douglas A. Edmonds, Sarah Baumgardner, Chris Paola, Samapriya Roy, and Jaap H. Nienhuis
Earth Surf. Dynam., 7, 773–787, https://doi.org/10.5194/esurf-7-773-2019,https://doi.org/10.5194/esurf-7-773-2019, 2019
Short summary
Large-scale coastal and fluvial models constrain the late Holocene evolution of the Ebro Delta
Jaap H. Nienhuis, Andrew D. Ashton, Albert J. Kettner, and Liviu Giosan
Earth Surf. Dynam., 5, 585–603, https://doi.org/10.5194/esurf-5-585-2017,https://doi.org/10.5194/esurf-5-585-2017, 2017
Short summary

Related subject area

Oceanography
LIGHT-bgcArgo-1.0: using synthetic float capabilities in E3SMv2 to assess spatiotemporal variability in ocean physics and biogeochemistry
Cara Nissen, Nicole S. Lovenduski, Mathew Maltrud, Alison R. Gray, Yohei Takano, Kristen Falcinelli, Jade Sauvé, and Katherine Smith
Geosci. Model Dev., 17, 6415–6435, https://doi.org/10.5194/gmd-17-6415-2024,https://doi.org/10.5194/gmd-17-6415-2024, 2024
Short summary
Towards a real-time modeling of global ocean waves by the fully GPU-accelerated spectral wave model WAM6-GPU v1.0
Ye Yuan, Fujiang Yu, Zhi Chen, Xueding Li, Fang Hou, Yuanyong Gao, Zhiyi Gao, and Renbo Pang
Geosci. Model Dev., 17, 6123–6136, https://doi.org/10.5194/gmd-17-6123-2024,https://doi.org/10.5194/gmd-17-6123-2024, 2024
Short summary
A simple approach to represent precipitation-derived freshwater fluxes into nearshore ocean models: an FVCOM4.1 case study of Quatsino Sound, British Columbia
Krysten Rutherford, Laura Bianucci, and William Floyd
Geosci. Model Dev., 17, 6083–6104, https://doi.org/10.5194/gmd-17-6083-2024,https://doi.org/10.5194/gmd-17-6083-2024, 2024
Short summary
An optimal transformation method applied to diagnose the ocean carbon budget
Neill Mackay, Taimoor Sohail, Jan David Zika, Richard G. Williams, Oliver Andrews, and Andrew James Watson
Geosci. Model Dev., 17, 5987–6005, https://doi.org/10.5194/gmd-17-5987-2024,https://doi.org/10.5194/gmd-17-5987-2024, 2024
Short summary
Implementation and assessment of a model including mixotrophs and the carbonate cycle (Eco3M_MIX-CarbOx v1.0) in a highly dynamic Mediterranean coastal environment (Bay of Marseille, France) – Part 2: Towards a better representation of total alkalinity when modeling the carbonate system and air–sea CO2 fluxes
Lucille Barré, Frédéric Diaz, Thibaut Wagener, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 17, 5851–5882, https://doi.org/10.5194/gmd-17-5851-2024,https://doi.org/10.5194/gmd-17-5851-2024, 2024
Short summary

Cited articles

Armon, J. W. and McCann, S. B.: Morphology and landward sediment transfer in a transgressive barrier island system, southern Gulf of St. Lawrence, Canada, Mar. Geol., 31, 333–344, https://doi.org/10.1016/0025-3227(79)90041-0, 1979. 
Ashton, A. D. and Lorenzo-Trueba, J.: Morphodynamics of Barrier Response to Sea-Level Rise, in Barrier Dynamics and Response to Changing Climate, Springer International Publishing, Cham, 277–304, 2018. 
Ashton, A. D. and Murray, A. B.: High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes, J. Geophys. Res., 111, F04011, https://doi.org/10.1029/2005JF000422, 2006. 
Ashton, A. D., Murray, A. B., and Arnoult, O.: Formation of coastline features by large-scale instabilities induced by high-angle waves, Nature, 414, 296–300, https://doi.org/10.1038/35104541, 2001. 
Ashton, A. D., Hutton, E. W. H. H., Kettner, A. J., Xing, F., Kallumadikal, J., Nienhuis, J. H., and Giosan, L.: Progress in coupling models of coastline and fluvial dynamics, Comput. Geosci., 53, 21–29, https://doi.org/10.1016/j.cageo.2012.04.004, 2013. 
Download
Short summary
The response of barrier islands to sea level rise depends on their ability to move landward through the transport of sediment from the beach to the back barrier. The BRIE model simulates these processes and the resulting landward movement of barrier islands. The novelty of the BRIE model is the incorporation of tidal inlets (gaps between barrier islands) that can transport sediment landward and therefore help keep barrier islands above sea level.