Articles | Volume 12, issue 9
https://doi.org/10.5194/gmd-12-4013-2019
https://doi.org/10.5194/gmd-12-4013-2019
Model description paper
 | 
12 Sep 2019
Model description paper |  | 12 Sep 2019

Simulating barrier island response to sea level rise with the barrier island and inlet environment (BRIE) model v1.0

Jaap H. Nienhuis and Jorge Lorenzo-Trueba

Related authors

A global open-source database of flood-protection levees on river deltas (openDELvE)
Jaap H. Nienhuis, Jana R. Cox, Joey O'Dell, Douglas A. Edmonds, and Paolo Scussolini
Nat. Hazards Earth Syst. Sci., 22, 4087–4101, https://doi.org/10.5194/nhess-22-4087-2022,https://doi.org/10.5194/nhess-22-4087-2022, 2022
Short summary
Altered surface hydrology as a potential mechanism
for subsidence in coastal Louisiana
Jaap H. Nienhuis, Torbjörn E. Törnqvist, and Gilles Erkens
Proc. IAHS, 382, 333–337, https://doi.org/10.5194/piahs-382-333-2020,https://doi.org/10.5194/piahs-382-333-2020, 2020
Short summary
Late Holocene differential subsidence and relative sea level rise in the Tabasco Delta, Mexico
Kees Nooren, Kim M. Cohen, Jaap H. Nienhuis, and Wim Z. Hoek
Proc. IAHS, 382, 149–153, https://doi.org/10.5194/piahs-382-149-2020,https://doi.org/10.5194/piahs-382-149-2020, 2020
Short summary
A global delta dataset and the environmental variables that predict delta formation on marine coastlines
Rebecca L. Caldwell, Douglas A. Edmonds, Sarah Baumgardner, Chris Paola, Samapriya Roy, and Jaap H. Nienhuis
Earth Surf. Dynam., 7, 773–787, https://doi.org/10.5194/esurf-7-773-2019,https://doi.org/10.5194/esurf-7-773-2019, 2019
Short summary
Large-scale coastal and fluvial models constrain the late Holocene evolution of the Ebro Delta
Jaap H. Nienhuis, Andrew D. Ashton, Albert J. Kettner, and Liviu Giosan
Earth Surf. Dynam., 5, 585–603, https://doi.org/10.5194/esurf-5-585-2017,https://doi.org/10.5194/esurf-5-585-2017, 2017
Short summary

Related subject area

Oceanography
A high-resolution physical–biogeochemical model for marine resource applications in the northwest Atlantic (MOM6-COBALT-NWA12 v1.0)
Andrew C. Ross, Charles A. Stock, Alistair Adcroft, Enrique Curchitser, Robert Hallberg, Matthew J. Harrison, Katherine Hedstrom, Niki Zadeh, Michael Alexander, Wenhao Chen, Elizabeth J. Drenkard, Hubert du Pontavice, Raphael Dussin, Fabian Gomez, Jasmin G. John, Dujuan Kang, Diane Lavoie, Laure Resplandy, Alizée Roobaert, Vincent Saba, Sang-Ik Shin, Samantha Siedlecki, and James Simkins
Geosci. Model Dev., 16, 6943–6985, https://doi.org/10.5194/gmd-16-6943-2023,https://doi.org/10.5194/gmd-16-6943-2023, 2023
Short summary
A flexible z-layers approach for the accurate representation of free surface flows in a coastal ocean model (SHYFEM v. 7_5_71)
Luca Arpaia, Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev., 16, 6899–6919, https://doi.org/10.5194/gmd-16-6899-2023,https://doi.org/10.5194/gmd-16-6899-2023, 2023
Short summary
Implementation and assessment of a model including mixotrophs and the carbonate cycle (Eco3M_MIX-CarbOx v1.0) in a highly dynamic Mediterranean coastal environment (Bay of Marseille, France) – Part 1: Evolution of ecosystem composition under limited light and nutrient conditions
Lucille Barré, Frédéric Diaz, Thibaut Wagener, France Van Wambeke, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 16, 6701–6739, https://doi.org/10.5194/gmd-16-6701-2023,https://doi.org/10.5194/gmd-16-6701-2023, 2023
Short summary
Ocean wave tracing v.1: a numerical solver of the wave ray equations for ocean waves on variable currents at arbitrary depths
Trygve Halsne, Kai Håkon Christensen, Gaute Hope, and Øyvind Breivik
Geosci. Model Dev., 16, 6515–6530, https://doi.org/10.5194/gmd-16-6515-2023,https://doi.org/10.5194/gmd-16-6515-2023, 2023
Short summary
Design and evaluation of an efficient high-precision ocean surface wave model with a multiscale grid system (MSG_Wav1.0)
Jiangyu Li, Shaoqing Zhang, Qingxiang Liu, Xiaolin Yu, and Zhiwei Zhang
Geosci. Model Dev., 16, 6393–6412, https://doi.org/10.5194/gmd-16-6393-2023,https://doi.org/10.5194/gmd-16-6393-2023, 2023
Short summary

Cited articles

Armon, J. W. and McCann, S. B.: Morphology and landward sediment transfer in a transgressive barrier island system, southern Gulf of St. Lawrence, Canada, Mar. Geol., 31, 333–344, https://doi.org/10.1016/0025-3227(79)90041-0, 1979. 
Ashton, A. D. and Lorenzo-Trueba, J.: Morphodynamics of Barrier Response to Sea-Level Rise, in Barrier Dynamics and Response to Changing Climate, Springer International Publishing, Cham, 277–304, 2018. 
Ashton, A. D. and Murray, A. B.: High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes, J. Geophys. Res., 111, F04011, https://doi.org/10.1029/2005JF000422, 2006. 
Ashton, A. D., Murray, A. B., and Arnoult, O.: Formation of coastline features by large-scale instabilities induced by high-angle waves, Nature, 414, 296–300, https://doi.org/10.1038/35104541, 2001. 
Ashton, A. D., Hutton, E. W. H. H., Kettner, A. J., Xing, F., Kallumadikal, J., Nienhuis, J. H., and Giosan, L.: Progress in coupling models of coastline and fluvial dynamics, Comput. Geosci., 53, 21–29, https://doi.org/10.1016/j.cageo.2012.04.004, 2013. 
Download
Short summary
The response of barrier islands to sea level rise depends on their ability to move landward through the transport of sediment from the beach to the back barrier. The BRIE model simulates these processes and the resulting landward movement of barrier islands. The novelty of the BRIE model is the incorporation of tidal inlets (gaps between barrier islands) that can transport sediment landward and therefore help keep barrier islands above sea level.