Articles | Volume 12, issue 9
Geosci. Model Dev., 12, 3915–3922, 2019
https://doi.org/10.5194/gmd-12-3915-2019
Geosci. Model Dev., 12, 3915–3922, 2019
https://doi.org/10.5194/gmd-12-3915-2019

Development and technical paper 05 Sep 2019

Development and technical paper | 05 Sep 2019

Dealing with discontinuous meteorological forcing in operational ocean modelling: a case study using ECMWF-IFS and GETM (v2.5)

Bjarne Büchmann

Related subject area

Oceanography
Implementation and assessment of a carbonate system model (Eco3M-CarbOx v1.1) in a highly dynamic Mediterranean coastal site (Bay of Marseille, France)
Katixa Lajaunie-Salla, Frédéric Diaz, Cathy Wimart-Rousseau, Thibaut Wagener, Dominique Lefèvre, Christophe Yohia, Irène Xueref-Remy, Brian Nathan, Alexandre Armengaud, and Christel Pinazo
Geosci. Model Dev., 14, 295–321, https://doi.org/10.5194/gmd-14-295-2021,https://doi.org/10.5194/gmd-14-295-2021, 2021
Short summary
Numerical integrators for Lagrangian oceanography
Tor Nordam and Rodrigo Duran
Geosci. Model Dev., 13, 5935–5957, https://doi.org/10.5194/gmd-13-5935-2020,https://doi.org/10.5194/gmd-13-5935-2020, 2020
Short summary
Multi-grid algorithm for passive tracer transport in the NEMO ocean circulation model: a case study with the NEMO OGCM (version 3.6)
Clément Bricaud, Julien Le Sommer, Gurvan Madec, Christophe Calone, Julie Deshayes, Christian Ethe, Jérôme Chanut, and Marina Levy
Geosci. Model Dev., 13, 5465–5483, https://doi.org/10.5194/gmd-13-5465-2020,https://doi.org/10.5194/gmd-13-5465-2020, 2020
Short summary
Introducing LAB60: A 1∕60° NEMO 3.6 numerical simulation of the Labrador Sea
Clark Pennelly and Paul G. Myers
Geosci. Model Dev., 13, 4959–4975, https://doi.org/10.5194/gmd-13-4959-2020,https://doi.org/10.5194/gmd-13-4959-2020, 2020
Short summary
Development of an atmosphere–ocean coupled operational forecast model for the Maritime Continent: Part 1 – Evaluation of ocean forecasts
Bijoy Thompson, Claudio Sanchez, Boon Chong Peter Heng, Rajesh Kumar, Jianyu Liu, Xiang-Yu Huang, and Pavel Tkalich
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-326,https://doi.org/10.5194/gmd-2020-326, 2020
Revised manuscript accepted for GMD
Short summary

Cited articles

Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W., Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., Ivarsson, K.-I., Lenderink, G., Niemelä, S., Nielsen, K. P., Onvlee, J., Rontu, L., Samuelsson, P., Muñoz, D. S., Subias, A., Tijm, S., Tolla, V., Yang, X., and Ødegaard Køltzow, M.: The HARMONIE-AROME Model Configuration in the ALADIN-HIRLAM NWP System, Mon.Weather Rev., 145, 1919–1935, https://doi.org/10.1175/MWR-D-16-0417.1, 2017. a
Bruggeman, J. and Bolding, K.: A general framework for aquatic biogeochemical models, Environ. Modell. Softw., 61, 249–265, https://doi.org/10.1016/j.envsoft.2014.04.002, 2014. a
Büchmann, B.: Dealing with discontinuous meteorological forcing in operational ocean modelling: a case study using ECMWF-IFS and GETM (v2.5) (Version 0.1.1) [Data set], Zenodo, https://doi.org/10.5281/zenodo.3243187, 2019. a, b
Büchmann, B. and Söderkvist, J.: Internal variability of a 3-D ocean model, Tellus A: Dynam. Meteorol. Oceanogr., 68, 30417, https://doi.org/10.3402/tellusa.v68.30417, 2016. a, b
Büchmann, B., Hansen, C., and Söderkvist, J.: Improvement of hydrodynamic forecasting of Danish waters: impact of low-frequency North Atlantic barotropic variations, Ocean Dynam., 61, 1611–1617, https://doi.org/10.1007/s10236-011-0451-2, 2011. a
Download
Short summary
Operational forecasting of the ocean state – e.g. used for ship route planning, sea rescue, and oil spill drift models – relies on data (forcing) obtained from weather forecasting. Unfortunately, the so-called meteorological analysis step introduces a discontinuity, which affects the ocean models adversely. In the present paper, a straightforward method to deal with the issue is introduced. Practical examples are given to illuminate the scale of the problem.