the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
VISIR-1.b: ocean surface gravity waves and currents for energy-efficient navigation
Gianandrea Mannarini
Lorenzo Carelli
Related authors
Ship weather routing has the potential to reduce CO2 emissions, but it currently lacks open and verifiable research. The Python-refactored VISIR-2 model considers currents, waves, and wind to optimise routes. The model was validated, and its computational performance is quasi-linear. For a ferry sailing in the Mediterranean Sea, VISIR-2 yields the largest percentage emission savings for upwind navigation. Given the vessel performance curve, the model is generalisable across various vessel types.
Ship weather routing has the potential to reduce CO2 emissions, but it currently lacks open and verifiable research. The Python-refactored VISIR-2 model considers currents, waves, and wind to optimise routes. The model was validated, and its computational performance is quasi-linear. For a ferry sailing in the Mediterranean Sea, VISIR-2 yields the largest percentage emission savings for upwind navigation. Given the vessel performance curve, the model is generalisable across various vessel types.
Related subject area
reasonable. We do this with a consistency-checking tool that looks at geological feature pairs and their spatial, temporal, and internal polarity characteristics. The idea is to assess if geological relationships from a specific 3D geological model match what is allowed in the real world from the perspective of geological principles.
enstools-compressionthat makes this compression simple for Earth scientists. This tool works seamlessly with common weather and climate data formats. Our work shows that lossy compression can significantly improve how researchers store and analyze large meteorological datasets.
ClimateNet– an expert-labeled curated dataset – to train a DL model for detecting weather events and predicting changes in extreme precipitation. This work paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data.
Cited articles
- Article
(9192 KB) - Full-text XML
- Companion paper 1
- Companion paper 3
-
Supplement
(36445 KB) - BibTeX
- EndNote