Articles | Volume 11, issue 12
https://doi.org/10.5194/gmd-11-4797-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-11-4797-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A multilayer approach and its application to model a local gravimetric quasi-geoid model over the North Sea: QGNSea V1.0
School of Earth Sciences and Engineering, Hohai University, Nanjing, China
State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, China
Zhicai Luo
MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan, China
School of Geodesy and Geomatics, Wuhan University, Wuhan, China
Chuang Xu
CORRESPONDING AUTHOR
State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, China
School of Civil and Transportation Engineering, Guangdong University of Technology, Guangdong, China
Related authors
Yihao Wu, Hongkai Shi, Dongzhen Jia, Ole Baltazar Andersen, Xiufeng He, Zhicai Luo, Yu Li, Shiyuan Chen, Xiaohuan Si, Sisu Diao, Yihuang Shi, and Yanglin Chen
Earth Syst. Sci. Data, 17, 2463–2488, https://doi.org/10.5194/essd-17-2463-2025, https://doi.org/10.5194/essd-17-2463-2025, 2025
Short summary
Short summary
We developed a high-quality and cost-effective shallow-water depth model for >120 islands in the South China Sea, using ICESat-2 and Sentinel-2 satellite data. This model maps water depths with an accuracy of ~1 m. Our findings highlight the limitations of existing global bathymetry models in shallow regions. Our model exhibited superior performance in capturing fine-scale bathymetric features with unprecedented spatial resolution, providing essential data for marine applications.
Yihao Wu, Hongkai Shi, Dongzhen Jia, Ole Baltazar Andersen, Xiufeng He, Zhicai Luo, Yu Li, Shiyuan Chen, Xiaohuan Si, Sisu Diao, Yihuang Shi, and Yanglin Chen
Earth Syst. Sci. Data, 17, 2463–2488, https://doi.org/10.5194/essd-17-2463-2025, https://doi.org/10.5194/essd-17-2463-2025, 2025
Short summary
Short summary
We developed a high-quality and cost-effective shallow-water depth model for >120 islands in the South China Sea, using ICESat-2 and Sentinel-2 satellite data. This model maps water depths with an accuracy of ~1 m. Our findings highlight the limitations of existing global bathymetry models in shallow regions. Our model exhibited superior performance in capturing fine-scale bathymetric features with unprecedented spatial resolution, providing essential data for marine applications.
Hao Zhou, Lijun Zheng, Yaozong Li, Xiang Guo, Zebing Zhou, and Zhicai Luo
Earth Syst. Sci. Data, 16, 3261–3281, https://doi.org/10.5194/essd-16-3261-2024, https://doi.org/10.5194/essd-16-3261-2024, 2024
Short summary
Short summary
The satellite gravimetry mission Gravity Recovery and Climate Experiment (GRACE) and its follower GRACE-FO play a vital role in monitoring mass transportation on Earth. Based on the latest observation data derived from GRACE and GRACE-FO and an updated data processing chain, a new monthly temporal gravity field series, HUST-Grace2024, was determined.
Xueyu Zhang, Lin Liu, Brice Noël, and Zhicai Luo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1726, https://doi.org/10.5194/egusphere-2024-1726, 2024
Preprint archived
Short summary
Short summary
This study indicates that the overall characteristics of the upper firn density in the percolation zone could be captured by the choice of appropriate model configurations and climatic forcing, which is necessary for understanding the current mass balance of the GrIS and predicting its future. The modelled firn density in this study generally aligns well with observations from 16 cores, with the relative bias in density ranging from 0.36 % to 6 % at Dye-2 and being within ±5 % at KAN_U.
Xueyu Zhang, Lin Liu, Brice Noël, and Zhicai Luo
EGUsphere, https://doi.org/10.5194/egusphere-2024-122, https://doi.org/10.5194/egusphere-2024-122, 2024
Preprint archived
Short summary
Short summary
In this study, an improved firn densification model is developed by integrating the Bucket scheme and Darcy’s law to assess the capillary retention, refreezing, and runoff of liquid water within the firn layer. This model captures high-density peaks (~917 kg · m-3) or the features of high-density layers caused by the refreezing of liquid water. In general, the modelled firn depth-density profiles at KAN_U and Dye-2 agree well with the in situ measurements.
Cited articles
Akaike, H.: A new look at the statistical model identification, IEEE T.
Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705,
1974.
Andersen, O. B. and Knudsen, P.: The role of satellite altimetry in gravity
field modeling in coastal areas, Phys. Chem. Earth., 25, 17–24,
https://doi.org/10.1016/S1464-1895(00)00004-1, 2000.
Andersen, O. B., Knudsen, P., and Stenseng, L.: The DTU13 global mean sea
surface from 20 years of satellite altimetry, in: Ocean Surface Topography
Science Team Meeting, Boulder, Colo., USA, 8–11 October 2013.
Artemieva, I. M. and Thybo, H.: EUNAseis: A seismic model for Moho and
crustal structure in Europe, Greenland, and the North Atlantic region,
Tectonophysics, 609, 97–153, https://doi.org/10.1016/j.tecto.2013.08.004,
2013.
Audet, P.: Toward mapping the effective elastic thickness of planetary
lithospheres from a spherical wavelet analysis of gravity and topography,
Phys. Earth. Planet. In., 226, 48–82,
https://doi.org/10.1016/j.pepi.2013.09.011, 2014.
Becker, S., Brockmann, J. M., and Schuh, W. D.: Mean dynamic topography
estimates purely based on GOCE gravity field models and altimetry, Geophys.
Res. Lett., 41, 2063–2069, https://doi.org/10.1002/2014GL059510, 2014.
Bentel, K., Schmidt, M., and Rolstad, D. C.: Artifacts in regional gravity
representations with spherical radial basis functions, Journal of Geodetic Science, 3,
173–187, https://doi.org/10.2478/jogs-2013-0029, 2013.
Bingham, R. J., Haines, K., and Lea, D. J.: How well can we measure the
ocean's mean dynamic topography from space?, J. Geophys. Res.-Oceans, 119,
3336–3356, https://doi.org/10.1002/2013JC009354, 2014.
Blundell, D. J., Hobbs, R. W., Klemperer, S. L., Scott-Robinson, R., Long,
R. E., West, T. E., and Duin, E.: Crustal structure of the central and
southern North Sea from BIRPS deep seismic reflection profiling, J. Geol.
Soc. London, 148, 445–457, 1991.
Burnham, K. P. and Anderson, D. R.: Model Selection and Multimodel
Inference: A practical information-theoretic approach, 2nd Edn.,
Springer-Verlag, New York, 2002.
Chambodut, A., Panet, I., Mandea, M., Diament, M., Holschneider, M., and
Jamet, O.: Wavelet frames: an alternative to spherical harmonic
representation of potential fields, Geophys. J. Int., 163, 875–899,
https://doi.org/10.1111/j.1365-246X.2005.02754.x, 2005.
Cianciara, B. and Marcak, H.: Interpretation of gravity anomalies by means
of local power spectra, Geophys. Prospect., 24, 273–286,
https://doi.org/10.1111/j.1365-2478.1976.tb00925.x, 1976.
Denker, H.: Regional gravity field modeling: theory and practical results,
in: Sciences of Geodesy – II, edited by: Xu, G., Springer, Berlin, Heidelberg,
185–291, 2013.
Denker, H.: A new European gravimetric (quasi)geoid EGG2015, International
Union of Geodesy and Geophysics General Assembly, Prague, Czech Republic, 22 June–2 July 2015.
Eicker, A., Schall, J., and Kusche, J.: Regional gravity modeling from
spaceborne data: case studies with GOCE, Geophys. J. Int., 196, 1431–1440,
https://doi.org/10.1093/gji/ggt485, 2013.
Fengler, M. J., Freeden, W., and Michel, V.: The Kaiserslautern multiscale
geopotential model SWITCH-03 from orbit perturbations of the satellite CHAMP
and its comparison to the models EGM96, UCPH2002_02_0.5, EIGEN-1s and EIGEN-2, Geophys. J. Int., 157, 499–514,
https://doi.org/10.1111/j.1365-246X.2004.02209.x, 2004.
Fengler, M. J., Freeden, W., Kohlhaas, A., Michel, V., and Peters, T.:
Wavelet Modeling of Regional and Temporal Variations of the Earth's
Gravitational Potential Observed by GRACE, J. Geodesy, 81, 5–15,
https://doi.org/10.1007/s00190-006-0040-1, 2007.
Fichler, C. and Hospers, J.: Deep crustal structure of the northern North
Sea Viking Graben: results from deep reflection seismic and gravity data,
Tectonophysics, 178, 241–254, https://doi.org/10.1016/0040-1951(90)90150-7,
1990.
Förste, C., Bruinsma, S. L., Abrikosov, O., Lemoine, J. M., Schaller, T.,
Götze, H. J., Ebbing, J., Marty, J. C., Flechtner, F., Balmino, G., and
Biancale, R.: EIGEN-6C4 The latest combined global gravity field model
including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS
Toulouse, The 5th GOCE User Workshop, Paris, France, 2014.
Fotopoulos, G.: Calibration of geoid error models via a combined adjustment
of ellipsoidal, orthometric and gravimetric geoid height data, J. Geodesy, 79,
111–123, https://doi.org/10.1007/s00190-005-0449-y, 2005.
Freeden, W. and Schreiner, M.: Local multiscale modelling of geoid
undulations from deflections of the vertical, J. Geodesy, 79, 641–651,
https://doi.org/10.1007/s00190-005-0017-5, 2006.
Freeden, W., Gervens, T., and Schreiner, M.: Constructive Approximation on
the Sphere (With Applications to Geomathematics), Clarendon Press, Oxford,
1998.
Freeden, W., Fehlinger, T., Klug, M., Mathar, D., and Wolf, K.: Classical
globally reflected gravity field determination in modern locally oriented
multiscale framework, J. Geodesy, 83, 1171–1191,
https://doi.org/10.1007/s00190-009-0335-0, 2009.
Gilardoni, M., Reguzzoni, M., and Sampietro, D.: GECO: a global gravity
model by locally combining GOCE data and EGM2008, Stud. Geophys. Geod., 60,
228–247, https://doi.org/10.1007/s11200-015-1114-4, 2016.
Grad, M. and Tiira, T.: The Moho depth map of the European Plate, Geophys.
J. Int., 176, 279–292, https://doi.org/10.1111/j.1365-246X.2008.03919.x,
2009.
Gruber, T., Rummel, R., Abrikosov, O., and van Hees, R.: GOCE Level 2
Product Data Handbook, GO-MA-HPF-GS-0110, Issue 4.2, available at:
https://earth.esa.int/documents/10174/1650485/GOCE_Product_Data_Handbook_Level-2
(last access: 19 November 2018), 2014.
Guo, J., Gao, Y., Hwang, C., and Sun, J.: A multi-subwaveform parametric
retracker of the radar satellite altimetric waveform and recovery of gravity
anomalies over coastal oceans, Sci. China-Earth Sci., 53, 610–616,
https://doi.org/10.1007/s11430-009-0171-3, 2010.
Hipkin, R. G., Haines, K., Beggan, C., Bingley, R., Hernandez, F., Holt, J.,
and Baker, T.: The geoid EDIN2000 and mean sea surface topography around the
British Isles, Geophys. J. Int., 157, 565–577,
https://doi.org/10.1111/j.1365-246X.2004.01989.x, 2004.
Holschneider, M. and Iglewska-Nowak, I.: Poisson wavelets on the sphere, J.
Fourier. Anal. Appl., 13, 405–419,
https://doi.org/10.1007/s00041-006-6909-9, 2007.
Idžanović, M., Ophaug, V., and Andersen, O. B.: The coastal mean
dynamic topography in Norway observed by CryoSat-2 and GOCE, Geophys. Res.
Lett., 44, 5609–5617, https://doi.org/10.1002/2017GL073777, 2017.
Jiang, W., Zhang, J., Tian, T., and Wang, X.: Crustal structure of
Chuan-Dian region derived from gravity data and its tectonic implications,
Phys. Earth Planet. In., 212, 76–87,
https://doi.org/10.1016/j.pepi.2012.07.001, 2012.
Klees, R. and Prutkin, I.: The combination of GNSS-levelling data and
gravimetric (quasi-) geoid heights in the presence of noise, J. Geodesy, 84,
731–749, https://doi.org/10.1007/s00190-010-0406-2, 2008.
Klees, R., Tenzer, R., Prutkin, I., and Wittwer, T.: A data-driven approach
to local gravity field modelling using spherical radial basis functions, J.
Geodesy, 82, 457–471, https://doi.org/10.1007/s00190-007-0196-3, 2008.
Koch, K. R. and Kusche, J.: Regularization of geopotential determination
from satellite data by variance components, J. Geodesy, 76, 259–268,
https://doi.org/10.1007/s00190-002-0245-x, 2002.
Kusche, J.: A Monte-Carlo technique for weight estimation in satellite
geodesy, J. Geodesy, 76, 641–652, https://doi.org/10.1007/s00190-002-0302-5,
2003.
Kusche, J. and Klees, R.: Regularization of gravity field estimation from
satellite gravity gradients, J. Geodesy, 76, 359–368,
https://doi.org/10.1007/s00190-002-0257-6, 2002.
Liang, W., Xu, X., Li, J., and Zhu, G.: The determination of an ultra-high
gravity field model SGG-UGM-1 by combining EGM2008 gravity anomaly and GOCE
observation data, Acta Geodaeticaet Cartographica Sinica, 47, 425–434,
https://doi.org/10.11947/j.AGCS.2018.20170269, 2018.
Mayer-Gürr, T., Pail, R., Gruber, T., Fecher, T., Rexer, M., Schuh,
W.-D., Kusche, J., Brockmann, J.-M., Rieser, D., Zehentner, N., Kvas, A.,
Klinger, B., Baur, O., Höck, E., Krauss, S., and Jäggi, A.: The
combined satellite gravity field model GOCO05s, EGU General Assembly,
Vienna, Austria, 12–17 April 2015.
Naeimi, M., Flury, J., and Brieden, P.: On the regularization of regional
gravity field solutions in spherical radial base functions, Geophys. J.
Int., 202, 1041–1053, https://doi.org/10.1093/gji/ggv210, 2015.
Nahavandchi, N. and Soltanpour, A.: Improved determination of heights using
a conversion surface by combining gravimetric quasi-geoid/geoid and
GNSS-levelling height differences, Stud. Geophys. Geod., 50, 165–180,
https://doi.org/10.1007/s11200-006-0010-3, 2006.
Omang, O. C. D. and Forsberg, R.: How to handle topography in practical
geoid determination: three examples, J. Geodesy, 74, 458–466,
https://doi.org/10.1007/s001900000107, 2000.
Panet, I., Kuroishi, Y., and Holschneider, M.: Wavelet modelling of the
gravity field by domain decomposition methods: an example over Japan,
Geophys. J. Int., 184, 203–219,
https://doi.org/10.1111/j.1365-246X.2010.04840.x, 2011.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. F.: The
development and evaluation of Earth Gravitational Model (EGM2008), J.
Geophys. Res., 117, B04406, https://doi.org/10.1029/2011JB008916, 2012.
Prutkin, I. and Klees, R.: On the non-uniqueness of local quasi-geoids
computed from terrestrial gravity anomalies, J. Geodesy, 82, 147–156,
https://doi.org/10.1007/s00190-007-0161-1, 2008.
Rummel, R., Balmino, G., Johannessen, J., Visser, P., and Woodworth, P.:
Dedicated gravity field missions-Principle and aims, J. Geodyn., 33, 3–20,
https://doi.org/10.1016/S0264-3707(01)00050-3, 2002.
Schmidt, M., Fabert, O., and Shum, C. K.: On the estimation of a
multi-resolution representation of the gravity field based on spherical
harmonics and wavelets, J. Geodyn., 39, 512–526,
https://doi.org/10.1016/j.jog.2005.04.007, 2005.
Schmidt, M., Han, S. C., Kusche, J., Sanchez, L., and Shum, C. K.: Regional
high- resolution spatiotemporal gravity modeling from GRACE data using
spherical wavelets, Geophys. Res. Lett., 33, L08403,
https://doi.org/10.1029/2005GL025509, 2006.
Schmidt, M., Fengler, M., Mayer-Gürr, T., Eicker, A., Kusche, J.,
Sánchez, L., and Han, S. C.: Regional gravity modeling in terms of
spherical base functions, J. Geodesy, 81, 17–38,
https://doi.org/10.1007/s00190-006-0101-5, 2007.
Sjöberg, L. E.: A discussion on the approximations made in the practical
implementation of the remove-compute-restore technique in regional geoid
modelling, J. Geodesy, 78, 645–653, https://doi.org/10.1007/s00190-004-0430-1,
2005.
Slobbe, D. C.: Roadmap to a mutually consistent set of offshore vertical
reference frames, PhD thesis, Delft University of Technology, the
Netherland, 2013.
Slobbe, D. C., Klees, R., and Gunter, B. C.: Realization of a consistent set
of vertical reference surfaces in coastal areas, J. Geodesy, 88, 601–615,
https://doi.org/10.1007/s00190-014-0709-9, 2014.
Spector, A. and Grant, F. S.: Statistical models for interpreting
aeromagnetic data, Geophysics, 35, 293–302,
https://doi.org/10.1190/1.1440092, 1970.
Syberg, F. J. R.: A Fourier method for the regional-residual problem of
potential fields, Geophys. Prospect., 20, 47–75,
https://doi.org/10.1111/j.1365-2478.1972.tb00619.x, 1972.
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity
recovery and climate experiment: Mission overview and early results,
Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920, 2004.
Tenzer, R., Klees, R., and Wittwer, T.: Local Gravity Field Modelling in
Rugged Terrain Using Spherical Radial Basis Functions: Case Study for the
Canadian Rocky Mountains, in: Geodesy
for Planet Earth, edited by: Kenyon, S., Pacino, M., and Marti, U., International Association of Geodesy Symposia, Springer,
Berlin, Heidelberg, 401–409, 2012.
Tscherning, C. C.: Introduction to functional analysis with a view to its
application in approximation theory, in:
Approximation methods in geodesy, edited by: Moritz, H. and Sünkel, H., Wichmann H, Karlsruhe, Germany, 157–192,
1978.
Wang, J., Guo, J., Liu, X., Shen, Y., and Kong, Q.: Local oceanic vertical
deflection determination with gravity data along a profile, Mar. Geod., 41,
24–43, https://doi.org/10.1080/01490419.2017.1380091, 2018.
Wang, Y., Saleh, J., Li, X., and Roman, D. R.: The US Gravimetric Geoid of
2009 (USGG2009): model development and evaluation, J. Geodesy, 86, 165–180,
https://doi.org/10.1007/s00190-011-0506-7, 2012.
Wittwer, T.: Regional gravity field modelling with radial basis functions,
PhD thesis, Delft University of Technology, the Netherlands, 2009.
Wu, Y. and Luo, Z.: The approach of regional geoid refinement based on
combining multi-satellite altimetry observations and heterogeneous gravity
data sets, Chinese J. Geophys.-Ch., 59, 1596–1607,
https://doi.org/10.6038/cjg20160505, 2016.
Wu, Y., Luo, Z., and Zhou, B.: Regional gravity modelling based on
heterogeneous data sets by using Poisson wavelets radial basis functions,
Chinese J. Geophys.-Ch., 59, 852–864,
https://doi.org/10.6038/cjg20160308, 2016.
Wu, Y., Luo, Z., Chen, W., and Chen, Y.: High-resolution regional gravity
field recovery from Poisson wavelets using heterogeneous observational
techniques, Earth Planets Space, 69, 34,
https://doi.org/10.1186/s40623-017-0618-2, 2017a.
Wu, Y., Zhong, B., and Luo, Z.: Investigation of the Tikhonov regularization
method in regional gravity field modeling by Poisson wavelets radial basis
functions, J. Earth. Sci., 9, 1–10, https://doi.org/10.1007/s12583-017-0771-32016, 2017b.
Wu, Y., Zhou, H., Zhong, B., and Luo, Z.: Regional gravity field recovery
using the GOCE gravity gradient tensor and heterogeneous gravimetry and
altimetry data, J. Geophys. Res.-Sol. Ea., 122, 6928–6952,
https://doi.org/10.1002/2017JB014196, 2017c.
Xu, C., Liu, Z., Luo, Z., Wu, Y., and Wang, H.: Moho topography of the
Tibetan Plateau using multi-scale gravity analysis and its tectonic
implications, J. Asian. Earth Sci., 138, 378–386,
https://doi.org/10.1016/j.jseaes.2017.02.028, 2017.
Xu, C., Luo, Z., Sun, R., Zhou, H., and Wu, Y.: Multilayer densities using a
wavelet-based gravity method and their tectonic implications beneath the
Tibetan Plateau, Geophys. J. Int., 213, 2085–2095,
https://doi.org/10.1093/gji/ggy110, 2018.
Ziegler, P. A. and Dèzes, P.: Crustal evolution of western and central
Europe, Geological Society, London, Memoirs, 32, 43–56,
https://doi.org/10.1144/GSL.MEM.2006.032.01.03, 2006.
Short summary
A multilayer approach is parameterized for model development, and the multiple layers are located at different depths beneath the Earth’s surface. This method may be beneficial for gravity/manget field modeling, which may outperform the traditional single-layer approach.
A multilayer approach is parameterized for model development, and the multiple layers are...