Articles | Volume 11, issue 12
https://doi.org/10.5194/gmd-11-4797-2018
https://doi.org/10.5194/gmd-11-4797-2018
Development and technical paper
 | 
03 Dec 2018
Development and technical paper |  | 03 Dec 2018

A multilayer approach and its application to model a local gravimetric quasi-geoid model over the North Sea: QGNSea V1.0

Yihao Wu, Zhicai Luo, Bo Zhong, and Chuang Xu

Related authors

Modelling firn density at Dye-2 and KAN_U, two sites in the percolation zone of the Greenland ice sheet
Xueyu Zhang, Lin Liu, Brice Noël, and Zhicai Luo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1726,https://doi.org/10.5194/egusphere-2024-1726, 2024
Short summary
HUST-Grace2024: a new GRACE-only gravity field time series based on more than 20 years satellite geodesy data and a hybrid processing chain
Hao Zhou, Lijun Zheng, Yaozong Li, Xiang Guo, Zebing Zhou, and Zhicai Luo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-39,https://doi.org/10.5194/essd-2024-39, 2024
Revised manuscript accepted for ESSD
Short summary
An improved firn densification model by integrating the Bucket scheme and Darcy’s law over the Greenland Ice Sheet
Xueyu Zhang, Lin Liu, Brice Noël, and Zhicai Luo
EGUsphere, https://doi.org/10.5194/egusphere-2024-122,https://doi.org/10.5194/egusphere-2024-122, 2024
Preprint archived
Short summary

Related subject area

Solid Earth
Benchmarking the accuracy of higher-order particle methods in geodynamic models of transient flow
Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Elbridge Gerry Puckett, and Cedric Thieulot
Geosci. Model Dev., 17, 4115–4134, https://doi.org/10.5194/gmd-17-4115-2024,https://doi.org/10.5194/gmd-17-4115-2024, 2024
Short summary
REHEATFUNQ (REgional HEAT-Flow Uncertainty and aNomaly Quantification) 2.0.1: a model for regional aggregate heat flow distributions and anomaly quantification
Malte Jörn Ziebarth and Sebastian von Specht
Geosci. Model Dev., 17, 2783–2828, https://doi.org/10.5194/gmd-17-2783-2024,https://doi.org/10.5194/gmd-17-2783-2024, 2024
Short summary
A new temperature–photoperiod coupled phenology module in LPJ-GUESS model v4.1: optimizing estimation of terrestrial carbon and water processes
Shouzhi Chen, Yongshuo H. Fu, Mingwei Li, Zitong Jia, Yishuo Cui, and Jing Tang
Geosci. Model Dev., 17, 2509–2523, https://doi.org/10.5194/gmd-17-2509-2024,https://doi.org/10.5194/gmd-17-2509-2024, 2024
Short summary
High-precision 1′ × 1′ bathymetric model of Philippine Sea inversed from marine gravity anomalies
Dechao An, Jinyun Guo, Xiaotao Chang, Zhenming Wang, Yongjun Jia, Xin Liu, Valery Bondur, and Heping Sun
Geosci. Model Dev., 17, 2039–2052, https://doi.org/10.5194/gmd-17-2039-2024,https://doi.org/10.5194/gmd-17-2039-2024, 2024
Short summary
Deciphering past earthquakes from the probabilistic modeling of paleoseismic records – the Paleoseismic EArthquake CHronologies code (PEACH, version 1)
Octavi Gómez-Novell, Bruno Pace, Francesco Visini, Joanna Faure Walker, and Oona Scotti
Geosci. Model Dev., 16, 7339–7355, https://doi.org/10.5194/gmd-16-7339-2023,https://doi.org/10.5194/gmd-16-7339-2023, 2023
Short summary

Cited articles

Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. 
Andersen, O. B. and Knudsen, P.: The role of satellite altimetry in gravity field modeling in coastal areas, Phys. Chem. Earth., 25, 17–24, https://doi.org/10.1016/S1464-1895(00)00004-1, 2000. 
Andersen, O. B., Knudsen, P., and Stenseng, L.: The DTU13 global mean sea surface from 20 years of satellite altimetry, in: Ocean Surface Topography Science Team Meeting, Boulder, Colo., USA, 8–11 October 2013. 
Artemieva, I. M. and Thybo, H.: EUNAseis: A seismic model for Moho and crustal structure in Europe, Greenland, and the North Atlantic region, Tectonophysics, 609, 97–153, https://doi.org/10.1016/j.tecto.2013.08.004, 2013. 
Audet, P.: Toward mapping the effective elastic thickness of planetary lithospheres from a spherical wavelet analysis of gravity and topography, Phys. Earth. Planet. In., 226, 48–82, https://doi.org/10.1016/j.pepi.2013.09.011, 2014. 
Download
Short summary
A multilayer approach is parameterized for model development, and the multiple layers are located at different depths beneath the Earth’s surface. This method may be beneficial for gravity/manget field modeling, which may outperform the traditional single-layer approach.