Articles | Volume 11, issue 1
https://doi.org/10.5194/gmd-11-467-2018
https://doi.org/10.5194/gmd-11-467-2018
Model description paper
 | 
01 Feb 2018
Model description paper |  | 01 Feb 2018

CITRATE 1.0: Phytoplankton continuous trait-distribution model with one-dimensional physical transport applied to the North Pacific

Bingzhang Chen and Sherwood Lan Smith

Related authors

FABM-NflexPD 2.0: testing an instantaneous acclimation approach for modeling the implications of phytoplankton eco-physiology for the carbon and nutrient cycles
Onur Kerimoglu, Markus Pahlow, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 16, 95–108, https://doi.org/10.5194/gmd-16-95-2023,https://doi.org/10.5194/gmd-16-95-2023, 2023
Short summary
Physiological flexibility of phytoplankton impacts modelled chlorophyll and primary production across the North Pacific Ocean
Yoshikazu Sasai, Sherwood Lan Smith, Eko Siswanto, Hideharu Sasaki, and Masami Nonaka
Biogeosciences, 19, 4865–4882, https://doi.org/10.5194/bg-19-4865-2022,https://doi.org/10.5194/bg-19-4865-2022, 2022
Short summary
FABM-NflexPD 1.0: assessing an instantaneous acclimation approach for modeling phytoplankton growth
Onur Kerimoglu, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 14, 6025–6047, https://doi.org/10.5194/gmd-14-6025-2021,https://doi.org/10.5194/gmd-14-6025-2021, 2021
Short summary
SPEAD 1.0 – Simulating Plankton Evolution with Adaptive Dynamics in a two-trait continuous fitness landscape applied to the Sargasso Sea
Guillaume Le Gland, Sergio M. Vallina, S. Lan Smith, and Pedro Cermeño
Geosci. Model Dev., 14, 1949–1985, https://doi.org/10.5194/gmd-14-1949-2021,https://doi.org/10.5194/gmd-14-1949-2021, 2021
Short summary
PhytoSFDM version 1.0.0: Phytoplankton Size and Functional Diversity Model
Esteban Acevedo-Trejos, Gunnar Brandt, S. Lan Smith, and Agostino Merico
Geosci. Model Dev., 9, 4071–4085, https://doi.org/10.5194/gmd-9-4071-2016,https://doi.org/10.5194/gmd-9-4071-2016, 2016
Short summary

Related subject area

Biogeosciences
DeepPhenoMem V1.0: deep learning modelling of canopy greenness dynamics accounting for multi-variate meteorological memory effects on vegetation phenology
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024,https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Impacts of land-use change on biospheric carbon: an oriented benchmark using the ORCHIDEE land surface model
Thi Lan Anh Dinh, Daniel Goll, Philippe Ciais, and Ronny Lauerwald
Geosci. Model Dev., 17, 6725–6744, https://doi.org/10.5194/gmd-17-6725-2024,https://doi.org/10.5194/gmd-17-6725-2024, 2024
Short summary
Implementing the iCORAL (version 1.0) coral reef CaCO3 production module in the iLOVECLIM climate model
Nathaelle Bouttes, Lester Kwiatkowski, Manon Berger, Victor Brovkin, and Guy Munhoven
Geosci. Model Dev., 17, 6513–6528, https://doi.org/10.5194/gmd-17-6513-2024,https://doi.org/10.5194/gmd-17-6513-2024, 2024
Short summary
Assimilation of carbonyl sulfide (COS) fluxes within the adjoint-based data assimilation system – Nanjing University Carbon Assimilation System (NUCAS v1.0)
Huajie Zhu, Mousong Wu, Fei Jiang, Michael Vossbeck, Thomas Kaminski, Xiuli Xing, Jun Wang, Weimin Ju, and Jing M. Chen
Geosci. Model Dev., 17, 6337–6363, https://doi.org/10.5194/gmd-17-6337-2024,https://doi.org/10.5194/gmd-17-6337-2024, 2024
Short summary
Quantifying the role of ozone-caused damage to vegetation in the Earth system: a new parameterization scheme for photosynthetic and stomatal responses
Fang Li, Zhimin Zhou, Samuel Levis, Stephen Sitch, Felicity Hayes, Zhaozhong Feng, Peter B. Reich, Zhiyi Zhao, and Yanqing Zhou
Geosci. Model Dev., 17, 6173–6193, https://doi.org/10.5194/gmd-17-6173-2024,https://doi.org/10.5194/gmd-17-6173-2024, 2024
Short summary

Cited articles

Acevedo-Trejos, E., Brandt, G., Bruggeman, J., and Merico, A.: Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean, Sci. Rep., 5, 8918, https://doi.org/10.1038/srep08918, 2015.
Acevedo-Trejos, E., Brandt, G., Smith, S. L., and Merico, A.: PhytoSFDM version 1.0.0: Phytoplankton Size and Functional Diversity Model, Geosci. Model Dev., 9, 4071–4085, https://doi.org/10.5194/gmd-9-4071-2016, 2016.
Allen, A. P., Li, B. L., and Charnov, E. L.: Population fluctuations, power laws and mixtures of lognormal distributions, Ecol. Lett., 4, 1–3, 2001.
Allen, A. P., Gillooly, J. F., Savage, V. M., and Brown, J. H.: Kinetic effects of temperature on rates of genetic divergence and speciation, P. Natl. Acad. Sci. USA, 103, 9130–9135, 2006.
Annan, J. D. and Hargreaves, J. C.: Efficient estimation and ensemble generation in climate modelling, Philos. T. Roy. Soc. A, 365, 2077–2088, 2007.
Download
Short summary
Marine phytoplankton accounts for half of global primary production. Phytoplankton size is an important trait affecting its fitness and ecosystem functioning. We have developed a plankton model with continuous size distribution for phytoplankton and applied it in the North Pacific. This model is able to capture the general patterns of phytoplankton size distribution in the real ocean and can be used for understanding the mechanisms controlling phytoplankton size structure and diversity.