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Abstract. Diversity plays critical roles in ecosystem func-
tioning, but it remains challenging to model phytoplankton
diversity in order to better understand those roles and repro-
duce consistently observed diversity patterns in the ocean. In
contrast to the typical approach of resolving distinct species
or functional groups, we present a ContInuous TRAiT-basEd
phytoplankton model (CITRATE) that focuses on macro-
scopic system properties such as total biomass, mean trait
values, and trait variance. This phytoplankton component
is embedded within a nitrogen—phytoplankton-zooplankton—
detritus—iron model that itself is coupled with a simplified
one-dimensional ocean model. Size is used as the master
trait for phytoplankton. CITRATE also incorporates “trait
diffusion” for sustaining diversity and simple representa-
tions of physiological acclimation, i.e., flexible chlorophyll-
to-carbon and nitrogen-to-carbon ratios. We have imple-
mented CITRATE at two contrasting stations in the North
Pacific where several years of observational data are avail-
able. The model is driven by physical forcing including ver-
tical eddy diffusivity imported from three-dimensional gen-
eral ocean circulation models (GCMs). One common set of
model parameters for the two stations is optimized using
the Delayed-Rejection Adaptive Metropolis—Hasting Monte
Carlo (DRAM) algorithm. The model faithfully reproduces
most of the observed patterns and gives robust predictions
on phytoplankton mean size and size diversity. CITRATE is
suitable for applications in GCMs and constitutes a proto-
type upon which more sophisticated continuous trait-based
models can be developed.

1 Introduction

Phytoplankton are a polyphyletic group of oxygenic or-
ganisms that account for nearly half of the global primary
production (Field et al., 1998) and also play indispensable
roles in other biogeochemical cycles in the Earth system
(Falkowski, 2012). They have astonishingly high diversity,
with several thousand species already documented and many
remaining to be explored (Sournia et al., 1991; Moon-van
der Staay et al., 2001). Their equivalent spherical diame-
ter (ESD) can range from less than 1 um for cyanobacteria
such as Prochlorococcus (Chisholm et al., 1988) to more than
1 mm for some giant diatoms (Villareal, 1993). Furthermore,
physiology differs substantially even within the same gen-
era or species and the role of intraspecific variability in pop-
ulation dynamics and biogeochemical cycles remains to be
investigated (Strzepek and Harrison, 2004; Johnson et al.,
2006; Palenik et al., 2006; Kooistra et al., 2008; Biller et
al., 2015). The roles of phytoplankton diversity in marine
ecosystem functioning have not been understood as thor-
oughly as those of plant diversity in terrestrial ecosystems
(Tilman et al., 1997, 2014).

Although various ocean models have been developed by
accounting for different functional groups or categories of
phytoplankton (e.g., Le Quéré et al., 2005; Hashioka et al.,
2013), the finite number of such distinct types included lim-
its their ability to resolve the vast diversity of trait values.
Some pioneering studies have considered greater numbers
of species, each of which is defined by a particular set of
multivariate trait axes that constitute a hyper-volume niche
space (Follows et al., 2007; Barton et al., 2010; Follows
and Dutkiewicz, 2011; Masuda et al., 2017). It is worth not-
ing that these diversity models usually focus on “functional
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traits”, which are the key to linking phytoplankton diver-
sity, environmental conditions, and ecosystem functioning.
Important phytoplankton traits include maximal growth rate,
the light absorption and nutrient uptake affinities, optimal
growth temperature, and edibility (i.e., susceptibility to graz-
ing; Litchman et al., 2007; Litchman and Klausmeier, 2008;
Edwards et al., 2011, 2012, 2015; Merico et al., 2009; Bar-
ton et al., 2010, Thomas et al., 2012; Chen, 2015). The total
species pool in these modeling studies should ideally cover
the entire multi-dimensional trait space constrained by trade-
offs (Barton et al., 2010; Smith et al., 2011), although com-
putational limits make this impossible in practice. As a com-
promise, only a limited set of trait combinations is sampled
from the entire trait space. Although this approach has ef-
fectively generated large-scale patterns of plankton diversity,
it generally underestimates local diversity for two reasons:
(1) lack of appropriate mechanisms for sustaining diversity
(but see Vallina et al., 2014) and (2) insufficient trait resolu-
tion so that fitness differences between species are too large
to allow coexistence (i.e., insufficient equalizing effect; see
Chesson, 2000). In any case, a substantial proportion of the
idealized species so modeled cannot survive under realistic
oceanic conditions, and therefore the models do not capture
the functions associated with many species.

Continuous trait-based models have been developed to ad-
dress the above questions (Wirtz and Eckhardt, 1996; Nor-
berg et al., 2001; Bruggeman, 2009; Merico et al., 2009,
2014; Terseleer et al., 2014; Acevedo-Trejos et al., 2015,
2016; Smith et al., 2016). Instead of modeling the dynamics
of individual species, continuous trait-based models or so-
called “adaptive dynamics” models focus on macroscopic or
aggregate properties of a community such as total biomass,
average trait, and trait variance by assuming that phytoplank-
ton traits follow some distribution (usually Gaussian; Smith
et al., 2011). These models do not have the problem of in-
adequate trait resolution because they have infinitesimally
fine trait resolution. The trait variance, treated as a tracer in
the model, serves as a measure of trait diversity. Thus, the
continuous trait-based model has the advantage that the fac-
tors controlling diversity can be directly quantified and bet-
ter understood because the sources (e.g., speciation or immi-
gration) and sinks (e.g., resource competition) for diversity
are specified explicitly. Although the size variance cannot
be simply equated to species richness, it can be converted
to other diversity metrics such as the continuous entropy
(Quintana et al., 2008). Moreover, the diversity of functional
traits is arguably a better diversity index than species rich-
ness relating to ecosystem functioning (Loreau et al., 2001).
In addition, these models are computationally much more ef-
ficient than classic discrete species approaches. For exam-
ple, assuming two independent traits for the phytoplankton
community, a continuous trait-based model only requires 1
(biomass) + 2 x 2 (trait mean and variance) =5 tracers for
the phytoplankton community, while a discrete species-based
model requires 2 x 10 =20 tracers if assuming 10 discrete
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Figure 1. Schematic description of the CITRATE model. Thick ar-
rows indicate nitrogen flows and dashed lines indicate the simplified
iron cycle. The inset denotes an example of a phytoplankton com-
munity with a lognormal distribution for cell volume.

values in each trait dimension, which still provides only
coarse trait resolution. Furthermore, this difference increases
linearly with trait dimension.

Relatively few continuous trait-based models have been
coupled with physics transport and calibrated against oceanic
observations. Here we describe a new one-dimensional
model, CITRATE 1.0, built upon the classic nitrogen—
phytoplankton—zooplankton—detritus (NPZD) model with a
phytoplankton community represented using a continuous
distribution of size taken as a master trait (Fig. 1). In this way,
not only total phytoplankton biomass, but also phytoplankton
mean size and size variance, are explicitly modeled. The dis-
tributions of other important functional traits are implicitly
modeled via well-established scaling power laws. Although
this approach might overlook some other important traits that
are not related to size and thereby underestimate trait diver-
sity to some extent, it serves as a starting point for later de-
velopment of more comprehensive diversity models that can
include more traits or be integrated with the discrete func-
tional group approach. For the model to be implemented in
the subarctic North Pacific, a well-known high-nitrate low-
chlorophyll (HNLC) region, CITRATE also incorporates an
iron limitation module. We optimized the model parameters
against the extensive observational data at two contrasting
stations (K2: 160° E, 47° N; S1: 145° E, 30° N) in the North
Pacific (Fig. 2a). The station K2 is located within the western
subarctic North Pacific gyre and is characterized by low tem-
perature, high nitrate, and high carbon export (Matsumoto
et al., 2014; Wakita et al., 2016). Iron limitation on phyto-
plankton growth has been suggested at this station (Fujiki et
al., 2014). The station S1 is located within the western sub-
tropical North Pacific and is characterized by high sea sur-
face temperature, low levels of nitrate, and carbon export ef-
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Figure 2. (a) Locations of the three stations K2, S1, and ALOHA overlaid on annual Chl a climatology of the North Pacific. (b)—(e) Seasonal
forcing of vertical eddy diffusivity (Kv), temperature, surface PAR, and atmospheric dust deposition, respectively, at station S1. The white
squares are measured mixed layer depths from in situ temperature and salinity profiles. The thick tan line represents mixed layer depths
calculated from a threshold of 10~4m2s~!. (f)-(i) The same as (b)—(e), but for station K2. (j)—(m) The same as (b)—(e), but for station

ALOHA.

ficiency (Matsumoto et al., 2016; Sasai et al., 2016; Wakita
et al., 2016). To independently validate the model, we also
use the optimized model parameters from stations K2 and S1
to run the model for station ALOHA (158° W, 22.75° N) and
compare the model outputs with the extensive observational
data collected there.

In the following sections, we first describe the details of
the model structure and the parameter optimization subrou-
tine. Then we show the results of parameter optimization and
modeled patterns of nutrients, phytoplankton biomass, mean
size, and size diversity. We also discuss the merits and limita-
tions of the model and of the continuous trait-distribution ap-
proach. CITRATE is intended as a prototype for later incor-
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poration into three-dimensional (3-D) general ocean circu-
lation models (GCMs) and for further development of more
comprehensive trait-based models.

2  Model description

The aim of the present study is to design and implement a
continuous trait-based model (CITRATE 1.0) at two repre-
sentative stations in the North Pacific. The overall goal of
this model is not only to simulate the phytoplankton size
diversity but also to faithfully reproduce the seasonal and
vertical dynamics of other important quantities, such as nu-
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trients, Chl a, and productivity, for later investigations of
the roles of phytoplankton diversity in biogeochemical cy-
cles in different oceanic regions (using 3-D regional and/or
global simulations). Therefore, these two contrasting stations
were used to provide a single set of parameter values by fit-
ting the model to observations before the obtained model
was validated against data from another independent station
(ALOHA). Hence, CITRATE 1.0 consists of the following
key features.

1. It models the mean and variance of a continuous phy-
toplankton size (i.e., log cell volume; um?) distribution
and incorporates “trait diffusion” to sustain size diver-
sity (Merico et al., 2014).

2. It contains an iron cycle in addition to the nitrogen cy-
cle because in the subarctic and equatorial Pacific iron
instead of nitrogen should be the main limiting nutri-
ent for phytoplankton growth (Behrenfeld et al., 2006;
Fujiki et al., 2014).

3. The phytoplankton cells have variable chlorophyll-to-
carbon (6) and nitrogen-to-carbon (Qy) ratios that re-
spond to light and nutrient conditions in a realistic fash-
ion.

4. A single set of model parameters are optimized against
field observational data at two time-series stations in the
northwestern Pacific.

2.1 Description of the ecosystem model

CITRATE 1.0 contains nine tracers in total: dissolved inor-
ganic nitrogen (DIN, abbreviated as N in all the equations;
unit: pmol N L™1), phytoplankton biomass (P; umol NL™1),
microzooplankton biomass (MIC; umolNL_l), mesozoo-
plankton biomass (MES; pmolNL_l), detritus in terms of
nitrogen (D; umol NL') and iron (Dge; nmol Fe L—h, dis-
solved iron (fer; nmol Fe L_l), and the products of Pl and
P (v+72) where I (In um?) is the phytoplankton mean log cell
volume and v ((In pm3 )2) is the log volume variance (Fig. 1).

We assume that phytoplankton size is the master trait
that determines all physiological functions (Litchman et al.,
2007; Finkel et al., 2010; Edwards et al., 2011, 2012, 2015;
Marafdn, 2015). We also assume that phytoplankton size
follows a lognormal distribution, which is supported by
some observational data (Finkel, 2007; Quintana et al., 2008,
2016). Since [ and v are not real standing stocks that can be
directly transported in hydrodynamic models but are emer-
gent properties of phytoplankton size structure, we follow
Bruggeman (2009) to use the raw moments of biomass prob-

ability (i.e., Pl and P (v + 72) for mean and variance) as in-

dependent tracers involved in transport. All the assumptions
made here will be discussed later in Sect. 4.

Below we describe the equations for each tracer. For sim-
plicity, phytoplankton cells are assumed not to excrete inor-
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ganic nitrogen or to have any natural mortality to be con-
verted into detritus. Phytoplankton are eaten by both micro-
zooplankton and mesozooplankton:

dp &(L,L> Pz,
= Plcom—ef \I T)|MICg,, | ——— (1
dr Hcom — € |: Emax, 1 P%l n K%)l (D
Pr., +MIC) P d (. dP
+MEngax,2 ( 2) 5 d_ de_ s
(Pr2+MIC)" + K5, z z

where ficom is the phytoplankton specific growth rate (d—1)
of the whole community (i.e., integrated over the whole size
spectra). The equation of pcom, along with those of 1 and v,
will be described later in Sect. 2.2. E, is the activation en-
ergy (in electron volts [eV], 1 eV =96.49 kJ mol~!) for het-
erotrophic processes; gmax,; (i = 1 for microzooplankton and
2 for mesozooplankton) is zooplankton maximal grazing rate
dMh. K p.i is the grazing half-saturation constant of zoo-
plankton. Here we have assumed that zooplankton grazing
follows a Holling type III functional response. Pr; is total
palatable prey concentration for zooplankton (umol NL~1),
the details of which will be given later in Sect. 2.3. If zoo-
plankton grazing has no size selectivity on phytoplankton,
then Pr = P. We assume that microzooplankton preferably
feed on small phytoplankton, while mesozooplankton pre-
fer large phytoplankton (Table 1). Mesozooplankton also
feed on microzooplankton. More descriptions of zooplank-
ton size-dependent grazing will be given later; z is the depth
of the model grid (m). Ky is the vertical eddy diffusivity
(m?s~1).

The total amount of food ingested by zooplankton is di-
vided among three fates: zooplankton net growth, excretion
into the inorganic nitrogen pool, and defecation of unassim-
ilated food into the detritus pool (Buitenhuis et al., 2010).
Mesozooplankton mortality is set to be proportional to the
squares of its biomass and is also converted into detritus pool.
As such, the dynamics of microzooplankton and mesozoo-
plankton as described by the following.

dMIC _ £ (1)) P,
=e* \To T/ MIC —————NGE 2
dr € ( Emax, 1 P]%_’l +K%71 1 (2a)
(Pr,> +MIC) MIC d dMIC
_MEngax,Z 2 5 d_ ( v _d )
(Pr2+MIC)” + K3, z z
E;
dMES = 67(%0’%) (2b)
dr
(Pra+MIC)’ s
MESg v 2 — NGE,; — m;MES
(Pr2+MIC) 4+ K3,
n d K dMES
dz Y odg
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Table 1. Fixed parameters of the CITRATE 1.0 model.

Symbol  Description Value  Unit

Ky Light attenuation coefficient of seawater 0.04¢8 m!

Kch Light attenuation coefficient of chlorophyll 0.0252  (mgChla m~2)~!

Ep Activation energy of phytoplankton rates 041% eV

E, Activation energy of heterotrophic rates 0.65° eV

Omin Minimal chlorophyll-to-carbon ratio 0.02°  gChlmol c!

Omax Maximal chlorophyll-to-carbon ratio 0.47 gChlmol c!

unassg Fraction of unassimilated food by microzooplankton 0249 dimensionless

unassp Fraction of unassimilated food by mesozooplankton 0.31¢  dimensionless

NGE Net growth efficiency of zooplankton 0.3¢  dimensionless

Ran Conversion rate of detritus to inorganic nitrogen 0.1 d!

Ife Total iron ligand concentration 06f M

Ksem Minimal iron scavenging rate 5% 1073f  g-!

K Particle-dependent scavenging rate 0.03f (WM N)~ld-!

Rpe N Plankton iron-to-nitrogen ratio 0.0265 nM:uM

ay First-order size scaling component for (i, 0.2b (In ;.1m3)_1

Bu Second-order size scaling component for (i —0.01>  (In pm3)72

ag Size scaling exponent for KN 0278 (In ],lm3)_1

Ofer Size scaling exponent for Kyqr 0.27¢  (In ;.1m3)_1

OoN Phytoplankton minimal N : C ratio 0.06 molN:molC

&max, 1 Maximal microzooplankton specific ingestion rate for 1350 gt
phytoplankton of 1.24 um (1 um3) at 15°C

gmax,2  Maximal mesozooplankton specific ingestion rate for 0.53h ¢!
phytoplankton of 10 um at 15 °C

Kpo2 Grazing half-saturation constant of mesozooplankton 0.5" UM N

by Size-dependent feeding selectivity of microzooplankton —0.05 (In p.1m3)_1

by Size-dependent feeding selectivity of mesozooplankton 0.02 (In pm3)7]

2 Fennel et al. (2006); b Chen and Laws (2017); € Flynn (2003); d Buitenhuis et al. (2010); © Buitenhuis et al. (2006); f Nickelsen et

al. (2015); 8 Ward et al. (2012); ® Chai et al. (2002).

NGE; is the net growth efficiency of zooplankton and
m, is the mesozooplankton mortality coefficient (d~!
(umol NL~1)=1),

Detritus is converted to DIN at a rate (Rap, d~1) that has
the same temperature sensitivity with zooplankton grazing.
Detritus is also assumed to have a constant sinking rate (Wjy,
d=h.

dD  E(1_1 P2
(To T)(MICgmax’]%unassl 3)
PT,I KP,I
(Pr2+MIC)?
(Pra+MIC)* + K3,

+m.MES? — R D)—Wd—D 4 (g 4P
z dn d + Ky ,
dz dz dz

+ MESg, . 2 unassp

where unass; represents the fraction of unassimilated food by
zooplankton.

DIN is taken up by phytoplankton and is replenished by
zooplankton excretion, detritus regeneration, and diffusion
from the depth:

www.geosci-model-dev.net/11/467/2018/

dN E(1_1
_:Pﬂcom+ek(0 T) “4)
dt
P2
(MICgmaX’ | —5——5— (1 — NGE — unass)
PT,l + KP,I
2
(PT,z +MIC)
+ MEngax,Z

(Pr2+MIC)” + K32,

d dN
(1 =NGE; —unassy) + DRgn | + — | Kv— ).
dz dz
The sources and sinks of fer largely follow DIN with an
additional source (atmospheric deposition; Fegepo) and sink

(scavenging; fergcay; Aumont et al., 2003; Buitenhuis et al.,
2010; Nickelsen et al., 2015).
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dfer
i Sa
” (5a)
— E; : . P2 —_
Flr-7 T.1
Piicom +e ¥ (TO T) (Mlcgmax,l ﬁ
P+ Kp, ,
Pr,+MIC
(1 —NGE — unass;) + MESg, .. » (Pr.2 5 )
(Pra+MIC)"+ K3,
(1 — NGE; — unassy) + DRdn)

d dfer

X Rfery + Fedepo — fergcay + diz (Kv E)
To translate between nitrogen and iron in phytoplankton and
zooplankton, a constant fer: N ratio (Rger N) of 0.0265 is as-
sumed. The data of monthly atmospheric deposition of to-
tal soluble iron are extracted from Scenario III in Luo et
al. (2008). Following Nickelsen et al. (2015), the iron scav-
enging rate (fersc,y) is composed of both the linear scaveng-
ing rate (kscm) and the particle absorption rate (kg):

Eg (1 _ 1
ferscay = (kscm +kseDe * (TO T)) Feprime, (5b)

in which Feprime is the concentration of free iron.

(—4+ faferkeq + 42)

2keq
A =1+ (e — fer) keg, (5d)

Feprime = ) (50)

where keq is the equilibrium constant between free iron and
ligands and is assumed to depend only on temperature:

o — 1ol1727-287)
eq — .

(5¢)
Note that T is in absolute temperature (K) and /f. is the total
iron ligand concentration that is assumed constant (0.6 nM).
The equation for Dre is as follows.

dD Eo(1_1 P}
e o7 (TO T) MICg, .« l%unassl (6)
d " P+ Kp

(Pr» ~|—MIC)2

(Pra+MIC)* + K3,

dD
+m.MES? — Ran) Riey — Wa— Fe

d dDge
— 1K
+dz( Y odz )

2.2 Continuous trait-based phytoplankton model

+ MES gmax, 2

unass,

+ fergcay
Z

Following the moment closure techniques in Merico et
al. (2009) and the introduction of “trait diffusion” (Merico

Geosci. Model Dev., 11, 467-495, 2018

et al., 2014), the equations for ptcom, /, and v can be written
as follows.

v @) du) &)
~ l — -3
Hcom (M( )+ ) ( dlz +u dl4 u dl3

1=l

(7a)
a [ (o < dgi) | Pu®)_, du®)
dt d/ = d/ di3 d/ 13
~(7b)
dv d?u ) 2 dPgi() |, dtu)
dt”{”[”( a7 imgr Tl (70)
2
—5ud M(Z)] +2u,u(l)}
di? 1

Here, (1) is the phytoplankton growth rate (d~!) at mean
size | and u is the trait diffusion parameter, which describes
the probability of the parental size /(i) changing to adjacent
size values /(i — 1) or [(i 4+ 1) in offspring cells (Merico et
al., 2014). Equation (7a)—(7c) are approximations because
the higher-order moments, such as the skewness and kurto-
sis, have been ignored and a Gaussian distribution needs to
d L&

a2
derivatives of zooplankton clearance rate (d~!) against phy-
toplankton size and will be described in detail in Sect. 2.3.

be assumed for [; % an are the first and second

The equations of Pl and P (v +72) are the following.

d(PD) dl -dP d d(PI)
=P—+]—+—( kK,—~2 7d
dr a dt+dz( Y odz ) (7d)
_2 _
d(P(v+1)) dv  -dl
=2
»dP d d(Pw+1))
P N—+—|k,———~
+ (U+ )dt +dZ( v dz )

Following previous studies (Flynn, 2003; Geider et al., 1997;
Follows et al., 2007; Chen and Laws, 2017), phytoplank-
ton growth rate () depends on temperature (7', K), light (7,
W m~2), DIN, and fer:

w= ®)

acl
B Ep(1_1
7 fer {—¢ Home® (TO r)
N+ KN fer + Kfer

mmin (

in which u,, is a function of 7':

S

Mm zﬂ/me%(%_%)‘ (9)
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The trait parameters u’,,, KN, Kfer, and o are all dependent
on cell size /.

W = g et ol (10a)
Kn = Ko ne®K! (10b)
Kter = KO,fereaferl (10c)
e = g e (10d)

Equation (10a) follows that the maximal phytoplankton
growth rate is a unimodal function of phytoplankton size
(Chen and Liu, 2010, 2011; Marafion et al., 2013). It is worth
noting that the light term of phytoplankton growth (the right

side of Eq. 8) is usually modeled as 1 — e_% (Flynn, 2003),
in which both «, and u,, are dependent on size. We use o
to represent the net effect of size on 2 for mathematical
convenience, which leads to Eq. (8). "

Following Flynn (2003), we have derived equations
to directly calculate phytoplankton chlorophyll-to-carbon
(0, gChl(molC)~!) and nitrogen-to-carbon (Qn, molN
(mol C)~1) ratios from ambient light and nutrient levels:

%
0 = Omin + _(emax - emin)a
Toe
Qmin
QN_]_(]_Qmin) N ’
Qmax N+KN

where Onin and 6ax are minimal and maximal Chl: C ra-
tios, respectively. Qmin and Qmax are minimal and maximal
N: Cratios, respectively. The total Chl a concentrations (Chl,
ug L=1) and net primary production (NPP, uygCL~!d~") in-
tegrated over the whole size spectra can be calculated as fol-
lows.

(11a)

(11b)

2 &
chi=rp (-2 v (m) (11¢)
= N 2 ar ]
=1
d? (A
NPP = P L.’.EM (11d)
On 2 d?

To calculate the fractions of Chl within a size range (i.e., < 1,
1-3,3-10 and > 10 um), we had to discretize the size spectra
into 60 even size classes between / — 6,/v and [ + 6.,/v and
calculated the u, o, KN, ON, 6, and eventually the Chl of
each size class following Eq. (11a)—(11c). This is because the
distributions of Chl do not follow the lognormal distribution
of cell volume and an analytic solution is not yet available for
calculating only a fraction of Chl. Fortunately, this approach
only adds a minor computational cost because we only need
to calculate the size-fractionated Chl once per day when sav-
ing model outputs.
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2.3 Zooplankton size-dependent grazing

Following Smith et al. (2016), the ingestion rate of zooplank-
ton on size class [ can be formulated as

pOPWU)  (Pr+e)
G(l) = gmaxZ 3 2 (12a)
Pr+e (Pr+e)"+K5p
Pr+e¢
= Zp()P(l) ———————,
8max £0 (PT—|—8)2+K%)
where G(I) is the zooplankton ingestion rate

(umoINL~!'d™!) on the size class [ and p(l) is the
relative grazing preference on size class /. Z is the biomass
of either microzooplankton or mesozooplankton; & is the
food other than phytoplankton (¢ =0 for microzooplank-
ton and MIC for mesozooplankton). Pt (total palatable
phytoplankton food) is formulated as

o]

Pr= / p()P ()1,

—00

(12b)

with P (l) as the phytoplankton concentration at size /.

P(l) = "1 (12¢)

Zooplankton clearance rate (g, d') on size class / can be
formulated as

Pr+e

(). 12d
(PT+a)2+K§,p() (120

g) = gmaxZ

For mathematic convenience, we parameterize p(I) = eblte,

where b and c are constants. Py can be approximated as

Pr~ Po() (1+ %bz) ,

and
dPr
T _pp
dl T
dZPT 2
T 2P
a2 T

Thus, the first derivative of g(/) can then be derived as fol-
lows.

ds) _,

2 2
0 _ (Z)[[ [K3 — (Pr+¢)?%] Pr o (120

(Pr+e)?+K3](Pr+e)
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Table 2. Parameters optimized by the DRAM algorithm. The values inside the parentheses of the initial values indicate the “hard” boundaries
for the parameters. The numbers inside the parentheses of the optimized values indicate the standard deviation after the first 10 000 iterations

have been removed.

Symbol  Description Initial Optimized  Unit

Wy Sinking rate of detritus 4 (1, 20) 19.6 (1.0) md~!

Kp 1 Grazing half-saturation constant of microzooplankton 0.5 (0.05,2) 0.28 (0.01) uMN

my Coefficient of mortality rate of mesozooplankton 0.1(0.05,0.2)  0.20(0.002) (uM N)~lg-!

Q¢ Initial slope of photosynthesis versus light at 1 pm3 0.055% (0.01,0.1)  0.05(0.004) (Wm—2)~1g~!

or Size scaling exponent for a —0.1(=0.3,0.1) —0.26(0.01) (Inpm3)~!

Ko,N Growth half-saturation constant for nitrogen for a 0.2> (0.05, 0.5) 0.29 (0.03) uMN
phytoplankton cell of 1 pm3

wWom Phytoplankton maximal growth rate at 1 pm3 at 15°C 1.2€(0.3,2.7) 0.85(0.05) d7!

Ko fer Growth half-saturation constant for iron of 0.084 (0.02,0.2) 0.17(0.02) nMFe
phytoplankton with 1 pm3

u Trait diffusion parameter 0.08° (0,0.1) 0.1 (0.0008) d-! (In pm3)_2

2 Fennel et al. (2006); b Ward et al. (2012); € Flynn and Raven (2016); d Gregg et al. (2003); © Merico et al. (2014).

And:
d2g(l) [K2 — (Pr+e)?] Pr 2
—pn = bsd) 2 2 !
dl [(Pr+e)?+K2](Pr+e)
(12f)
2
+bPT[_ Ky >
[(Pr+e)?+K2]

KB —Prie?] e ”

[(Pr+e)?+K3] (Pr+e)?

Note that we do not optimize the parameters of b and ¢ be-
cause the zooplankton data are insufficient to constrain the
parameters (Tables 1, 2).

2.4 One-dimensional (1-D) model

The 1-D model focuses on the upper 150 m of the ocean. The
vertical grid, a total of 30 layers, follows a stretched verti-
cal coordinate with increasing resolution towards the sea sur-
face (surface stretching parameter = 2.0), similar to that used
in the Regional Ocean Modeling System (ROMS; Shchep-
etkin and McWilliams, 2005). For computational efficiency,
instead of explicitly solving the complete moment, temper-
ature, and salinity equations, we imported the physics vari-
ables that are directly relevant to the ecological processes
from external data products.

Four types of external physics forcing data were imported
into the 1-D model: vertical eddy diffusivity (Ky), surface
photosynthetic available radiation (PAR(), atmospheric dust
deposition, and vertical temperature profiles. Vertical ad-
vection of water was neglected, which has been shown as
relatively unimportant (Ferndndez-Castro et al., 2016). The
most important physics forcing data, K, determined the up-
ward nutrient flux to the upper euphotic zone and were im-
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ported from the output of a three-dimensional (3-D) eddy-
permitting model targeted for the North Pacific (Hashioka et
al., 2009). This 3-D model was able to faithfully simulate the
Kuroshio Current and the spatial distributions of the Chl a
fields. The extracted vertical profiles of K, were also consis-
tent with the in situ estimated mixed layer depths (MLD) at
the three stations (Fig. 2). PAR( values were imported from
SeaWIFS satellite monthly climatology products. Seasonal
temperature vertical profiles were imported from WOA2013
monthly climatology.

Light levels (/;) at depth z were calculated based on PAR(
and Chl a concentrations following the Beer—Lambert law:
= PARoe—z(KW+KCh1fZOCh1(x)dx)’ (13)
in which K, and Ky are the attenuation coefficients for sea-
water and Chl a, respectively. To realistically estimate the
average light field that a phytoplankton cell should experi-
ence in a mixing water column (Franks, 2015), the ambi-
ent light level for phytoplankton within the surface mixed
layer is calculated as the average light throughout the sur-
face mixed layer, which is defined as the deepest depth with
Ky >10"3m?s~!. This calculation is based on Eq. (1) in
Franks (2015), which gives the average time for a phyto-
plankton cell to move 100 m (an approximate estimate of
MLD) at the local diffusivity of 107> m?s~! as roughly half
a day. However, to compare with in situ NPP estimates that
were calculated from incubation bottles without continuous
mixing, phytoplankton u, 8, and QN are recalculated from
I, based on the Beer—Lambert law (Eq. 13).

The initial condition of inorganic nitrogen was set to the
vertical profile of nitrate in January of the World Ocean At-
las (WOA) 2013 monthly climatology. Initial phytoplank-
ton, microzooplankton, and detritus biomass were all set
to 0.1 umol NL~! in each grid. Mesozooplankton biomass
was initialized as 0.05 pmolNL’]. Initial Dge concentra-
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tions were set as detritus times Rpr N. Initial phytoplank-
ton mean log size (/) and log size variance (v) were set as
—2.2logpum? and 0.09 (log um?)2, respectively. Initial dis-
solved iron concentration was set to the vertical profile of
iron in January from a 3-D global biogeochemical model out-
put (Aumont et al., 2003). The time step of the model was
S min. All the fixed model parameters are shown in Table 1
and the model parameters that are optimized to match obser-
vational data are shown in Table 2.

We employed a Dirichlet boundary condition at the bottom
for DIN and fer with the values predefined by the WOA2013
climatology and the model output from Aumont et al. (2003),
respectively. For other tracers, we assumed no diffusive flux
at the bottom. Detritus was allowed to sink out of the system
with the loss of nitrogen and iron replenished by diffusion.

2.5 Delayed-Rejection Adaptive Metropolis—Hasting
Monte Carlo (DRAM) algorithm

The Metropolis—Hasting Monte Carlo (MHMC) algorithm
aims to find the posterior distribution (including mean and
covariance matrix) of the parameter vectors given the data
provided. The key here is to develop an appropriate proposal
covariance matrix (Pcym), which determines the magnitude
and direction of the proposed perturbations to the parame-
ter values, as the algorithm explores the parameter space. At
each iteration of the algorithm, the newly proposed parame-
ter set is either accepted or rejected based on the model-data
mismatch, as explained below. In the classical random walk
MHMC algorithm, the P, must be specified by the user to
achieve sufficient acceptance rates for the proposed parame-
ters, which typically requires a great deal of effort and many
trials.

The adaptive MHMC (Haario et al., 2001) uses the already
accepted parameters to approximate P.ym, which is period-
ically updated as more simulations are conducted. Specif-
ically, the Py, is tuned based on the covariance matrix
(Cym) of the already accepted parameter sets after a fixed
number of iterations following Gelman et al. (2014; i.e.,
Peym = Cym X 2.42 /d, where d is the length of the target pa-
rameter vector). Thus, the algorithm alters the magnitude and
direction of proposed “jumps” in order to efficiently explore
the parameter space.

With the delayed-rejection MCMC (Mira, 2001), when a
newly proposed set of parameters is rejected, Py is tem-
porarily downscaled (to 1 % of the original P¢yy, in our case)
and a second set of parameters is proposed based on the re-
jected parameters and the downscaled P¢yp,. This approach is
particularly efficient because low acceptance rates typically
result when the Pcyp, is too large (the parameter jumps are too
wide) to find the target distribution of the parameters. Tem-
porarily reducing Py can substantially increase the accep-
tance rate. By using multiple stages of P, the algorithm
can also effectively deal with the problem of non-Gaussian
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posteriors, which can reduce the efficiency of the adaptive
MHMC (Haario et al., 2006).

The DRAM algorithm, built upon the classic Metropolis—
Hasting Monte Carlo (MHMC) algorithm, incorporates the
merits of both the adaptive and delayed-rejection MHMC
algorithm to increase the acceptance rate and thus more
efficiently find the target distribution of parameter values
(Haario et al., 2006; Laine, 2008). It has been shown to bet-
ter explore the parameter space compared to other algorithms
such as the families of simulated annealing, possibly because
of its two-stage proposal covariance matrices (Villagran et
al., 2008). Compared with the widely used ensemble Kalman
filter, DRAM is more suitable for the nonlinear response typ-
ical of ecosystems (Annan and Hargreaves, 2007).

Here we briefly outline the DRAM algorithm. For further
details and proofs, see Haario et al. (2006) and Laine (2008).

1. Initialize the parameter values and P.yy,, assuming no
correlation among parameters, and a standard deviation
equaling one-sixth of the difference between the maxi-
mal and minimal value for each parameter, respectively
(Table 1).

2. Run the model with the current parameter values (Ocyrr)
and calculate the likelihood (L). Note that all the pa-
rameter values must be within the boundaries shown in
Table 2.

3. Propose a new set of parameters (Gpro) based on Gy
and P.yp, rerun the model, and obtain a new likelihood

(L1).

4. If the ratio of L{/L is larger than a random number be-
tween 0 and 1, then accept Opro (Bcurr = Gpro) and return
to step 2.

5. Otherwise, propose a second set of parameters (Gpro2)
based on o and Peym2 (= 0.01 Peypy), rerun the model,
and obtain the second likelihood (L»).

. Lo 91 Opro2,0pro1)92 (Opro2 »Opro1 Ocurr 1—min l’ré
6. If the ratio of Tz ot f?im,@;ml)qz ((Ofurr,Gpi)l,Oproz)) ]min(l,LL';
is larger than a random number between O and 1, then
accept Gpro2 (Ocurr = Opro2) and return to step 2. Other-
wise retain the current position, O¢,r. Here g1 (y, x) is
the probability of proposing y given x, and g2(z, y, x)
is the probability of proposing z given x and y.

7. After a certain interval, update Py, based on Cyp, cal-
culated from the accepted 6.

To increase the computational efficiency and avoid be-
ing trapped in local minima due to insufficient chain length,
we modified the DRAM algorithm for parallel computing
(Calderhead, 2014). That is, we initialize 8 and Py, simul-
taneously for n processes. Each process runs the above pro-
cedure from (1) to (7) except that at (7) all accepted 6 values

Geosci. Model Dev., 11, 467-495, 2018



476

(a) K2 DIN (mmol m™)

50

150

1
1440

50

150

720 1080 1440

Mean size (um)

Depth (m)

50

150

T
720 1080 1440

Ln size variancgum®)?)

1440

0 360

50

150

0 360

720 1080

B. Chen and S. L. Smith: CITRATE 1.0: Phytoplankton continuous trait-distribution model

DIN (mmol m™)

50

150

1080 1440

Chl(mgm™
0.35
0.30
0.25
0.20
0.15
0.10
0.05

50

150

1080 1440
Mean size (um)
2 2.0
15
2 1.0
- T 1
720 1080 1440
Ln size vanaanum"')z) 50
s | z 25
o j 2.0
i 3 15
: 1.0
3 : : 05
- T T

0 360 720 1080 1440

Figure 3. An example of modeled patterns of total inorganic nitrogen (DIN), Chl a (Chl), mean size, and In size variance for 4 years at

stations K2 (a-d) and S1 (e=h).

are consolidated to update the global estimate of Py, which
is then distributed to all subprocesses to propose new 6.

Preliminary model runs suggested that from the third year,
the model reached a quasi-steady state, exhibiting regular
seasonal cycles under the climatological forcing (Fig. 3). As
such, we ran the model for 4 years and the output of the fi-
nal year was used for validation against observational data.
The model outputs were linearly interpolated to the observa-
tional depths and time. To allow fair comparisons among dif-
ferent data types and downplay the effects of extreme values,
both the model outputs and observational data were trans-
formed to their 1/4 power and normalized between 0 and 1
to achieve a quasi-normal distribution before calculating the
sum of squared errors (SSqEs).

ngi 025 _ ,0.25
- mklj Okzmm

:Z 0.25 0.25
; o
J=1(

k.i,max — ©k.i.min

SSqEsy ; is the sum of squared errors of data type i at station
k, ng ; is the number of observations for data type i at station
k, oi,j is the observed jth value for data type i at station k,
and ok ; min and ok ; max are minimal and maximal observed
values for data type i at station k, respectively (note that for
all size fractions of Chl a, we intentionally set ok ; min =0
and ok ;i max = | to minimize the effects of the large mea-
surement variability); my ; ; is the value linearly interpolated
from model outputs to the same depth and date of o ;, ;.

0.25 0.25
Oklj ~ Ok.imin

2
Ok i,max _Ok i mln)

0.25 0.25
(14a)

SSqEsy ;
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Following Laine (2008), the likelihood function was calcu-
lated as the product of the exponential of the sum of squared
errors scaled by a measure of the model—data error for each
data type, respectively:

2 _ SSqEsg
L:H|:H(271) Fo e ]

k=1 Li=1

(14b)

in which oy ; is the standard deviation of the Gaussian errors
of data type i at station k.

Following Laine (2008), we applied Gibbs sampling,
which estimates the distribution of each o; to match the en-
semble distribution of model output to that of the data. This
entails assuming that the prior of 1/0}; follows a gamma
distribution, with the prior mean as Sg and prior accuracy as
no. At each step the value of 1/0y ; was sampled from a con-

2
no+ng,; 10Sy+SSqEs; ;
5 . The

ditional gamma distribution I" ( 3

model parameters were assumed to follow multivariate nor-
mal distributions. The likelihood function contributed by the
priors of the parameters was

Lo = 2m)~ (Hn )

in which n;, is the number of parameters to be estimated, and
y; and n; are the prior estimates of the ith parameter and its
standard deviation, respectively (Table 2). Values of 1; were
calculated as one-sixth of the difference between the preset
maximal and minimal parameter boundaries; 6; is the current

"p %-% )2
i=1 n;
9

(14c)

www.geosci-model-dev.net/11/467/2018/



B. Chen and S. L. Smith: CITRATE 1.0: Phytoplankton continuous trait-distribution model 477

Table 3. Observational data at stations S1 and K2. N: number
of observations. Min and Max are minimal and maximal values
used in data normalization (see Sect. 2.4 for details). DIN: dis-
solved inorganic nitrogen (umol L~1). Chl a: total chlorophyll a
concentration (ug L~1). NPP: net primary production measured
by 3¢ uptake (;JgCL_l d—1). PON: particulate organic nitrogen
(umol Lfl). Fer: dissolved iron concentration (nmol Lfl)A SF Chl:
percentages of four size fractions of Chl a. Note that the data of fer
were from model outputs of Aumont et al. (2003) instead of real
observations.

K2 \ S1
Type N Min Max ‘ N Min Max
DIN 974 41 457 902 0 112
Chla 470 0 34 426 0 1.0
NPP 112 0.1 37.1 128 0.1 349
PON 29 0.1 22 32 0.1 1.0
Fer 168 0.02 1.12 168 0.02 0.95
SFChl 143 x4 0 1.0 | 166 x 4 0 1.0

parameter value. The MCMC chain was run for an ensemble
of 10000 simulations with five processes running in paral-
lel (i.e., a total of 50000 parameter sets were obtained). Al-
though the model contains more than 20 parameters, we only
selected 9 parameters for optimization to minimize the pos-
sibility of parameter unidentifiability and avoid optimizing
highly correlated parameters such as gmax and Kp simulta-
neously (Table 2).

2.6 Observational data

For stations K2 and S1, the observations including MLD and
nine types of data (DIN, Chl, NPP, PON, fer, and four size
fractions of Chl) were obtained from the K2S1 project (https:
/lebcrpa.jamstec.go.jp/k2s1/en/index.html; Honda, 2016; Ta-
ble 3). The observations spanned from 2010 to 2013 at sea-
sonal sampling frequencies. Some of the data have been pub-
lished in Wakita et al. (2016), Fujiki et al. (2016), Matsumoto
et al. (2016), and Sasai et al. (2016). DIN was calculated as
the sum of nitrate, nitrite, and ammonia, which were mea-
sured with a continuous-flow analyzer (QuAAtro 2-HR sys-
tem; BL-Tech). Chl was measured using the nonacidification
method following Welschmeyer (1994). NPP was measured
with the technique of NaH'3COj3 uptake (Matsumoto et al.,
2016). PON was measured by using an elemental analyzer
(Wakita et al., 2016). Size fractions of Chl were measured by
filtering seawater sequentially through 10, 3, and 1 pm poly-
carbonate membrane filters and finally a GF/F glass-fiber
filter. The filters were soaked in N,N-dimethylformamide
(DMF) and chlorophyll concentrations retained on the filters
were measured with the same protocol as total Chl (Fujiki et
al., 2016).

For station ALOHA, the data were downloaded from http:
//hahana.soest.hawaii.edu/hot/. All the data were pooled to-
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gether to generate a quasi-climatological seasonal pattern
and inter-annual variations were treated as random noise. To
improve data coverage, we also included the nitrate data from
the World Ocean Atlas (WOA) 2013 for observed DIN. Due
to the lack of in situ observational data, the data of fer were
obtained from a global biogeochemistry model (Aumont et
al., 2003). To calculate MLD from depth profiles of tem-
perature and salinity, MLD was defined as the first depth
at which the seawater density exceeds surface density by
0.125kg m~> (Shigemitsu et al., 2012).

3 Results
3.1 External physics forcing

The validity of external physics forcing data, particularly
the vertical mixing that determines upward nutrient diffusive
supply to the surface mixed layer, is essential for correct re-
sults and parameter optimization with the ecosystem model.
Here we show in Fig. 2 a representative year of seasonal
variations in Ky, temperature, surface PAR, and atmospheric
iron deposition. Vigorous winter mixing precedes summer
water column stratification at K2 and S1, while the seasonal
variations in mixing are less pronounced at ALOHA. At all
three stations, the model estimates of mixed layer depths are
consistent with those measured from in situ temperature and
salinity profiles (Fig. 2b, f, j). Water temperatures and sur-
face PAR values at the subarctic station K2 are significantly
lower than at the subtropical stations S1 and ALOHA. The
station K2 is also characterized by a pronounced spring peak
in atmospheric dust deposition.

3.2 Parameter optimization and sensitivity analysis

For all five parallel subprocesses, the log likelihood contin-
ued to increase with the number of model runs and reached
a plateau after 1000 iterations (Fig. 4). For most (but not all)
types of data, model-data mismatches (SSqEs) consistently
decreased. Comparing the two stations, the model fits to the
Chl and NPP were better at station K2 than S1. The model
fits to the size fractions of 1-3 um were better at S1 than K2.

Most values of the optimized parameters fell into rea-
sonable ranges (Table 2; Fig. 5). For example, the esti-
mated Ko n is close to the value (0.2 uM) given in Ward et
al. (2012). For some of the parameters, such as Wy and u,
the final optimized value differed substantially from initial
estimates, which is an expected outcome of the algorithm
striving to match the nine different types of observations at
both stations with contrasting environments. Below we show
some preliminary results of a sensitivity analysis, particularly
those differing with a priori estimates (Table 4).

The mean ' ,,, estimated from laboratory phytoplankton
data is around 0.4 d—!, half of the optimized value (Chen and
Laws, 2017). Reducing g, to 0.4 d~! mainly generated
worse fits to the size fractions of < 1 um of Chl at both sta-
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Figure 4. (a) Time evolution of the log likelihood of the MHMC chain. (b)-(j) Time evolution of the sum of squared errors (SSqEs) for
DIN, Chl, net primary production (NPP), particulate organic nitrogen (PON), dissolved iron (Fer), and fractions of size-fractionated Chl a
concentrations of > 10 um (P10), 3—10 um (P03), 1-3 um (PO1), and < 1 pm (P_1). (k)—(s) The same as (b)-(j), but for station S1.

tions. This is because the lower phytoplankton growth led to
higher nutrient concentrations and lower estimates of < 1 pm
fractions.

The estimate of Wy of 20m d~! is a relatively high sinking
speed. Reducing Wy to 10md~! only led to slightly worse
fits to DIN data at station S1 (but better fits to DIN at K2)
and overall did not deteriorate the results substantially.

The estimate of m, (0.2 (UM N)~1d—1) is also at the high
end of those used in the literature. We found that the model
results were quite sensitive to the value of the closure term
m. Reducing m; to 0.1 (uMN)~!d~! led to higher meso-
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plankton biomass and generated much worse fits, particularly
for DIN at K2.

We also tested whether we could assume that the light
component of phytoplankton growth is size independent (i.e.,
o1 = 0). The results suggested that with oy = 0, the model
predicted much worse fits to the data. An optimized value of
—0.26 for o is also consistent with the size scaling relation-
ship of light-dependent growth in Finkel (2001) and Edwards
et al. (2015), suggesting that light limitation could drive phy-
toplankton to be small.

The optimized trait diffusion coefficient (1) was much
higher than in Acevedo-Trejos et al. (2016). Reducing u to
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Table 4. Sum of squared errors between model outputs and observational data for sensitivity analysis. The standard run used the optimized

parameter values in Table 2. In other runs, only the value of the parameter shown was changed, while others were kept constant.

Stn  DIN Chl NPP PON %3-10um %1-3um % <1pm
Standard K2 21.5 8.1 3.0 092 3.6 7.3 133
S1 112 165 6.7 1.5 4.9 4.0 4.1
wom=04 K2 19.7 11.6 54 0.86 6.7 7.1 234
S1 132 12.8 6.6 1.3 4.4 4.3 16.3
Wq=10 K2 15.3 8.1 3.0 1.1 3.6 7.3 13.4
S1 17.8  12.7 4.6 1.0 2.9 4.6 6.6
ar=0 K2 1673 358 118 2.0 10.4 8.6 36.4
S1 13.0 16.1 6.1 1.8 22.0 54 56.4
mz; =0.1 K2 5238 17.6 8.0 1.9 12.9 6.5 11.3
S1 11.5 177 7.4 1.6 9.1 29 3.0
u=0.05 K2 22.2 8.3 32 094 4.7 8.5 154
S1 11.1 169 6.8 1.6 11.0 42 4.0
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Figure 6. Model fittings to vertical profiles of (a)-(d) DIN, (e)—(h) Chl, (i)—-(1) NPP, and (m)—(p) PON for four seasons at station K2. Black
dots represent observational data and thick red solid lines represent the averaged seasonal values predicted by the model. Thin dashed lines

represent the 95th percentiles of the seasonal data.

0.05 led to worse fits to the size-fractionated chlorophyll
since lower size variance failed to capture the observed size
scatter. It also relates to the limitation of the model that has
to assume a lognormal distribution of size (see Sect. 4.2.1).
However, an abnormally high u could drive the model to un-
stable conditions in which the size variance kept increasing.

3.3 Comparison between best model outputs and
observation

The best model outputs in terms of the highest likelihood
could capture most of the observational patterns quantita-
tively (Figs. 6-9). At both stations, the model could repro-
duce the vertically increasing trend of DIN with depth and
the higher surface concentrations of DIN during winter than
summer and autumn. It is noteworthy that the model could
also successfully reproduce the relatively abundant summer
DIN concentrations at the surface at station K2 due to the
incorporation of iron and light limitation. The vertical and

Geosci. Model Dev., 11, 467-495, 2018

seasonal patterns of Chl a and NPP could also be well re-
produced at station K2. The only problem is that at station
S1 the high NPP at the surface could not be well reproduced
(Fig. 7).

Validation against observed phytoplankton size data is
critical for testing CITRATE 1.0 in which phytoplankton
size structure is the core component. The model could re-
produce most patterns of the proportions of size-fractionated
Chl at both stations (Figs. 8, 9). For example, the model cor-
rectly reproduced the relative dominance of picophytoplank-
ton (< 3 um) at both stations, although nitrate concentration
was high at station K2. The seasonal and vertical fractions
of 3—10um were generally well simulated at both stations,
except for an artificial surface peak at K2. The model could
also simulate the relatively larger sizes at K2 than at S1.

We also note some deficiencies of the model. At both sta-
tions, the fractions of > 10 um Chl were close to zero at both
stations in the model in contrast to the substantial fractions
of > 10 um during summer at K2 and in the winter at S1.

www.geosci-model-dev.net/11/467/2018/
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Figure 7. The same as Fig. 6, but for station S1.

The model also tended to overestimate the 1-3 um fractions
at both stations and underestimate the < 1 um fractions oc-
casionally. All these problems relate to the assumption of a
fixed trait distribution as discussed later.

3.4 Modeled seasonal patterns of nutrients,
phytoplankton biomass, mean size, and size
diversity

At both stations, DIN concentrations were higher during win-
ter in the surface mixed layer due to more vigorous mixing
(Figs. 10, 11). Significant drawdown of DIN occurred in sur-
face water following water column stratification, which oc-
curred earlier at S1 than K2. At station K2, after an increase
during June and July due to the peak in atmospheric depo-
sition, dissolved iron concentration also decreased in the fall
due to phytoplankton uptake. By contrast, surface iron con-
centrations accumulated from late summer to fall due to ni-
trogen limitation at station S1.

In accordance with the DIN patterns, higher concentra-
tions of Chl a were found during winter at station S1, which

www.geosci-model-dev.net/11/467/2018/
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resulted from both increased phytoplankton biomass and
chlorophyll-to-carbon ratios (Fig. 11). Starting from spring
to fall, subsurface maximal layers of Chl a formed and
progressively deepened with time. By contrast, at station
K2, Chl a concentrations peaked in summer and subsurface
chlorophyll maximum layers were not evident (Fig. 10), sug-
gesting light limitation played a stronger role in limiting phy-
toplankton growth at K2 than S1.

At both stations, in spite of the nutrient increases in winter,
phytoplankton mean size peaked in spring or summer. This
is mostly contributed by the light limitation on large cells,
which can be reflected by the negative value of o1 (Table 2).
At both stations, the main periods of size increases were in
spring when the light level increased and there were still nu-
trients left from winter mixing. The increases in light were
contributed by both increases in surface PAR and shallower
mixing. Nutrient (dissolved iron in the case of K2) depletion
together with light decreases led to negative values of %
in late spring or summer at both stations, resulting in subse-
quent decreases in mean size. In general, the modeled mean

Geosci. Model Dev., 11, 467-495, 2018
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Figure 8. Model fittings for the percentages of the four size fractions

(e)—(h) 3-10 um, (i)—(1) 1-3 um, and (m)—(p) < 1 pm.

sizes were significantly larger at station K2 than S1, mainly
due to less severe nutrient limitation.

The modeled patterns of size variances (i.e., size diver-
sity) are the focus of CITRATE. Within the surface mixed
layer, modeled phytoplankton size diversity showed an op-
posite pattern with mean size, with peaks in fall at S1 and in
winter at K2 (Figs. 10, 11). At first glance, we also seemed
to find a negative correlation between the growth rate ftcom
and size diversity at both stations (Fig. 12a). When growth
rates were high, size variances were low, and vice versa.
The paired scatterplots between (icom and size variances in
surface waters suggested that these two quantities were not
linearly correlated, particularly at S1. Instead, their relation-
ships depended on the timing of the season. At station S1,
during the transition from the end of winter to early spring,
the phytoplankton cells experience a rapid increase in growth
rate without much change in size diversity. During the rest
of spring, the phytoplankton growth rate decreased from the
maximum to nearly the minimum, while size diversity first

Geosci. Model Dev., 11, 467-495, 2018
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of Chl a at station K2. (a)—(d) Percentages of > 10 um fraction,

underwent a phase of moderate decrease and then recovered.
From the beginning of summer to mid-fall, there were no
big changes in growth rate, but size diversity increased dra-
matically. From mid-fall to the beginning of the winter, the
phytoplankton growth rate increased, but size diversity de-
creased to winter values. At station K2, the variability in size
diversity was smaller, with high growth rates and low size
diversity in summer and the opposite patterns in winter.

We decomposed the different factors affecting the dy-
namics of size diversity in surface waters at both stations
(Eq. 7c, e; Fig. 12b, c). Three points need to be mentioned.
First, the calculated net combined effects, including the sec-

2 2
ond derivatives of growth and grazing (% d %),
4
trait diffusion (d d’;fl) and ,u(l)), and vertical mixing (i.e.,

diffusion), were consistent with the net changes in size vari-
ances (some minor differences were because we saved the
above quantities at a daily interval that could not account for
the changes within 1 day), validating our computation. Sec-
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Figure 9. The same as Fig. 8, but for station S1.

ond, the contributions from the second derivatives of growth
and trait diffusion (dominated by 2 uu(l) with the contribu-
4
tions from & d’;‘fl) being minor; Eq. 7c) were the two largest
terms, which usually offset each other. It is the margin of
these two terms plus vertical mixing that drove the changes

2
in size variance. The values of 4 (52(1) were always negative at

all times at both stations, suggesting that without “trait dif-
fusion”, size variance would decrease toward zero (Eq. 7c¢).
This highlights the importance of trait diffusion (which can
be interpreted as genetic mutation or transgenerational phe-
notypic plasticity) to sustain diversity. The values of %
were more negative when growth rates were higher. For ex-
ample, in early April at S1, the decrease in size variance was

induced by a more negative dzd;;z(l) (see also Fig. 11h). Sim-
ilar situations also occurred at the end of December. Third,
water column mixing also played a significant role in affect-
ing size diversity, which was the main factor leading to the
peak in size diversity in fall in surface waters at S1. The ef-
fect of mixing became important because at this time, a sub-
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surface maximum of phytoplankton biomass still existed be-
low the surface mixed layer. With the deepening of the sur-
face mixed layer, a substantial biomass of phytoplankton was
entrained into surface waters and these phytoplankton com-
munities had different trait properties than the surface ones,
thereby enhancing diversity (see Sect. 4.1.1 for discussion).

The model also generated reasonable patterns of Chl:C
and N : C ratios, which were largely determined by light and
nutrient concentrations (Figs. 10i, j; 111, j). Both Chl: C and
N : Cratios were high in winter when nutrient concentrations
were high and light levels were low due to strong mixing.
Both ratios were low in surface stratified waters where nu-
trient supply from below became diminished due to strong
stratification and also light levels became strong due to both
increased surface PAR and shallow mixing layers.

3.5 Validations of the model at station ALOHA

We used the optimal parameter sets obtained at stations S1
and K2 to run the model at station ALOHA. As there were

Geosci. Model Dev., 11, 467-495, 2018
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no data of size-fractionated Chl at ALOHA, we only com-
pared the model outputs of DIN, Chl, NPP, and PON with
the observational data. While the modeled profiles of DIN
matched well with the observed data, the model underesti-
mated Chl, NPP, and PON, although the qualitative patterns
could be reproduced (Fig. 13).

4 Discussion

4.1 Model merits

4.1.1 Understanding ecological mechanisms

Besides the improved computational efficiency (Acevedo-

Trejos et al., 2016), the most important advantage of the
continuous trait-based “adaptive dynamics” approach is ex-
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pressed well in the following quote from Bak (1996): “If,
following traditional scientific methods, we concentrate on
an accurate description of the details, we lose perspective”
(p.- 10). “It is a futile endeavor to explain most natural phe-
nomena in detail by starting from particle physics and fol-
lowing the trajectories of all particles” (p. 5). This modeling
approach has the potential to make it much easier to under-
stand the mechanisms regulating phytoplankton diversity be-
cause the functional trait diversity itself (quantified by the
trait variance) is a tracer in the model, and the sources and
sinks of diversity are given explicitly (Eq. 7). In particular,

2
the second derivative of the growth rate, d d’;z(l) , evaluated at

the mean size, is a proxy for the intensity of resource com-
petition. The more concave the curve of w(l), the more in-
tense the competition; i.e., the fitness of suboptimal species
decreases more steeply with distance from the optimal size.

www.geosci-model-dev.net/11/467/2018/
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Figure 11. The same as Fig. 10, but for station S1.

In models resolving a number of discrete species, the typical
index for the intensity of resource competition under steady
state is R*, the lowest nutrient concentration allowing posi-
tive net growth (Tilman, 1982; Litchman et al., 2007; Barton
et al., 2010). Under nonequilibrium conditions, it is the max-
imal growth rate instead of R* that determines the outcome
of competition (Huston, 1979; Barton et al., 2010). In any
case, it is the realized growth rate that determines the out-
come of competition. Compared to R*, the second deriva-
0

tive e has two advantages as a proxy for quantifying the
intensity of competition: (1) it applies under both equilib-
rium and nonequilibrium conditions and (2) it circumvents
the problem of tracking many species. Using this approach,
it is straightforward to test some ecological theories such as
Huston’s “general hypothesis of species diversity” (Huston,
1979). For example, the absolute magnitude of % cor-
relates positively with p (Fig. 13), indicating that resource
competition is more intense when growth rates are high. This
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is a mathematical manifestation of the verbal argument of the
“dynamic equilibrium theory” proposed in Huston (1979),
who emphasized that in natural environments where equilib-
rium is rarely achieved, fast-growing species tend to outcom-
pete slow-growing species (see also Barton et al., 2010), and
hence growth rates play a greater role in determining diver-
sity than R* values.

Similarly, Eq. (7b) concisely specifies the factors affecting
mean phytoplankton size. In fact, Eq. (7a)—(7c) can be un-
derstood as derived from a Taylor expansion representing an
infinite number of discrete trait classes (Merico et al., 2009).
Hence, even if a discrete version of a diversity model is used,
it may also be helpful to calculate the terms in Eq. (7a)—(7¢)
in order to understand the factors affecting species diversity,
biomass, and productivity.

The set of equations in Eq. (7) also provides an excellent
platform to investigate the underlying mechanisms for the re-
lationship between biodiversity and ecosystem functioning
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to the dynamics of size variance in surface waters at S1. The term

2
“competition” equates to vz%. MIC and MES grazing equates

2, 4
to —v? ddl% , “ddju / dL4” equates to v2u %, and “trait diffusion”

equates to 2 up. All the derivatives are evaluated at the mean size.
“Diffusion” means the contribution to the changes in size variance
induced by diffusion with the underlying grid. “Net effect” means
the sum of the above terms. “Net changes” mean the difference in
size variance between adjacent days. (¢) The same as (b), but at
station K2.

(productivity, in this case), which have been extensively stud-
ied (Loreau et al., 2001; Tilman et al., 2014). While the neg-
ative relationship between productivity (tcom) and diversity
suggests that enhanced productivity can induce greater com-
petition and reduce diversity (Huston, 1979), diversity can
also be affected by other factors besides competition.

The incorporation of trait diffusion originally developed
for continuous trait-based models (Merico et al., 2014) pro-
vides a means of representing mutation and other processes
that sustain diversity, thus linking ecological and evolution-
ary processes (Rosenzweig, 1995). This allows for control of
the level of diversity in simulation experiments such as those
conducted herein to investigate diversity—productivity rela-
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tionships. The increasing effect of trait diffusion with growth
rate is consistent with the metabolic theory of ecology in that
metabolic rates, which are closely coupled with growth rates
and generation time, are expected to correlate with mutation
rates. Therefore, growth rates are expected to affect specia-
tion and potentially contribute to the latitudinal diversity gra-
dient (Rohde, 1992; Allen et al., 2006; Dowle et al., 2013).
Our results have shown that trait diffusion can be the largest
term counterbalancing competitive exclusion (Fig. 13). With-
out considering this mechanism, diversity could be underes-
timated in productive waters due to strong competition.

The approach of transporting trait moments across spatial
grids, originally developed by Bruggeman (2009), also al-
lows water mixing to affect diversity patterns. Although this
approach is not perfect (see Sect. 4.2.2 and Fig. 14), it does
allow the mixing of two communities with different mean
traits to generate trait variance greater than the weighed mean
variance of the two original communities. The larger differ-
ence in the mean traits, the greater the increase in trait vari-
ance upon mixing. Consider the case of mixing two com-
munities with biomass P; and P,, mean size /; and /5, and
size variance v; and v;. The biomass and mean size of the
mixed community are P; 4+ P> and %, respectively.
After some algebraic manipulation, we can derive the size
variance (v’) after mixing.

v’—Pl (l12+v1)+P2(l§+v2)_(P111+p212)2 (15)

P+ P P+ P
_ PP —h)? | Piui+ Py
(P + Py)? P+ P

Thus, it is clear from Eq. (15) that the difference between v’
and the biomass weighed mean variance % depends
on the difference in mean traits. Hence, mixing can enhance
diversity to the extent that the traits of the original communi-
ties differ. Barton et al. (2010) have shown that the “hotspots”
of high phytoplankton diversity are usually located along ar-
eas where mixing is strong enough to allow the coexistence
of multiple populations with different traits. Our simulations
are consistent with that view and show that vertical mixing
can significantly enhance diversity, particularly during ocean
mixed layer entrainment.

4.1.2 Flexible stoichiometry

We also consider realistic phytoplankton physiology and op-
timized model parameters guided by real data. For example,
our model has incorporated some features of phytoplankton
plasticity (acclimation) such as variable Chl: C and N : C ra-
tios. Although, for the sake of simplicity, these variable ratios
do not directly influence the phytoplankton specific growth
rate as in Geider et al. (1997), they are able to reproduce
the high Chl: C ratios in the DCM layer, thus providing a
more realistic mechanism for the formation of the DCM layer
than with models that assume fixed ratios (Fennel and Boss,
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Figure 13. The same as Fig. 6, but for station ALOHA.

2003). Similarly, the variable N: C ratio also allows phyto-
plankton cells to achieve higher carbon-based NPP in surface
waters compared to models with fixed N:C ratios (Chris-
tian, 2005). Although cellular chlorophyll and nitrogen quo-
tas are not calculated as independent tracers, model compar-
isons suggest that more complex models do not always yield
better fits to the data (Flynn, 2003).

4.1.3 Realistic mechanisms for controlling
phytoplankton size structure

In CITRATE 1.0 we have provided both bottom-up and top-
down mechanisms to affect the size structure of phytoplank-
ton. First, we employ an observation-based unimodal rela-
tionship between maximal growth rate and size to give the
nanophytoplankton the advantage under nutrient-replete con-
ditions (Chen and Liu, 2010, 2011; Marafnén et al., 2013),
thus allowing a trade-off between nutrient affinity and maxi-
mal growth rate within the pico- and nano-size range. Thus,
bottom-up factors alone are sufficient to reproduce the ob-
served decrease in the fraction of small phytoplankton with
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nutrient enrichment (Marafién et al., 2012). We also impose
a size-dependent feeding preference of zooplankton based
on the general understanding that smaller microzooplankton
tend to prefer smaller phytoplankton, whereas larger meso-
zooplankton tend to prefer larger phytoplankton (Frost, 1972;
Hansen et al., 1994; Liu et al., 2005; Ward et al., 2012). These
top-down factors have additional effects on phytoplankton
size structure. Our assumption about the preference of mi-
crozooplankton for small phytoplankton is similar to Terse-
leer et al. (2014) and Acevedo-Trejos et al. (2015), who as-
sumed a combination of decreasing maximal phytoplankton
growth rate with increasing size and a grazing preference
for small phytoplankton in order to offset the growth advan-
tage of small phytoplankton in eutrophic waters. In our case,
small phytoplankton lose the advantage in eutrophic waters,
where larger phytoplankton grow faster because of the im-
posed unimodal relationship between maximal growth rate
and size. Meanwhile, in eutrophic waters, mesozooplankton
dominate and preferentially feed on larger phytoplankton to
balance the growth advantages of larger cells.

Geosci. Model Dev., 11, 467-495, 2018



488 B. Chen and S. L. Smith: CITRATE 1.0: Phytoplankton continuous trait-distribution model

(a) (b)

< by
(=T [
S —— Community A S
—— Community B
2 — A+B <
=3 Approximation of A + B =
©» ©»
& S
8 4 : Pr=06| g & 4 Pa = 0.6
o < fx=5 S < T
.8 A =1
M va =1 A
5 B [’u = 0.6 3 N
=] Ig=3 =]
(=3 (=3
S 4 S
ST T T T T T ST T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
Ln size (um®) Ln size (um?)
s © < @
(= S
= =
o o
[—=J— S
= =
g g
28 4 P,=06| g & Py = 0.6
L e I,=5 S s H
2 A =1
A =1 3
= [’B =0.1 =
S Ip=3 3
vg = 1
=3 . =3
S 4 > S
ST T T T T T ST T T T T T
0 2 4 6 8 10 0 2 4 6 8 10

Ln size (um®) Ln size (um®)

Figure 14. Schematic diagrams for the mixing of two phytoplank-
ton communities with different biomass, mean size, and size vari-
ance, each following a lognormal size distribution.

Interestingly, counter to our intuition, field incubation ex-
periments have often found that microzooplankton feed on
diatoms faster than on picophytoplankton and that diatoms
grow faster than picophytoplankton even in oligotrophic wa-
ters (Latasa et al., 1997; Zhou et al., 2015). These results
raise a paradoxical question: how can diatoms grow so fast
with negligible nutrients in oligotrophic waters, but with-
out accumulating high biomass? Whether this is because of
experimental bias is an open question. The feeding prefer-
ence of mesozooplankton on large prey seems less disputable
(Frost, 1972; Liu et al., 2005), but see Terseleer et al. (2014)
for an assumption of decreasing feeding preference of cope-
pods for large diatoms. This implies strong top-down control
of large phytoplankton in eutrophic waters where mesozoo-
plankton dominate, limiting the biomass of large phytoplank-
ton. However, this implication is at odds with the common
observation that large phytoplankton dominate total biomass
in eutrophic waters (Marafién et al., 2012). Future refine-
ments might include a unimodal feeding preference similar
to the grazing kernel proposed earlier (Hansen et al., 1994;
Poulin and Franks, 2010). In any case, for model calibration
and validation, more and better data are needed concerning
the size scaling of both phytoplankton traits and zooplankton
grazing preference.
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4.2 Model limitations
4.2.1 Assumption of trait distribution

To facilitate the calculation of trait moments, a certain dis-
tribution has to be assumed for the trait (Merico et al., 2009,
2014). The lognormal distribution can be fitted well to em-
pirical data (Quintana et al., 2008, 2016), and because of
its mathematical convenience it has been widely used in
continuous size distribution models (Terseleer et al., 2014;
Acevedo-Trejos et al., 2015, 2016; Smith et al., 2016). For
these reasons we have assumed a lognormal distribution in
the present study.

However, other probability distributions can also describe
phytoplankton size. In the literature, phytoplankton abun-
dance (N, cellsL™!) within the size interval from V to
V +dV is more often modeled as a power-law function of
cell volume V (unit: um3; Gin et al., 1999; Cavender-Bares
et al., 2001; Cermeiio et al., 2006):

N(V) = NoVe, (16a)

where Ny represents the abundance of phytoplankton having
cell volume 1 pm?, and « is the exponent of the power law.
Because models typically represent phytoplankton biomass
instead of abundance, we can convert the abundance to
biomass (B, um3 L™1):

B(V)=N(V)V = NyvVetl, (16b)

Although the power law of Eq. (16b) may seem to be a suit-
able alternative distribution for continuous size-based mod-
els, empirical data suggest that « tends to vary between —0.7
and —1 (Cermefio et al., 2006), which means that the expo-
nent (o + 1) of the power law relating B and V should be
between 0 and 0.3. In this case both the mean and variance
of the power-law distribution as shown in Eq. (16b) are infi-
nite (Newman, 2005). This problem can be solved by adding
an upper cutoff via an exponential truncation (Clauset et al.,
2009):

B(V) = NyVotle ™V, (16¢)

where A is a positive constant.

Whether the power law or the lognormal distribution fits
better to empirical data has been widely debated in the litera-
ture, and many results show that both can fit the data equally
well (Allen et al., 2001; Mitzenmacher, 2004; Clauset et
al., 2009). This is not surprising given that the two dis-
tributions are intrinsically connected (Mitzenmacher, 2004;
Newman, 2005). We suspect that the power law with an up-
per cutoff may be able to better capture the right skewness
of phytoplankton size distributions, as is common in olig-
otrophic waters where large diatoms coexist with the dom-
inant cyanobacteria such as Prochlorococcus (Campbell et
al., 1994; Liu et al., 1997; Villareal et al., 1999). It remains
to be investigated whether changing the distribution to the
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truncated power law can help solve the problem of underes-
timating the fraction of > 10 um size in the current study.

Neither the lognormal nor the power law with an upper
cutoff can capture multimodal size distributions, as exem-
plified in Fig. 1b of Marafién (2015) and reported by other
studies (Banas, 2011; Bonachela et al., 2016; Coutinho et
al., 2016). This is an inevitable consequence of aggregating
the description of the entire community into only the three
descriptors (i.e., total biomass, mean, and variance), which
reduces the degrees of freedom, thus sacrificing detailed ac-
curacy for generality and perspective.

One remedy for this problem might be to assign more
functional groups in phytoplankton and assume a probability
distribution for each group (Terseleer et al., 2014). Having
a number of functional groups also circumvents the prob-
lem of size-independent functional differences among phy-
toplankton, such as the different maximal growth rates of di-
atoms and dinoflagellates despite their similar sizes (Chen
and Laws, 2017). We expect that in the near future such a
combination of continuous trait distributions and functional
groups will likely provide more realistic representations of
marine phytoplankton diversity.

4.2.2 Transport of moments

Another potential problem is the transport of trait moments
in ocean circulation models. Unlike nutrients or plankton
biomass, trait moments are not real “‘concentrations’ that can
be directly involved in advection and diffusion. In general
two Gaussian curves differing in area (i.e., total biomass),
mean, and variance do not sum to a perfect Gaussian curve
(Fig. 14a). Bruggeman (2009) has derived that, following
the assumption of normal distribution of traits, the raw mo-
ments of the biomass distribution can behave as normal trac-
ers in GCMs. We have shown a few examples of the mix-
ing of communities of different biomass, mean size, and
size variance in Fig. 14. These examples demonstrate that
when the mean sizes and size variances differ greatly and
biomasses are similar, the mixed community may deviate
from the assumed normal distribution, making this a poor ap-
proximation. For now, we assume that across adjacent grids,
phytoplankton communities should in most cases be similar
enough for this approximation to work reasonably well.

4.2.3 Lack of multiple traits

As a first step, we incorporated only size as the master trait
that affects all physiological functions of phytoplankton. In
reality, many phytoplankton functional traits, such as optimal
temperature, diazotrophy, and mixotrophy, are independent
of size. For example, the optimal growth temperature of phy-
toplankton is closely related to environmental temperature,
but only weakly relates to size (Thomas et al., 2012; Chen,
2015). The optimal growth temperature and irradiances are
certainly function traits that deserve to be incorporated into
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trait-based models (Follows et al., 2007; Norberg, 2004; Ed-
wards et al., 2015) and are expected to strongly affect phyto-
plankton functional diversity on large scales.

4.2.4 Difficulty in modeling surface peaks in NPP at
oligotrophic stations

The near-surface peak in NPP at the oligotrophic stations S1
and ALOHA during summer is not expected if we assume
that the source of nutrients comes from below the euphotic
zone. Even if variable N : C ratios are used in the model to
allow more carbon to be fixed given the same amount of ni-
trogen near surface waters, surface NPP is still likely to be
underestimated even with the presence of N3 fixation because
of phosphorus limitation (Christian, 2005). It is possible that
other mechanisms, such as the vertical migration of phyto-
plankton, need to be taken into account (Villareal et al., 1999;
Chavez et al., 2011). Therefore, this problem is not only re-
stricted to CITRATE 1.0.

4.2.5 Optimized parameters for 3-D GCM

One purpose of optimizing a common parameter set for two
stations with contrasting environmental conditions is to use
this parameter set for 3-D GCMs. This is based on the expec-
tation that a parameter set that can work for the two stations
should work for other locations as well. However, our valida-
tion exercise at station ALOHA reveals that the parameter set
optimized for stations K2 and S1 only succeeds in matching
the DIN data well, but underestimates Chl, NPP, and PON at
station ALOHA. This suggests that we might be overlook-
ing some unique but important processes at ALOHA. Alter-
natively, it is also possible that the uneven sampling at K2
and S1 might bias the parameter optimization to some ex-
tent. Similar difficulties in parameter optimization have been
shown previously (Ward et al., 2010). For optimizing pa-
rameters for 3-D GCMs, a better approach might be to use
the “transport matrix” technique that has been successfully
implemented for some biogeochemistry models (Khatiwala,
2007; Kriest et al., 2017). Nonetheless, our optimized param-
eters can provide a useful initial estimate for modeling other
stations and for use in 3-D GCMs.

4.3 Future directions

Considering the above limitations, one future direction is
to increase the number of traits in the model to generate
more realistic phytoplankton diversity patterns, which re-
quires both an “envelope” function relating the maximal
growth rate with the optimal trait value and a relationship be-
tween growth rate and trait value for each species (Norberg,
2004). Another refinement as noted above is to model a con-
tinuous trait distribution for each functional group, thus com-
bining the continuous trait-distribution and functional group
approaches to better capture deviations in overall trait distri-
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butions from normality and to better represent key ecosystem
functions.

It is relatively easy to couple the one-dimensional CIT-
RATE model with 3-D global or regional ocean models in
order to model the large-scale patterns of phytoplankton size
and size diversity. Furthermore, it should be possible in the
near future to optimize parameters for such a 3-D model us-
ing the transport matrix technique. In particular, by including
both trait diffusion and competitive exclusion it may be pos-
sible to begin to untangle the relative roles of ecological ver-
sus evolutionary processes in shaping global phytoplankton
diversity patterns.

5 Conclusions

We present a 1-D model with continuous size distribution for
phytoplankton (CITRATE). The dynamics of phytoplankton
mean size and size variance are directly linked to environ-
mental factors and moments of the size distribution (Eq. 7),
facilitating an understanding of the underlying mechanisms
controlling phytoplankton size and diversity. CITRATE 1.0
also incorporates “trait diffusion” as an eco-evolutionary pro-
cess to sustain phytoplankton diversity.

We optimized the parameters of CITRATE using the
DRAM algorithm, which revealed that the model can faith-
fully reproduce observed seasonal patterns of inorganic nitro-
gen, Chl a, and phytoplankton size structure at two contrast-
ing time-series stations. The model structure and associated
parameters obtained herein can be useful for 3-D regional
and global ocean modeling.

The limitations of CITRATE include its assumption of
a lognormal distribution for phytoplankton size as the sole
master trait, which to some extent limits the precision with
which it can reproduce large size classes of phytoplankton.
These limitations and others may be overcome in future stud-
ies by building on CITRATE 1.0 to construct more elaborate
continuous trait-distribution models capable of reproducing
more realistic patterns of phytoplankton diversity.

6 Code and data availability

The code and data of CITRATE 1.0 are freely available at
https://github.com/BingzhangChen/citrate under the MIT li-
cense.

6.1 General instruction

Tutorial. The code for CITRATE 1.0
(https://doi.org/10.5281/zenodo.1034805) is written in
Fortran 90 with the Intel Fortran compiler used. We have
tested the codes on macOS Sierra 10.12.5 (1386 processor)
and also a GNU/Linux cluster with x86-64 architecture. The
user should be familiar with the Fortran language and have
some basic knowledge of BASH. Some post-processing
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scripts are also written in the free software R (version 3.3.2).
Before compiling the codes and running the model, the
user needs to install the mpi (e.g., openmpi) library for
parallel computation. Below we give some instructions and
explanations of the codes and how to run the model.

1. Go to the directory in which you want to run the model
(we assume that the root directory is under home direc-

tory: ~/).

2. To download the codes, type “git clone

https://github.com/BingzhangChen/citrate.git”.

3. Type “cd DRAM/NPZDcont/BOTH_TD” to go to the
working directory.

4. Type “vi run” to change the setting for the model run.

— Test=0 means a fast run, usually for a formal
model run for a large number of iterations.

— Test=1 means running a model for debugging,
which is much slower than the fast run.

The user can also modify the compiler flags depending
on the purpose in the script. The user needs to specify
the directory where the library of mpifort exists.

5. Type “./run” and the model will compile and an exe-
cutable (CITRATE) will be generated.

6. Type “vi Model.nml”, which contains two namelists.
The namelist &Model contains the options for station
names, the type of ecological model, the type of nutri-
ent uptake function (one only for CITRATE), and the
type for grazing function (four different grazing func-
tions including the three Holling type functions and the
Ivlev function). The station name determines the right
physics files to be read and the filenames for model out-
put. For now we only allow three possible stations: S1,
K2, and HOT. Other station names will generate an er-
ror. If the user wants to add more station names, the
subroutine Setup_OBSdata within MOD_1-D.f90 is the
place to be modified. A number of ecological models
besides CITRATE have been developed. It is beyond
the scope of the present study to describe all of them
in detail. Just note that the model lists are in the For-
tran file bio_MOD.f90 and some other details are in
choose_model.f90 and MOD_1-D.f90.

The namelist &MCMCrun contains the options for
defining the total length of the MCMC chain, which is at
least two, the number of the ensemble runs, the number
of days for each model run, whether the model should
start from previous runs (Readfile = 1) or start a new run
(Readfile = 0), and the number of runs in the historical
files (enssig and enspar).
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7. After defining all the model settings, type “mpirun —np
5 citrate” and then the model will run with five parallel
processes and some outputs will be shown on the screen.
Type “mpirun —np 5 citrate > out” to make the model
outputs stored in the “out” file. For each model run, the
model saves the current parameters into the “enspar” file
and the current values of o and SSqEs into the “enssig”
file. In this way, even if the model crashes, the user can
pick up the current parameter position and the updated
parameter covariance matrix. The model also generates
the files of best parameters, best o and SSqE:s files, best
model output files that correspond to observational data,
and model output files at daily resolution at each grid
after an ensemble run.

For each station, there are four different types of physics
forcing data, including vertical profiles of eddy diffusive co-
efficients and temperatures, surface PAR, and atmospheric
dust deposition. We already provided the relevant data for
stations S1 and K2. The temporal resolution is 1 day for the
vertical eddy diffusivity and 1 month for the three other types
of data.

6.2 Code structure

All the source files including the makefile are stored in the
src folder. Here we briefly describe the functions of the most
important source files.

Main.f90 is the main program for DRAM that calls each
subroutine in serial.

MOD_1-D.f90 is the major module that sets up and runs
the 1-D model. The module also generates model output
that matches the observational data.

Interface_MOD.f90 is the module that initializes the ab-
solute and normalized parameter vectors, the covariance
matrix of the parameters, the prior parameter values,
and the upper and lower parameter boundaries.

SUB_MOD.f90 is the module that calculates the sum
of squared errors (SSqEs) between model outputs and
observational data. This module also contains the I/O
subroutines that save the parameters, o, and SSqEs for
each iteration. It also contains the major subroutine
MCMC_adapt that determines whether to accept new
parameters, updates covariance matrix, proposes new
parameter vectors, and calls the subroutine that runs the
1-D model with the newly proposed parameters.

— choose_model.f90 is the subroutine that defines the
number and indices of tracers and the model outputs that
need to be written into the output file.

— NPZD_cont.f90 is the major biological subroutine for
the CITRATE model.
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— bio_MOD.f90 is the module that declares most of the
model names, indices for model input and output vari-
ables, and parameters.
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