Articles | Volume 11, issue 10
https://doi.org/10.5194/gmd-11-4317-2018
https://doi.org/10.5194/gmd-11-4317-2018
Development and technical paper
 | 
19 Oct 2018
Development and technical paper |  | 19 Oct 2018

Development of an automatic delineation of cliff top and toe on very irregular planform coastlines (CliffMetrics v1.0)

Andres Payo, Bismarck Jigena Antelo, Martin Hurst, Monica Palaseanu-Lovejoy, Chris Williams, Gareth Jenkins, Kathryn Lee, David Favis-Mortlock, Andrew Barkwith, and Michael A. Ellis

Related authors

Coastal Modelling Environment version 1.0: a framework for integrating landform-specific component models in order to simulate decadal to centennial morphological changes on complex coasts
Andrés Payo, David Favis-Mortlock, Mark Dickson, Jim W. Hall, Martin D. Hurst, Mike J. A. Walkden, Ian Townend, Matthew C. Ives, Robert J. Nicholls, and Michael A. Ellis
Geosci. Model Dev., 10, 2715–2740, https://doi.org/10.5194/gmd-10-2715-2017,https://doi.org/10.5194/gmd-10-2715-2017, 2017
Short summary

Related subject area

Solid Earth
Accelerated pseudo-transient method for elastic, viscoelastic, and coupled hydromechanical problems with applications
Yury Alkhimenkov and Yury Y. Podladchikov
Geosci. Model Dev., 18, 563–583, https://doi.org/10.5194/gmd-18-563-2025,https://doi.org/10.5194/gmd-18-563-2025, 2025
Short summary
Reconciling surface deflections from simulations of global mantle convection
Conor P. B. O'Malley, Gareth G. Roberts, James Panton, Fred D. Richards, J. Huw Davies, Victoria M. Fernandes, and Sia Ghelichkhan
Geosci. Model Dev., 17, 9023–9049, https://doi.org/10.5194/gmd-17-9023-2024,https://doi.org/10.5194/gmd-17-9023-2024, 2024
Short summary
Three-dimensional analytical solution of self-potential from regularly polarized bodies in a layered seafloor model
Pengfei Zhang, Yi-an Cui, Jing Xie, Youjun Guo, Jianxin Liu, and Jieran Liu
Geosci. Model Dev., 17, 8521–8533, https://doi.org/10.5194/gmd-17-8521-2024,https://doi.org/10.5194/gmd-17-8521-2024, 2024
Short summary
A fast surrogate model for 3D Earth glacial isostatic adjustment using Tensorflow (v2.8.0) artificial neural networks
Ryan Love, Glenn A. Milne, Parviz Ajourlou, Soran Parang, Lev Tarasov, and Konstantin Latychev
Geosci. Model Dev., 17, 8535–8551, https://doi.org/10.5194/gmd-17-8535-2024,https://doi.org/10.5194/gmd-17-8535-2024, 2024
Short summary
CitcomSVE 3.0: A Three-dimensional Finite Element Software Package for Modeling Load-induced Deformation for an Earth with Viscoelastic and Compressible Mantle
Tao Yuan, Shijie Zhong, and Geruo A
EGUsphere, https://doi.org/10.5194/egusphere-2024-3200,https://doi.org/10.5194/egusphere-2024-3200, 2024
Short summary

Cited articles

Briese, C.: Three-dimensional modelling of breaklines from airborne laser scanner data, Int. Arch. Photogramm., Istanbul, Turkey, 12–23, 2004. 
Brzank, A., Heipke, C., Goepfert, J., and Soergel, U.: Aspects of generating precise digital terrain models in the Wadden Sea from lidar–water classification and structure line extraction, ISPRS J. Photogramm., 63, 510–528, 2008. 
Choung, Y., Li, R., and Jo, M.-H.: Development of a vector-based method for coastal bluffline mapping using LiDAR data and a comparison study in the area of Lake Erie, Mar. Geod., 36, 285–302, 2013. 
Del Río, L. and Gracia, F. J.: Erosion risk assessment of active coastal cliffs in temperate environments, Geomorphology, 112, 82–95, https://doi.org/10.1016/j.geomorph.2009.05.009, 2009. 
Doody, P. and Rooney, P.: Special issue – conservation and management of sea cliffs, J. Coast. Conserv., 19, 757–760, https://doi.org/10.1007/s11852-015-0420-x, 2015. 
Download
Short summary
We describe a new algorithm that automatically delineates the cliff top and toe of a cliffed coastline from a digital elevation model (DEM). The algorithm builds upon existing methods but is specifically designed to resolve very irregular planform coastlines with many bays and capes, such as parts of the coastline of Great Britain.
Share