Articles | Volume 11, issue 10
Geosci. Model Dev., 11, 4011–4019, 2018
https://doi.org/10.5194/gmd-11-4011-2018
Geosci. Model Dev., 11, 4011–4019, 2018
https://doi.org/10.5194/gmd-11-4011-2018

Methods for assessment of models 05 Oct 2018

Methods for assessment of models | 05 Oct 2018

Data assimilation cycle length and observation impact in mesoscale ocean forecasting

Paul Sandery

Related subject area

Oceanography
Implementation and assessment of a carbonate system model (Eco3M-CarbOx v1.1) in a highly dynamic Mediterranean coastal site (Bay of Marseille, France)
Katixa Lajaunie-Salla, Frédéric Diaz, Cathy Wimart-Rousseau, Thibaut Wagener, Dominique Lefèvre, Christophe Yohia, Irène Xueref-Remy, Brian Nathan, Alexandre Armengaud, and Christel Pinazo
Geosci. Model Dev., 14, 295–321, https://doi.org/10.5194/gmd-14-295-2021,https://doi.org/10.5194/gmd-14-295-2021, 2021
Short summary
Numerical integrators for Lagrangian oceanography
Tor Nordam and Rodrigo Duran
Geosci. Model Dev., 13, 5935–5957, https://doi.org/10.5194/gmd-13-5935-2020,https://doi.org/10.5194/gmd-13-5935-2020, 2020
Short summary
Multi-grid algorithm for passive tracer transport in the NEMO ocean circulation model: a case study with the NEMO OGCM (version 3.6)
Clément Bricaud, Julien Le Sommer, Gurvan Madec, Christophe Calone, Julie Deshayes, Christian Ethe, Jérôme Chanut, and Marina Levy
Geosci. Model Dev., 13, 5465–5483, https://doi.org/10.5194/gmd-13-5465-2020,https://doi.org/10.5194/gmd-13-5465-2020, 2020
Short summary
Introducing LAB60: A 1∕60° NEMO 3.6 numerical simulation of the Labrador Sea
Clark Pennelly and Paul G. Myers
Geosci. Model Dev., 13, 4959–4975, https://doi.org/10.5194/gmd-13-4959-2020,https://doi.org/10.5194/gmd-13-4959-2020, 2020
Short summary
Development of an atmosphere–ocean coupled operational forecast model for the Maritime Continent: Part 1 – Evaluation of ocean forecasts
Bijoy Thompson, Claudio Sanchez, Boon Chong Peter Heng, Rajesh Kumar, Jianyu Liu, Xiang-Yu Huang, and Pavel Tkalich
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-326,https://doi.org/10.5194/gmd-2020-326, 2020
Revised manuscript accepted for GMD
Short summary

Cited articles

Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K., and Gombos, D.: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications, B. Am. Meteorol. Soc., 92, Supplement, https://doi.org/10.1175/2010BAMS2946.2, 2011. a
Bertino, L., Lisæter, K., and Scient, S.: The TOPAZ monitoring and prediction system for the Atlantic and Arctic Oceans, J. Oper. Oceanogr., 1, 15–18, 2008. a
Brassington, G. B.: Multicycle ensemble forecasting of sea surface temperature, Geophys. Res. Lett., 40, 6191–6195, 2013. a
Brassington, G. B., Pugh, T., Spillman, C., Schulz, E., Beggs, H., Schiller, A., and Oke, P. R.: BLUElink> Development of Operational Oceanography and Servicing in Australia, J. Res. Pract. Inf. Tech., 39, 151–164, 2007. a
Chassignet, E. P., Hurlburt, H. E., Metzger, E. J., Smedstad, O. M., Cummings, J. A., Halliwell, G. R., Bleck, R., Baraille, R., Wallcraft, A. J., Lozano, C., et al.: US GODAE: global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM), Tech. rep., DTIC Document, 2009. a
Download
Short summary
This article compares global mesoscale ocean forecasts with different data assimilation cycle lengths. Mean absolute increment is used to quantify differences in the overall impact of observations. Greater observation impact does not necessarily improve a forecast system. Experiments show a 1-day cycle generates improved 7-day forecasts when compared to a 3-day cycle. Cycle length is an important choice that influences system bias and predictability.