Articles | Volume 11, issue 10
Geosci. Model Dev., 11, 4011–4019, 2018
Geosci. Model Dev., 11, 4011–4019, 2018

Methods for assessment of models 05 Oct 2018

Methods for assessment of models | 05 Oct 2018

Data assimilation cycle length and observation impact in mesoscale ocean forecasting

Paul Sandery


Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Mirena Feist-Polner on behalf of the Authors (14 Aug 2018)  Author's response
ED: Publish as is (28 Aug 2018) by Paul Halloran
Short summary
This article compares global mesoscale ocean forecasts with different data assimilation cycle lengths. Mean absolute increment is used to quantify differences in the overall impact of observations. Greater observation impact does not necessarily improve a forecast system. Experiments show a 1-day cycle generates improved 7-day forecasts when compared to a 3-day cycle. Cycle length is an important choice that influences system bias and predictability.