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Abstract. A brief examination of the relationship between
data assimilation cycle length and observation impact in a
practical global mesoscale ocean forecasting setting is pro-
vided. Behind-real-time reanalyses and forecasts from two
different cycle length systems are compared and skill is quan-
tified using all observations typically available for ocean
forecasting. A 1-day Ensemble Optimal Interpolation (EnOI)
cycle is compared to a 3-day cycle. The mean analysis in-
crements for the 1-day system are significantly smaller, sug-
gesting a less biased system. Comparison of mean absolute
increments identifies observations have greater impact in the
1-day system. Whilst smaller mean increments and greater
observation impact do not guarantee a better forecast sys-
tem, analysis of 7-day parallel forecasts show that the 1-day
cycle system delivers improvement in predictability, particu-
larly for the subsurface. This improvement appears to mainly
come from less biased initial conditions and suggests greater
retention of memory from observations and improved bal-
ance in the model.

1 Background

Cycle length in sequential data assimilating forecasting sys-
tems is an important setting that relates to dynamical scales
resolved by the numerical model and the observation sys-
tem. Many ocean forecasting systems, for example those de-
scribed in Cummings and Smedstad (2014), Martin et al.
(2007), Chassignet et al. (2009), Ferry et al. (2010) and
Bertino et al. (2008), make different choices around cycle
length. Shorter cycle length implies more frequent analyses
and initialization of the dynamical model. This may not nec-
essarily lead to a better forecast system. In multivariate sys-

tems, observed variables project onto unobserved variables
and systems tend to perform best when model error covari-
ances are adequately sampled and there is reasonable cov-
erage of multiple observation types. Longer cycles favour
better coverage; however, they can introduce larger analy-
sis increments, temporal representation errors and overfit-
ting of observational data. Bias is a fundamental problem in
atmospheric and ocean forecasting affecting system perfor-
mance. Bias arises within an assimilation cycle shared by is-
sues related to the assimilation system, the model and obser-
vations. Identifying the cause of bias can be almost impos-
sible (Houtekamer and Zhang, 2016). Mean analysis incre-
ments are sometimes used to detect model bias (Houtekamer
and Mitchell, 2005; Oke et al., 2013b), and some bias cor-
rection schemes are based on this (Zhang et al., 2016; Takacs
et al., 2016; Ha and Snyder, 2014). Some care must be taken
when using mean analysis increments as a proxy for model
bias as they are dependent on the structure of the background
covariances and also contain observation bias (Dee, 2005).
Furthermore, they can be approximately zero and relatively
meaningless in regions of few or no observations or when
large errors of opposite sign cancel out over time. Provided
observation coverage is sufficient, observation bias is mini-
mal and background error covariances are physically mean-
ingful, well-sampled mean analysis increments can be a rea-
sonable indication of model bias. Dee and Da Silva (1998) il-
lustrated that mean analysis increments tend to underestimate
forecast bias. This is because they depend on the rate and
period of growth of perturbations, i.e. model error growth,
so they are forecast lead-time- and cycle-length-dependent.
This questions the use of mean analysis increments to esti-
mate and compare the bias of forecasting systems with dif-
ferent cycle lengths. It appears that the cycle length, how-
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Figure 1. Forecast sea-level anomaly (SLA) from the 1-day cycle system for 9 September 2013. Unassimilated forward independent super-
observations are shown with coloured circles and grey outline on the same colour scale. The figure is high resolution and may be zoomed in
for a detailed inspection of any region in the electronic version. Also shown are surface current vectors (black arrowheads) and surface wind
vectors (blue arrowheads).

ever, should be based on that which is best for predictability.
Aspects of this are touched on by running twin experiments
with a global ocean forecasting system using cycle lengths
of 1 and 3 days. The system used in this study is the current
Bureau of Meteorology Ocean Model Analysis and Predic-
tion System (OceanMAPS) version 3. Previous versions of
this system are documented in Brassington (2013) and Brass-
ington et al. (2007). OceanMAPS is global eddy resolving,
forced by numerical weather prediction (NWP), runs on a 3-
day data assimilation cycle and carries out 7-day forecasts. It
is able to constrain aspects of the mesoscale variability to the
available real-time observations. It produces forecasts of syn-
optic features of the ocean circulation, such as the locations
of eddies and fronts, daily changes in sea surface tempera-
ture and mixed layer depth, wind-driven surface flows, and
coastal trapped waves. As typical for ocean forecast systems
like OceanMAPS, the largest errors tend to occur in regions
of most rapidly growing dynamical instabilities (O’Kane
et al., 2011), such as western boundary currents and along the
Antarctic Circumpolar Current (ACC). Some of these fea-
tures and the characteristic spatio-temporal scales resolved
by the model are captured in Fig. 1, which presents a snap-
shot of sea-level anomaly (SLA) for 9 September 2013. The
behind-real-time forecasted SLA is shown with unassimi-
lated forward independent super-observations for the same
day from the 1-day cycle system. Information regarding the
use of forward super-observations for forecast verification, as

used in this study, can be found in Sakov and Sandery (2015)
and Sandery and Sakov (2017).

2 Data and methods

The Geophysical Fluid Dynamics Laboratory (GFDL) Mod-
ular Ocean Model version 4.1 (MOM4p1) (Griffies et al.,
2009) is used. This is a Boussinesq three-dimensional
primitive-equation volume-conserving ocean model. The
OceanMAPS grid has 0.1◦ horizontal resolution and is the
same as the Ocean Forecasting Australia Model version 3
(OFAM3) (Oke et al., 2013a), which is based on bathymet-
ric data from Smith and Sandwell (1997). The grid has 51
vertical levels, and the top cell approximates quantities at
2.5 m depth with the average resolution in the upper 200 m
being approximately 10 m. The physical model settings in-
clude the use of a fourth-order Sweby advection method and
a scale-dependent isotropic Smagorinksy biharmonic hori-
zontal mixing scheme as described in Griffies and Halberg
(2000). The General Ocean Turbulence Model (GOTM) κ–ε
scheme is used for vertical mixing. Note that tides are not ex-
plicitly modelled; rather, a parameterization of tidal mixing
is implemented using the scheme of Lee et al. (2006).

Initial conditions for both systems are the same and taken
from the multi-year OFAM3 spin-up for 1 January 2012. The
1 and 3-day cycle systems are spun-up with data assimilation
over a 1-year period to 1 January 2013. Hindcasts are contin-

Geosci. Model Dev., 11, 4011–4019, 2018 www.geosci-model-dev.net/11/4011/2018/



P. Sandery: Assimilation cycle length and observation impact 4013

Figure 2. The analysis–forecast scheme used to compare the 3-day with the 1-day cycle system.

Table 1. Global mean behind-real-time forecast innovation mean absolute deviation (MAD) and bias for sea-level anomaly (SLA), sea
surface temperature (SST), subsurface temperature (T ) and salinity (S) from the 1-year behind-real-time period for 2013. See Fig. 2 for cycle
scheme. Total number of super-observations used in 2013 shown.

Variable (units) MADa Biasa MADb Biasb Observationsa Observationsb

SLA (cm) 5.14 0.05 5.48 0.08 27 070 422 26 033 356
SST (K) 0.277 0.014 0.330 0.03 210 063 788 175 258 730
T (K) 0.517 −0.0877 0.539 −0.0934 6 125 208 5 964 116
S (psu) 0.13 0.0096 0.14 0.0104 5 562 515 5 380 711

a One-day system. b Three-day system.

Figure 3. Global 7-day forecast innovation error statistics from a se-
ries of identical base dates for (a) sea-level anomaly, (b) sea surface
temperature, (c) subsurface temperature and (d) subsurface salinity.
The 1-day system is shown in blue, and the 3-day is system shown
in red. The envelopes represent ±1 standard deviation in forecast
error. See Fig. 2 for forecast scheme.

ued throughout 2013, and a series of 7-day forecasts, 3 days
apart, with identical base dates as illustrated in Fig. 2, are car-
ried out from 3 January 2013. The forecast experiments were
done behind real time; therefore, observations in the 12–24 h
prior to forecast base time were available to both systems,
whereas in practice they would not be available in this pe-
riod in a real-time system. The model is forced by 3-hourly
prescribed surface fluxes of momentum, heat and salt from
the Bureau of Meteorology operational global NWP sys-
tem version 1, which is known as ACCESS-G APS1 (Aus-
tralian Community Climate and Earth System Simulator).
For data assimilation the EnKF-C software (Sakov, 2015) is
used in Ensemble Optimal Interpolation (EnOI) (Evensen,
2003) mode. The analysis equation and background error co-
variances can be written as

xa
= xf
+BHT[HBHT

+R
]−1

[
y−H(xf)

]
, (1a)

B≡ AAT[(m− 1)]−1, (1b)

where xa and xf are analysis and forecast state vectors re-
spectively; y is an observation vector; H is a linear obser-
vation operator, i.e. H=∇H(x), where H is a linear affine
observation operator; B is background error covariance; R is
observation error covariance; A represents ensemble anoma-
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Table 2. Global mean and 7-day mean forecast innovation mean absolute deviation (MAD) and bias for sea-level anomaly (SLA), sea surface
temperature (SST), subsurface temperature (T ) and salinity (S) from a series of forty-four 7-day forecasts, 3 days apart from 3 January 2013.
See Fig. 2 for information on how the base dates are aligned.

Variable (units) MADa Biasa MADb Biasb Observationsc

SLA (cm) 5.51 0.0152 5.60 0.197 21 272 458
SST (K) 0.417 0.0151 0.435 0.0457 237 176 982
T (K) 0.603 −0.0979 0.616 −0.136 5 276 357
S (psu) 0.153 0.0349 0.155 0.0341 4 974 538

a One-day system. b Three-day system. c Total number of super-observations used to verify the
forty-four 7-day forecasts shown.

Table 3. As for Table 2, except for the Tasman Sea region.

Variable (units) MADa Biasa MADb Biasb Observationsc

SLA (cm) 7.11 0.0674 7.21 0.0667 202 548
SST (K) 0.478 −0.0634 0.488 −0.124 3 145 463
T (K) 0.573 −0.067 0.617 −0.119 48 056
S (psu) 0.104 0.0674 0.098 0.0667 51 144

a One-day system. b Three-day system.

lies; m is ensemble size and T denotes matrix transposition.
xf is taken to be an instantaneous model state, whereas xf

is a 1-day mean and 3-day mean in the respective systems.
The system uses no nudging or incremental analysis updating
(Ourmières et al., 2006); rather, the model is directly initial-
ized to the analysis. This approach allows the model to run
the complete length of each cycle as a dynamical forecast
without being influenced by forcing from nudging terms in
the model equations. It also includes any initialization shock
from imbalance in the analysis in order to assess the impact
of this on forecasts. B is based on a 144-member ensemble
of intra-seasonal (1-day minus bimonthly mean) anomalies
generated from an 18-year run of OFAM3. A source of time
filtering is implicit in the innovation vector [y−H(xf)] from
the fact that the super-observations tend to represent averages
over the time window, particularly for observations with rela-
tively larger coverage, such as sea surface temperature (SST).
An asynchronous 3-day cycle FGAT (first-guess appropriate
time) system was not compared with the 1- or 3-day cycle
systems as FGAT did not provide any improvements over the
synchronous 3-day cycle. Mean increments and forecast er-
rors from FGAT were comparable to the 3-day synchronous
cycle (not shown).

Both the 1- and 3-day systems assimilate the same
original observations only once. The following observa-
tions are converted to super-observations weighted by in-
verse error variance. Altimetric SLA is taken from the
Radar Altimeter Database System (RADS) (Schrama et al.,
2000) using tide, mean dynamic topography and in-
verse barometer corrections. SLA observations are lim-
ited to water depths greater than 200 m. SST retrievals

from the NAVOCEANO (May et al., 1998) and WindSat
(Gaiser et al., 2004) databases are used. All available in
situ temperature and salinity observations on the Global
Telecommunications System (GTS) are used. These in-
clude Argo profiles (Roemmich et al., 2009), conductivity–
temperature–depth (CTD) and eXpendable BathyThermo-
graph (XBT) profiles. The EnOI systems are run in a cy-
cle scheme that centres the observation window as shown in
Fig. 2. The amount of super-observations generated by the
system from the original observations for the 1-day system
is larger than the 3-day system. The total number of super-
observations used in 2013 is shown in Table 1. In the data
assimilation, a 250 km localization radius is used for all ob-
servation types. The mean sea level from OFAM3 (Oke et al.,
2013a) is used for the model’s mean dynamic topography to
assimilate along track SLA observations.

3 Results

Global forecast innovation errors for the 1-year behind-real-
time period for 2013 are provided in Table 1. These are
based on forward unassimilated observations, which can be
regarded as independent. The 1-day cycle benefits statisti-
cally from a shorter forecast lead time. These errors suggest
an improvement in performance in constraining SLA, SST,
and subsurface temperature and salinity. In order to deter-
mine whether this result is only dependent on forecast lead
time, a series of 44 parallel 7-day forecasts using identical
base dates from 3 January 2013 are analysed. These fore-
casts are compared to unassimilated observations. The global
7-day mean forecast errors are shown in Table 2, and Ta-
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Figure 4. Mean analysis increments for sea-level anomaly (SLA) and sea surface temperature (SST) for the 1-day (a, b) and 3-day system (c,
d).

ble 3 repeats this for the Tasman Sea region. It is interesting
to note that whilst mean absolute deviation (MAD) global
forecast errors are marginally smaller in the 1-day system,
mean forecast bias is more significantly reduced for SLA,
SST and subsurface temperature. Figure 3 shows the global
MAD forecast error growth as a function of lead time. Note

that in order to ensure genuine forecasts are made, the model
is propagated to the end of the respective observation win-
dow in both systems, which is the position of the star in
Fig. 2. Daily mean forecast fields are saved, and these are
compared to the observations. For day zero, statistics are in-
cluded that represent the errors in the initial conditions, and
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Figure 5. Mean absolute increments for sea-level anomaly (SLA) and sea surface temperature (SST) for the 1-day (a, b) and 3-day system (c,
d).

the observation window partially overlaps half of this day in
both systems, so the statistics for day zero cannot be regarded
as independent. The results suggest the 1-day system is better
overall as a forecast system with improvements in lead time
of about 1 day in surface variables and up to 7 days in sub-
surface variables. The errors for salinity are relatively high

for both systems as no restoring to salinity is used; however,
the relative improvement is apparent.

The mean analysis increments for SST and SLA are shown
in Fig. 4. Three key features emerge regarding this estimate
of model bias in the mean increments. There is an equato-
rial eastern Pacific Ocean cold bias, a Southern Ocean high-
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Figure 6. Difference (1-day minus 3-day) in mean absolute increment (a) for sea-level anomaly (SLA) and (b) sea surface temperature
(SST).

Figure 7. Total kinetic energy (joules) for the 1-day (black) and
3-day systems (red) throughout 2013.

latitude warm bias, and mesoscale warm and cold biases
in the western boundary current and ACC regions. Without
speculating on the source of these systematic model errors,
it is noted that the first two aforementioned bias features
have been detected in the CSIRO Climate Analysis Forecast
Ensemble (CAFE) System, which is a configuration of the
GFDL coupled model version 2.1 (CM2.1) run under an en-
semble Kalman filter data assimilation framework. Figure 4
shows that mean increments are about one-third smaller in
the 1-day than the 3-day system, which can be expected for
approximate linear error growth. The spatial patterns are very
similar, with the main difference being amplitude. Another

way to compare increments over a period of time is to cal-
culate the mean absolute increment (MAI) (Fig. 5). This is
done in the following way. In each 3-day period the 1-day
increments are summed and then the absolute values calcu-
lated. The mean of the absolute values over the 1-year pe-
riod are then calculated. The MAI for the two systems is
only directly comparable if the forecast error growth is lin-
ear. The difference in mean increments between the two sys-
tems suggests this; however, error growth in the two systems
is largest on the first day (as seen in Fig. 3) and becomes
mainly linear after this. Regardless, the differences in spatial
distribution of MAI for SLA and SST, shown in Fig. 6, in-
dicate the 1-day system has a generally larger MAI. It can
bee seen there is a greater impact from the observing sys-
tem. The 1-day system projects more information from ob-
served variables into unobserved variables through the back-
ground error covariances due to the relatively smaller obser-
vation coverage per analysis. For instance, in situ observa-
tions from the Tropical Atmosphere Ocean–Triangle Trans-
Ocean Buoy Network (TAO-TRITON) moored array in the
equatorial Pacific Ocean produce a larger MAI on SLA and
SST in the 1-day system. It is also evident that the 1-day sys-
tem has a larger MAI in the western boundary currents and
ACC. Figure 6 shows, as expected, that SST projects more
into SLA in the 1-day system. SST observations in the 1-day
system appear to be having a greater impact in the regions of
fastest growing dynamical instabilities. Interestingly, the rel-
atively smaller MAI for SST in the 1-day system in the Inter-
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Tropical Convergence Zone (ITCZ), in the tropical warm
pool in the western Pacific Ocean and at high latitudes in
the Southern Ocean indicates the observing system is having
less impact in these areas in the 1-day system.

Data assimilation typically injects energy into a forecast
model as the observed fronts can be sharper than what can
be supported by the model. In each cycle we usually see a
jump in total kinetic energy with subsequent diminishing un-
til the end of the forecast. This can be caused by factors such
as insufficient horizontal and vertical resolution and imbal-
ances in the analysis. Figure 7 shows total kinetic energy at
6-hourly temporal resolution. Here it can be seen that data
assimilation in the 1-day system renders the state at a higher
kinetic energy level, with smaller-amplitude temporal fluctu-
ations between cycles. The latter reflects the smaller incre-
ments per cycle in the 1-day system; however, the larger ki-
netic energy state indicates that more energy is retained in the
mesoscale eddies, which indicates that the gradients in SLA
are maintained closer to observations. The larger MAI for
SLA and SST in the 1-day system in the western boundary
current and ACC regions reflects that observations are having
a larger impact in these regions. The total kinetic energy dis-
sipation for both systems in 2013 was calculated by summing
the dissipation within each cycle and removing the trend. The
1-day system total kinetic energy dissipation is 8.4× 1018 J,
and that for the 3-day system is 9.6× 1018 J. The relative to-
tal kinetic energy dissipation, estimated by subtracting the
mean dissipation from the respective systems, shows that the
1-day system has approximately 17 % less relative kinetic en-
ergy dissipation than the 3-day system, suggesting it is more
effective at preserving SLA gradients and may be more dy-
namically balanced.

4 Conclusions

Global errors from a set of 44 parallel 7-day forecasts over
a 1-year period in 2013 showed the 1-day cycle system de-
livered improvements in predicting sea surface temperature,
sea-level anomaly, subsurface temperature and salinity. The
difference in mean absolute increments between the two cy-
cle length systems indicated that the same observations had
a greater impact on the 1-day system, with a larger degree
of observed variables projecting onto unobserved variables.
Greater observation impact does not necessarily lead to an
improved forecast system as overfitting observations can pro-
duce dynamical imbalances, which can have deleterious ef-
fects on forecasts. The results, however, indicate that the 1-
day cycle takes greater advantage of the observations and,
compared to the 3-day cycle, is less biased in initial condi-
tions and forecasts. This also suggests that the background
error covariances are a reasonable estimate of model er-
ror. With the shorter cycle length, data assimilation intro-
duces a larger amount of kinetic energy from the observa-
tions into the state, bringing the model closer to a realistic

representation of the ocean’s kinetic energy. The 1-day cy-
cle introduced a larger amount of information from the ob-
servations into the model with more frequent smaller ad-
justments at finer scales. The overall improvement in pre-
dictability, particularly in the subsurface, suggests greater
retention of memory from observations and improved bal-
ance in the model. It is noted that, whilst an overall improve-
ment in global performance was detected, in some regions
the 1-day scheme may not perform better than the 3-day
system. The results are a practical example of the influence
of cycle length in global mesoscale ocean forecasting with
the current observation network. The 1-day cycle is closer
to asynchronous data assimilation and appears to be an im-
provement over the first-guess appropriate time (FGAT) ap-
proach (Cummings, 2005; Lee, 2005; Atlas et al., 2011) as
our FGAT experiments did not yield as significant an im-
provement.

Code availability. The ocean model is available at https://github.
com/mom-ocean/MOM4p1 (Griffies et al., 2009), and the data as-
similation code can be found at https://github.com/sakov/enkf-c
(Sakov, 2015). The OceanMAPS3 system and observation process-
ing scripts are the intellectual property of the Bureau of Meteorol-
ogy.
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