Articles | Volume 17, issue 9
https://doi.org/10.5194/gmd-17-4077-2024
https://doi.org/10.5194/gmd-17-4077-2024
Development and technical paper
 | 
17 May 2024
Development and technical paper |  | 17 May 2024

Accelerating Lagrangian transport simulations on graphics processing units: performance optimizations of Massive-Parallel Trajectory Calculations (MPTRAC) v2.6

Lars Hoffmann, Kaveh Haghighi Mood, Andreas Herten, Markus Hrywniak, Jiri Kraus, Jan Clemens, and Mingzhao Liu

Related authors

Compression of ERA5 meteorological reanalysis data and their application to simulations with the Lagrangian model for Massive Parallel Trajectory Calculations (MPTRAC v2.7)
Farahnaz Khosrawi and Lars Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3147,https://doi.org/10.5194/egusphere-2025-3147, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Technical note: A comparative study of chemistry schemes for volcanic sulfur dioxide in Lagrangian transport simulations – a case study of the 2019 Raikoke eruption
Mingzhao Liu, Lars Hoffmann, Jens-Uwe Grooß, Zhongyin Cai, Sabine Grießbach, and Yi Heng
Atmos. Chem. Phys., 25, 4403–4418, https://doi.org/10.5194/acp-25-4403-2025,https://doi.org/10.5194/acp-25-4403-2025, 2025
Short summary
A Novel Identification Method for Stratospheric Gravity Waves in Nadir Viewing Satellite Observations
Peter G. Berthelemy, Corwin J. Wright, Neil P. Hindley, Phoebe E. Noble, and Lars Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-455,https://doi.org/10.5194/egusphere-2025-455, 2025
Short summary
Harmonisation of sixteen tropospheric ozone satellite data records
Arno Keppens, Daan Hubert, José Granville, Oindrila Nath, Jean-Christopher Lambert, Catherine Wespes, Pierre-François Coheur, Cathy Clerbaux, Anne Boynard, Richard Siddans, Barry Latter, Brian Kerridge, Serena Di Pede, Pepijn Veefkind, Juan Cuesta, Gaelle Dufour, Klaus-Peter Heue, Melanie Coldewey-Egbers, Diego Loyola, Andrea Orfanoz-Cheuquelaf, Swathi Maratt Satheesan, Kai-Uwe Eichmann, Alexei Rozanov, Viktoria F. Sofieva, Jerald R. Ziemke, Antje Inness, Roeland Van Malderen, and Lars Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3746,https://doi.org/10.5194/egusphere-2024-3746, 2025
Short summary
Impact of mountain-wave-induced temperature fluctuations on the occurrence of polar stratospheric ice clouds: a statistical analysis based on MIPAS observations and ERA5 data
Ling Zou, Reinhold Spang, Sabine Griessbach, Lars Hoffmann, Farahnaz Khosrawi, Rolf Müller, and Ines Tritscher
Atmos. Chem. Phys., 24, 11759–11774, https://doi.org/10.5194/acp-24-11759-2024,https://doi.org/10.5194/acp-24-11759-2024, 2024
Short summary

Related subject area

Earth and space science informatics
The OpenMindat v1.0.0 R package: a machine interface to Mindat open data to facilitate data-intensive geoscience discoveries
Xiang Que, Jiyin Zhang, Weilin Chen, Jolyon Ralph, and Xiaogang Ma
Geosci. Model Dev., 18, 4455–4467, https://doi.org/10.5194/gmd-18-4455-2025,https://doi.org/10.5194/gmd-18-4455-2025, 2025
Short summary
A time-dependent three-dimensional dayside magnetopause model based on quasi-elastodynamic theory
Yaxin Gu, Yi Wang, Fengsi Wei, Xueshang Feng, Andrey Samsonov, Xiaojian Song, Boyi Wang, Pingbing Zuo, Chaowei Jiang, Yalan Chen, Xiaojun Xu, and Zilu Zhou
Geosci. Model Dev., 18, 4215–4229, https://doi.org/10.5194/gmd-18-4215-2025,https://doi.org/10.5194/gmd-18-4215-2025, 2025
Short summary
DustNet (v1): skilful neural network predictions of dust aerosols over the Saharan desert
Trish E. Nowak, Andy T. Augousti, Benno I. Simmons, and Stefan Siegert
Geosci. Model Dev., 18, 3509–3532, https://doi.org/10.5194/gmd-18-3509-2025,https://doi.org/10.5194/gmd-18-3509-2025, 2025
Short summary
RiverBedDynamics v1.0: a Landlab component for computing two-dimensional sediment transport and river bed evolution
Angel D. Monsalve, Samuel R. Anderson, Nicole M. Gasparini, and Elowyn M. Yager
Geosci. Model Dev., 18, 3427–3451, https://doi.org/10.5194/gmd-18-3427-2025,https://doi.org/10.5194/gmd-18-3427-2025, 2025
Short summary
A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)
Robert Jendersie, Christian Lessig, and Thomas Richter
Geosci. Model Dev., 18, 3017–3040, https://doi.org/10.5194/gmd-18-3017-2025,https://doi.org/10.5194/gmd-18-3017-2025, 2025
Short summary

Cited articles

Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C., and Wedi, N. P.: The digital revolution of Earth-system science, Nat. Comput. Sci., 1, 104–113, https://doi.org/10.1038/s43588-021-00023-0, 2021. a
Bell, N. and Hoberock, J.: Chapter 26 - Thrust: A Productivity-Oriented Library for CUDA, in: GPU Computing Gems Jade Edition, edited by Hwu, W.-m. W., Applications of GPU Computing Series, Morgan Kaufmann, Boston, 359–371, https://doi.org/10.1016/B978-0-12-385963-1.00026-5, 2012. a
Bowman, K. P., Lin, J. C., Stohl, A., Draxler, R., Konopka, P., Andrews, A., and Brunner, D.: Input Data Requirements for Lagrangian Trajectory Models, B. Am. Meteorol. Soc., 94, 1051–1058, https://doi.org/10.1175/BAMS-D-12-00076.1, 2013. a
Cai, Z., Griessbach, S., and Hoffmann, L.: Improved estimation of volcanic SO2 injections from satellite retrievals and Lagrangian transport simulations: the 2019 Raikoke eruption, Atmos. Chem. Phys., 22, 6787–6809, https://doi.org/10.5194/acp-22-6787-2022, 2022. a, b
Clemens, J., Hoffmann, L., Vogel, B., Grießbach, S., and Thomas, N.: Implementation and evaluation of diabatic advection in the Lagrangian transport model MPTRAC 2.6, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2023-214, in review, 2023. a
Download
Short summary
Lagrangian particle dispersion models are key for studying atmospheric transport but can be computationally intensive. To speed up simulations, the MPTRAC model was ported to graphics processing units (GPUs). Performance optimization of data structures and memory alignment resulted in runtime improvements of up to 75 % on NVIDIA A100 GPUs for ERA5-based simulations with 100 million particles. These optimizations make the MPTRAC model well suited for future high-performance computing systems.
Share