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Abstract. Lagrangian particle dispersion models are indis-
pensable tools for the study of atmospheric transport pro-
cesses. However, Lagrangian transport simulations can be-
come numerically expensive when large numbers of air
parcels are involved. To accelerate these simulations, we
made considerable efforts to port the Massive-Parallel Tra-
jectory Calculations (MPTRAC) model to graphics process-
ing units (GPUs). Here we discuss performance optimiza-
tions of the major bottleneck of the GPU code of MPTRAC,
the advection kernel. Timeline, roofline, and memory anal-
yses of the baseline GPU code revealed that the applica-
tion is memory-bound, and performance suffers from near-
random memory access patterns. By changing the data struc-
ture of the horizontal wind and vertical velocity fields of
the global meteorological data driving the simulations from
structure of arrays (SoAs) to array of structures (AoSs) and
by introducing a sorting method for better memory alignment
of the particle data, performance was greatly improved. We
evaluated the performance on NVIDIA A100 GPUs of the
Jülich Wizard for European Leadership Science (JUWELS)
Booster module at the Jülich Supercomputing Center, Ger-
many. For our largest test case, transport simulations with
108 particles driven by the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA5 reanalysis, we
found that the runtime for the full set of physics computa-
tions was reduced by 75 %, including a reduction of 85 %
for the advection kernel. In addition to demonstrating the

benefits of code optimization for GPUs, we show that the
runtime of central processing unit (CPU-)only simulations is
also improved. For our largest test case, we found a runtime
reduction of 34 % for the physics computations, including
a reduction of 65 % for the advection kernel. The code opti-
mizations discussed here bring the MPTRAC model closer to
applications on upcoming exascale high-performance com-
puting systems and will also be of interest for optimizing the
performance of other models using particle methods.

1 Introduction

By enabling the application of cutting-edge techniques,
graphics processing units (GPUs) have become a corner-
stone of Earth system modeling, greatly accelerating sim-
ulations and enabling finer resolutions, longer time spans,
more complex physics, and larger ensembles (Govett et al.,
2017; Fuhrer et al., 2018; Loft, 2020; Bauer et al., 2021;
Wang et al., 2021; Giorgetta et al., 2022). GPUs emerged as a
transformative technology due to their unprecedented capac-
ity to accelerate complex computational tasks. These high-
performance hardware devices, originally designed for ren-
dering graphics, have been harnessed for scientific applica-
tions due to their massively parallel architecture. In the con-
text of Earth system modeling, which involves intricate simu-
lations of atmospheric, oceanic, and other environmental pro-
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cesses, GPUs provide a significant advantage by enabling re-
searchers to process vast amounts of data and execute com-
putationally intensive algorithms at remarkably faster rates
than traditional central processing units (CPUs).

Earth system modeling demands simulations with high
spatial and temporal resolutions to capture complex interac-
tions and phenomena. GPUs excel at handling such require-
ments, as they can simultaneously perform numerical calcu-
lations across multiple compute elements, effectively tack-
ling the parallel nature of Earth system simulations. This ca-
pability translates into accelerated model execution, allowing
us to run simulations in considerably shorter time frames. As
a result, scientists can explore a broader range of scenarios,
refine models, and iterate through simulations more rapidly,
enhancing the understanding of complex Earth system dy-
namics.

Given the importance of GPUs for scientific computing,
we devoted considerable effort in recent years to porting
the Massive-Parallel Trajectory Calculations (MPTRAC) La-
grangian transport model to GPUs (Hoffmann et al., 2022).
Lagrangian transport models such as MPTRAC are primarily
used to study atmospheric transport processes in the bound-
ary layer, the free troposphere, and the stratosphere. Com-
monly used Lagrangian models for research and practical ap-
plications today are described by Draxler and Hess (1998),
McKenna et al. (2002a, b), Lin et al. (2003), Stohl et al.
(2005), Jones et al. (2007), Stein et al. (2015), Sprenger
and Wernli (2015), and Pisso et al. (2019). For example,
the MPTRAC model has been successfully used to assess
the dispersion of volcanic emissions from local to global
scale (Heng et al., 2016; Hoffmann et al., 2016; Wu et al.,
2017, 2018; Liu et al., 2020; Cai et al., 2022; Liu et al.,
2023). In addition, the model has been used to study aerosol
transport pathways within the upper troposphere and lower
stratosphere (Zhang et al., 2020; Smoydzin and Hoor, 2022;
Clemens et al., 2024).

Eulerian models represent fluid flows in the atmosphere
based on the flow between regular grid boxes of the model.
Lagrangian models represent the transport of trace gases and
aerosols based on large sets of air parcel trajectories follow-
ing the fluid flow. Both approaches have distinct advantages
and disadvantages. Lagrangian models are particularly well
suited for studying fine-scale structures, filamentary trans-
port, and mixing processes in the atmosphere because their
spatial resolution is not inherently limited to the resolution of
Eulerian grid boxes, and numerical diffusion is particularly
low for these models. Lagrangian transport simulations can
be quite expensive because diffusion and mixing are based
on applying stochastic perturbations to large sets of air par-
cel trajectories. However, Lagrangian transport simulations
are considered to be particularly amenable to parallelization,
since the workload of computing large sets of air parcels can
be distributed across many compute elements of a CPU or
GPU. This is an embarrassingly parallel computational prob-
lem because the air parcel trajectories are computed inde-

pendently of each other. A specific problem, however, is re-
lated to memory access patterns, which we address in the
present study. Eulerian models typically have well-structured
memory access patterns, with computational loops sequen-
tially accessing aligned memory elements, such as the verti-
cal columns of the meteorological fields over the model grid.
In contrast, Lagrangian models exhibit near-random memory
access patterns to the meteorological data due to the near-
random distribution of air parcels in the atmosphere.

In this study, we aimed to optimize the GPU implementa-
tion of the MPTRAC Lagrangian transport model to achieve
higher simulation throughput and, by better utilizing the
GPU devices, also to improve the energy efficiency of the
code. To this end, we performed detailed performance anal-
yses of the MPTRAC GPU code, in particular the model’s
advection kernel, on the Jülich Wizard for European Leader-
ship Science (JUWELS) Booster high-performance comput-
ing (HPC) system. Here, we focus on performance analysis
and optimization on the JUWELS Booster as this is the state-
of-the-art production machine at the Jülich Supercomputing
Center, Germany, on which most of the simulations with
MPTRAC are currently being run. The performance analy-
ses were conducted using the internal timers of the model
as well as the NVIDIA Nsight Systems and Nsight Compute
tools.

The performance analyses revealed that the baseline code
of the model is largely memory-bound and that optimiza-
tion efforts had to focus on optimizing the memory access
patterns and the memory layout of the data structures. Two
optimizations significantly improved the performance of the
code compared to the baseline version, not only for the ad-
vection kernel but for the entire set of physics calculations
of the model. While we focused primarily on optimizing
MPTRAC’s GPU code, which is considered most relevant for
application on future exascale HPC systems, we also found
that the optimized code provides performance benefits on
conventional CPU-based machines. We expect that the code
optimizations found here will be helpful also in further op-
timizing the performance of other models applying particle
methods.

This paper is organized as follows. In Sect. 2, we provide a
brief overview of the MPTRAC Lagrangian transport model
and the advection kernel that was the focus of our code opti-
mization efforts. In Sect. 3 we describe the test case used to
evaluate the code performance optimizations of MPTRAC.
This includes a description of the JUWELS Booster HPC
system at the Jülich Supercomputing Center on which the
tests were performed. Section 4 summarizes the main results
of the performance analysis of the baseline and optimized
code versions of MPTRAC. In particular, we compare time-
line analyses of the simulations and compare roofline and
memory chart analyses of the advection kernel obtained with
Nsight Systems and Nsight Compute. In Sect. 5, we discuss
the optimization of the meteorological data memory layout,
and in Sect. 6, we discuss the optimization of the particle
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data memory layout in more detail. Section 7 summarizes
the benefits of the code optimizations for CPU-only simula-
tions. Finally, Sect. 8 summarizes the results of the study and
gives our conclusions.

2 The MPTRAC Lagrangian transport model

MPTRAC (Hoffmann et al., 2016, 2022) is a Lagrangian par-
ticle dispersion model for the analysis of atmospheric trans-
port processes in the free troposphere and the stratosphere.
MPTRAC calculates the trajectories of air parcels by solv-
ing the kinematic equation of motion using given horizon-
tal wind and vertical velocity fields from global reanalyses
or forecasts. Eddy diffusion and subgrid-scale wind fluc-
tuations are simulated applying the Langevin equation to
add stochastic perturbations to the trajectories. Additional
modules are implemented to simulate convection, sedimen-
tation, exponential decay, gas- and aqueous-phase chemistry,
and wet and dry deposition. The meteorological data pre-
processing code of MPTRAC provides estimates of boundary
layer height, convective available potential energy, geopoten-
tial heights, potential vorticity, and tropopause data. Differ-
ent types of model output are available, including particle,
grid, ensemble, profile, sample, and station data. The output
can be written in different data formats, including the Net-
work Common Data Format (netCDF) as well as data files for
the Gnuplot and ParaView visualization tools. The code fea-
tures a hybrid MPI–OpenMP–OpenACC parallelization for
efficient use from single workstations up to HPC and GPU
clusters.

Figure 1 shows an overview of the geophysical mod-
ules and other software components of MPTRAC. Here we
roughly divided the geophysical modules into the modules
that deal with the trajectory calculations and the modules
that deal with the chemistry calculations. The former mod-
ules modify the positions of the air parcels, while the lat-
ter modules affect the trace gas or aerosol concentrations as-
signed to them. Meteorological input data can be ingested in
a variety of data formats, the most common being netCDF.
The meteorological data pre-processing code allows the user
to derive various diagnostic variables, such as geopotential
heights, potential vorticity, or tropopause data, from the pri-
mary state variables of the meteorological input data. Model
output can be written in various types, with particle and grid
output being most commonly used. A set of utility or infras-
tructure components is available for basic tasks such as inter-
polation of the meteorological data. In this study, we revised
and optimized the code for handling the meteorological data
and added a new module for sorting the particle data in mem-
ory to optimize the memory access patterns and thereby the
performance and energy efficiency of Lagrangian transport
simulations with MPTRAC on GPUs.

Our optimization efforts focused largely on MPTRAC’s
advection kernel, which was found to consume most of the

runtime for large simulations. The advection kernel provides
the numerical solution to the trajectory equation,

dx

dt
= v(x, t), (1)

where x(t) denotes the position of an air parcel at time t
in response to a given wind and velocity field v(x, t). The
geographical coordinate system x = (λ,φ,p) specifies the
position with longitude λ, latitude φ, and pressure p. The
velocity vector v = (u,v,ω) contains the zonal wind compo-
nent u, the meridional wind component v, and the vertical
velocity ω. The explicit midpoint method is used to solve the
trajectory equation, expressed as

x(t+1t)= x(t)+1t v

{
x(t)+

1t

2
v [x(t), t] , t +

1t

2

}
. (2)

This method is known for its balanced trade-off between ac-
curacy and computational efficiency (Rößler et al., 2018).
Following the common practice in Lagrangian transport
models (Bowman et al., 2013), 4-D linear interpolation is ap-
plied to the provided wind and velocity fields in both spatial
and temporal dimensions.

Lagrangian transport simulations with MPTRAC are
driven by global meteorological reanalyses or forecasts, in-
cluding various data products provided by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF), the
National Aeronautics and Space Administration (NASA), the
National Centers for Environmental Prediction (NCEP), and
the National Center for Atmospheric Research (NCAR). In
this study, we use the ECMWF ERA5 (Hersbach et al., 2020)
and ERA-Interim (Dee et al., 2011) reanalyses to drive the
transport simulation and conduct the performance analyses
of MPTRAC. While ERA5, launched in 2016, represents the
current state of global meteorological reanalysis at ECMWF,
its predecessor ERA-Interim, launched in 2006, is considered
here mainly for comparison because it has a much lower data
volume and spatiotemporal resolution than ERA5. Specifi-
cally, ERA5 provides hourly meteorological fields at TL639
(∼ 31 km) horizontal resolution on 137 vertical levels from
the surface up to 0.01 hPa. ERA-Interim provides 6-hourly
fields at TL255 (∼ 79 km) horizontal resolution on 60 levels
up to 0.1 hPa.

Handling the large volume of ERA5 data in Lagrangian
transport simulations is a particular challenge. For exam-
ple, when conducting 10 d forward-trajectory calculations on
the Jülich Research on Exascale Cluster Architectures (JU-
RECA) HPC system at the Jülich Supercomputing Center,
Hoffmann et al. (2019) found that calculations with ERA5
require about 10 times more runtime and main memory and
about 80 times more disk space than the corresponding sim-
ulations with ERA-Interim. While downsampling the ERA5
data to a lower horizontal resolution is a viable approach to
improve the computational performance of Lagrangian trans-
port simulations, it must also be considered that it introduces
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Figure 1. Overview of the geophysical modules and other software components of the Lagrangian transport model MPTRAC.

transport deviations, for example for convective events in the
troposphere (Hoffmann et al., 2019, 2023b; Clemens et al.,
2023). Therefore, in this study we consider ERA5 data at its
full native resolution. Comparing transport simulations with
ERA5 and ERA-Interim allows us to evaluate our code opti-
mizations and the performance of MPTRAC with respect to
different size and resolution of the input data. For further de-
tails on how we retrieved the reanalysis data from ECMWF
and how they are pre-processed for use with MPTRAC, see
Hoffmann et al. (2022).

3 Description of the test case and environment

We conducted detailed performance benchmarking with the
baseline and optimized code versions of MPTRAC. In the
test case for the transport simulations considered here, we
used the modules for simulating the advection of air parcels,

the eddy diffusion and subgrid-scale wind parameterizations,
and the extreme convection parameterization. We considered
loss processes due to an exponential decay of particle mass,
chemical reaction with hydroxyl, and wet deposition. The
model configuration is similar to previous studies in which
we used MPTRAC to simulate the long-range transport and
dispersion of sulfur dioxide from volcanic eruptions (Heng
et al., 2016; Hoffmann et al., 2016; Wu et al., 2017, 2018;
Liu et al., 2020; Cai et al., 2022; Liu et al., 2023). We did
not limit the test case for benchmarking to advection alone in
order to assess how code optimizations affect other parts of
the code as well.

The transport simulations were initialized on 1 Jan-
uary 2017, 00:00 UTC, and cover a period of 24 h. Two dif-
ferent sets of meteorological data are considered to assess
how performance scales with the size of the input data. The
simulations were driven by hourly ERA5 data with a model
time step of 180 s or 6-hourly ERA-Interim data with a model
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time step of 360 s. The runtime required for model output
varies greatly depending on the selection of the type and fre-
quency of the output. We have chosen two types of output
as representative examples. Particle data output, comprising
individual data such as the position and additional variables
per air parcel, was written every 6 h. Grid output, comprising
mean or aggregated air parcel data over regular grid boxes,
was written every hour.

We used sets of 105 to 108 globally distributed air parcels
to see how performance scales with problem size. The ran-
dom horizontal distribution of the air parcels was scaled by
the cosine of latitude to achieve nearly homogeneous hori-
zontal coverage. For the vertical distribution, we used a uni-
form random distribution from the surface up to ∼ 60 km al-
titude. A set of globally distributed air parcels was chosen
here for testing, rather than a test case representing the spread
of emissions from a point source. We have chosen globally
distributed air parcels to ensure that most of the meteorolog-
ical data are accessed as input during the simulations. As a
larger amount of data need to be handled, this is technically
more challenging than a test case using only a subset of the
meteorological data in a local case study.

Performance benchmarking was conducted using ver-
sion 2.6 of MPTRAC. Both the CPU version and the GPU
version of MPTRAC were compiled using the NVIDIA
HPC Software Development Kit (SDK) C compiler, ver-
sion 23.1. Common optimization flags have been ap-
plied; see the Makefile located in the code repository
for more details. Note that data transfers between the
host (CPU) and the device (GPU) memory are explic-
itly specified in the code rather than using the NVIDIA
Unified Memory feature. To optimize OpenMP scal-
ing of the compute jobs, process binding was enabled
(OMP_PROC_BIND=true); i.e., threads remain pinned to
cores throughout the simulation. The threads were placed on
individual sockets (OMP_PLACES=sockets). We disabled
simultaneous multithreading (via the Slurm scheduler with
--hint=nomultithread); i.e., the number of compute
tasks and logical cores corresponds to the number of physical
cores.

The Booster module of JUWELS (Jülich Supercomput-
ing Centre, 2019, 2021, 2023) was employed for all calcu-
lations. The machine consists of 936 compute nodes. Each
node is equipped with two AMD EPYC Rome 7402 CPUs
and four NVIDIA A100 GPUs connected to other GPUs via
200 GB s−1 third-generation NVLink. Each node has four In-
finiBand HDR 200 adapters. Nodes are connected to each
other in a DragonFly+ topology. A total of 3744 A100 GPUs
put the JUWELS Booster in 13th place on the TOP500 list,
even 3 years after its installation. Table 1 summarizes tech-
nical specifications of the JUWELS Booster compute nodes.
Note that the compute nodes are reserved for a single user
and are not time-shared when the test runs are executed. The
compute resources of the node are exclusively reserved for

the user, while the network and file system access are shared
with other users executing jobs on other nodes.

4 Performance analysis of baseline and optimized code

In this section, we discuss performance analyses of the orig-
inal code of MPTRAC version 2.6, also referred to as the
baseline code, and optimized versions of the model, which
include optimizations of the memory layout and the mem-
ory access pattern of the meteorological data and the particle
data. The details of the code improvements are discussed fur-
ther in Sects. 5 and 6. We first performed a timeline analysis
using Nsight Systems, which mainly helped us to identify the
performance bottlenecks and hotspots of the code that needed
further investigation. This analysis showed that the advection
kernel of MPTRAC was the major bottleneck of the baseline
code. Next, we used Nsight Compute to perform a roofline
and memory analysis of the advection kernel to provide fur-
ther guidance on how to optimize the code. The performance
analysis with Nsight Systems and Nsight Compute is illus-
trated here for the largest test case considered in the study,
consisting of a set of 108 particles driven by ERA5 meteoro-
logical fields.

Figure 2 shows screenshots of the timeline analysis with
Nsight Systems for the baseline and optimized code. We
selected a single time step of the MPTRAC time loop for
illustration. The plots show timelines as stacked rows for,
from top to bottom, GPU utilization of the code; a selec-
tion of the most relevant compute kernels of MPTRAC; the
NVIDIA Tools Extension Library (NVTX) ranges (NVIDIA,
2024), which we explicitly added to the code to annotate
ranges between two points in the program’s execution; and
the OpenACC compute constructs and data transfers that are
performed. The runtime required to compute a single time
step is about 740 ms for the baseline code (Fig. 2a). In the
baseline code, the advection kernel consumes about 55 %
of the runtime, followed by subgrid-scale wind fluctuations
(15 %), hydroxyl chemistry (9 %), convection (5 %), wet de-
position (5 %), random number generation (4 %), and air par-
cel position checking (3 %). Other modules of MPTRAC
used in the test case require 1 % or less of the runtime of
a time step.

Since the advection kernel consumes most of the runtime
of the baseline code, we decided to further analyze and opti-
mize this part of the code, as discussed below. A time step of
the fully optimized code requires about 180 ms (Fig. 2b), a
reduction of 76 % compared to the baseline code. The dis-
tribution of the runtime between the different modules is
more balanced in the optimized code. The advection ker-
nel consumes about 30 % of the runtime of a time step, fol-
lowed by random number generation (17 %), hydroxyl chem-
istry (14 %), convection (9 %), air parcel position checking
(9 %), wet deposition (8 %), subgrid-scale wind fluctuations
(7 %), eddy diffusion (3 %), and exponential decay (3 %). As
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Table 1. Technical specifications of JUWELS Booster compute nodes.

CPUs (two per node)

CPU model AMD EPYC Rome 7402
CPU architecture AMD Zen 2
Base frequency 2.8 GHz
CPU memory 512 GB DDR4, 3200 MHz
Memory bandwidth 204.8 GB s−1 (per socket)
Cores 24 physical/48 virtual (SMT)
Host to device interface PCIe Gen4 ×128 (64 GB s−1)
Thermal design power 180 W

GPUs (four per node)

GPU model NVIDIA A100 40 GB SXM4
GPU architecture NVIDIA Ampere GPU architecture (CC 8.0)
FP64 performance 9.7 (19.5 tensor core) TFLOP s−1

FP32 performance 19.5 (156 TF32) TFLOP s−1

GPU memory 40 GB HBM2
Memory bandwidth 1.6 TB s−1

Cores 3456 (FP64)/6912 (FP32)
GPU to GPU interface Third-generation NVIDIA NVLink (600 GB s−1)
Thermal design power 400 W

pointed out earlier, the runtime between the different mod-
ules of the optimized code was not only better balanced, but
also significantly reduced overall. It is important to note that
the optimizations we introduced benefitted not only the ad-
vection kernel, but also other parts of the code.

Figure 3 shows the results of the roofline analysis of
MPTRAC’s advection kernel as obtained with Nsight Com-
pute. The roofline model visualizes floating point perfor-
mance (in units of FLOP s−1) as a function of arithmetic in-
tensity (in units of FLOPs per byte). The arithmetic inten-
sity is defined as the number of floating point operations di-
vided by the number of bytes of main memory accessed to
execute a program. The roofline model represents the the-
oretical performance bounds below which kernel or applica-
tion performance exists. The roofline model is defined by two
platform-specific performance bounds, i.e., a bound derived
from memory bandwidth and a bound derived from proces-
sor peak performance. The roofline analysis for the advection
kernel shows that the code is memory-bound; i.e., it spends
most of its time accessing memory rather than computing.

Specifically, the roofline analysis shows that the base-
line code had a compute performance of 131.5 GFLOP s−1,
an arithmetic intensity of 0.14 FLOPs per byte for dou-
ble precision, a performance of 34.7 GFLOP s−1, and an
arithmetic intensity of 0.04 FLOPs per byte for single
precision. Our code improvements increased the compute
performance to 716.8 GFLOP s−1, the arithmetic intensity
to 4.14 FLOPs per byte for double precision, the perfor-
mance to 209.2 GFLOP s−1, and the arithmetic intensity to
1.21 FLOPs per byte for single precision. This is an increase
in performance by a factor of 5.5 for double precision and

6.0 for single precision. Note that most of the computations
in MPTRAC’s advection kernel are conducted in double pre-
cision. Note also that the peak floating point performance of
the NVIDIA A100 GPU devices (Table 1) is much higher
than the performance values found here. Peak performance
values are theoretical limits that can only be approached
by highly optimized compute-bound algorithms, whereas the
advection kernel of MPTRAC is memory-bound.

Figure 4 shows a memory chart for the baseline and opti-
mized code of the MPTRAC advection kernel as obtained
with Nsight Compute. This graph shows that the baseline
code (Fig. 4a) has relatively low hit rates of 45.56 % for
accessing the L1/TEX cache and 52.71 % for accessing the
L2 cache. The throughput from the GPU device memory to
the L2 cache is at a level of 850.71 GB s−1, which exceeds
60 % of the peak bandwidth. The Nsight Compute analysis
suggests that the main issue of the baseline code of the ad-
vection kernel arises from its memory access patterns. The
access patterns of the advection kernel are nearly random
due to the fact that the air parcels are randomly distributed
on the global scale in our simulation. Sequential access pat-
terns, where data are processed with straightforward incre-
mented or decremented addressing, are highly amenable to
prefetching. In contrast, near-random access patterns break
the principle of locality and usually inhibit performance op-
timization through the use of techniques such as caching.

Large global meteorological fields from state-of-the-art re-
analyses such as ERA5 require a significant amount of de-
vice memory of the GPU. For example, storing ERA5 data
for two time steps for use with MPTRAC requires about
14 of the 40 GB device memory of the JUWELS Booster’s
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Figure 2. Timeline analyses of a single time step of the MPTRAC Lagrangian transport model for a simulation with 108 globally distributed
air parcels driven by ERA5 data. Results are shown for (a) the baseline code of MPTRAC and (b) an optimized code version with improved
data structures and memory access patterns. The analyses were conducted on the JUWELS Booster HPC system at the Jülich Supercomputing
Centre, Germany. The screenshot images shown here were created using the NVIDIA Nsight Systems software. The Nsight System report
files used to create this figure are made available in the electronic supplement to the paper.

NVIDIA A100 GPUs. If we access this data in a nearly ran-
dom manner, there is a rather small chance that it is available
directly from the L1/TEX cache (having a size of 192 kB)
or from the L2 cache (40 MB). Accessing the data requires
expensive data transfers from device memory through the
cache hierarchy. These data transfers cannot be conducted
asynchronously with the computation. From the performance
analysis of the baseline code, we concluded that optimization
efforts had to focus primarily on optimizing data structures
and memory access patterns. For reference, Fig. 4b shows

the memory chart of the optimized code. The hit rates in-
creased to 81.36 % for the L1/TEX cache and 85.85 % for
the L2 cache. The throughput from GPU device memory to
the L2 cache was reduced to 122.15 GB s−1, which is less
than 10 % of the peak bandwidth. The code optimizations we
applied to achieve these improvements are discussed in more
detail in the following sections.
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Figure 3. Roofline analysis of the baseline (green and orange points) and optimized (blue and red points) versions of the advection kernel
of the MPTRAC Lagrangian transport model. Results are shown for single-precision (green and blue points) and double-precision (orange
and red points) calculations, respectively. The constant lines indicate the compute performance limits of the NVIDIA A100 GPU devices for
double and single precision, respectively. The slanted line to the left indicates the memory bandwidth limit of the GPU device. The screenshot
image shown here was created using the NVIDIA Nsight Compute software and enhanced for visibility using a graphics processing tool. The
Nsight Compute report files used to create this figure are made available in the electronic supplement to the paper.

5 Optimization of meteorological data memory layout

In this study, we identified two methods for accelerating La-
grangian transport simulations with MPTRAC. Both meth-
ods involve optimizing the memory layout of the code’s data
structures. The first method optimizes the data structures
of the meteorological fields, in particular of the horizontal
wind and vertical velocity components (u,v,ω). In the base-
line code, the wind and velocity components are stored in
three separate 3-D arrays as floats with single precision, de-
clared in the C language as float u[EX][EY][EZ],
v[EX][EY][EZ], w[EX][EY][EZ]. The size of the 3-
D arrays is specified by the number of longitudes, EX; the
number of latitudes, EY; and the number of pressure levels,
EZ. In the C programming language, arrays are arranged in
memory in row order, as opposed to Fortran, where they are
arranged in column order. In our case, the elements along the
EZ dimension are most closely aligned in memory, followed
by the EY dimension and then the EX dimension.

The memory layout chosen in the baseline code of
MPTRAC is best suited for computational kernels that op-
erate on individual vertical profiles of the meteorological
data, since the data of individual vertical profiles are aligned
and can be effectively transferred in the form of cache lines
from the main memory to the memory caches of the GPU or
CPU during program execution. This property is exploited in
MPTRAC’s meteorological data pre-processing code, which
is used to compute various diagnostic meteorological vari-
ables such as geopotential heights or potential vorticity from
vertical profiles of basic state variables such as pressure, tem-
perature, humidity, or horizontal winds and vertical velocity

as provided by the external meteorological model. In con-
trast, compute kernels that operate on individual horizontal
levels of the data are less efficient with the given data struc-
ture because the data are spread more widely across mem-
ory, causing unnecessary data transfers of cache lines from
the main memory to caches where only a few elements actu-
ally need to be accessed. Time-consuming cache misses oc-
cur more frequently when there is frequent and uncoalesced
access to data outside the cache lines.

The memory layout of the data structures and the access
patterns of the compute kernels therefore have to be care-
fully considered to optimize memory access. MPTRAC’s ad-
vection kernel operates in an outer loop over all air parcels,
which is either distributed across the CPU’s compute cores
via OpenMP or offloaded to the GPU via OpenACC. Inside
the loop, the kernel applies the mid-point scheme for numeri-
cal integration to determine the trajectories of the air parcels.
The mid-point scheme requires 4-D linear interpolation of
the wind and velocity components in space and time. Since
the wind and velocity components are needed in immediate
succession to compute the trajectories, we rearranged and
merged the 3-D arrays of the wind and velocity components
into a single 4-D array so that the wind and velocity compo-
nents are directly aligned in memory. The array is declared
as float uvw[EX][EY][EZ][3]. In this revised data
structure, the innermost index of the array uvw refers to one
of the three wind and velocity components. Technically, this
resembles a change of data structures from structure of ar-
rays (SoAs) of the separate arrays u, v, and w to array of
structures (AoSs) for the combined array uvw.
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Figure 4. Memory chart for the baseline (a) and optimized (b) code of the MPTRAC advection kernel for the largest ERA5 test case. The
green boxes show the memory elements directly connected to the GPU’s compute elements. The blue boxes show the L1/TEX and L2 caches,
device memory, etc. The hit rates indicate how often data are accessible directly from the caches. The labels along the arrows indicate the
throughput (in units of GB s−1) within the memory architecture. The color coding indicates the fraction of peak bandwidth. The screenshot
images shown here were created using the NVIDIA Nsight Compute software and enhanced for visibility using a graphics processing tool.
The Nsight Compute report files used to create this figure are made available in the electronic supplement to the paper.

Figure 5 shows selected runtime measurements for differ-
ent parts of the MPTRAC model for our largest test case,
using ERA5 data for input and considering the maximum of
108 particles in this study. By optimizing the memory layout
of the wind and velocity fields, the total runtime of the sim-
ulations (Fig. 5a) was reduced from 477 to 365 s (−23 %).

The physics runtime was reduced from 377 to 265 s (−30 %).
The runtime for file I/O and data transfers between CPU
and GPU memory did not change notably, as expected. A
breakdown of the physics timers (Fig. 5b) shows that the run-
time of the advection kernel was reduced from 189 to 105 s
(−44 %) and that of the subgrid-scale wind parameterization
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from 61 to 32 s (−48 %). The other geophysical modules
of MPTRAC did not show any improvements, which was
expected since they do not access the optimized wind and
velocity fields. However, the optimizations of the advection
kernel and the parameterizations of the subgrid-scale wind
fluctuations alone yield significant overall improvements in
the physics computations and total runtime of the simula-
tion. Note that the simulation results from the optimized and
original versions of the code give bitwise identical results, as
expected.

Figure 6 shows the scaling of the runtime and the speedup
of the optimized code (labeled “Meteo fields”, green bars)
with respect to the baseline. Since the total runtime of the
code is affected by various aspects, we focus here on the
physics calculations covering the selected computational ker-
nels included in the test case and the specific results for the
advection kernel. The scaling results are shown for different
problem sizes, represented by the number of particles vary-
ing from 105 to 108. The tests were performed using both
ERA5 and ERA-Interim fields to drive the transport simula-
tions in order to assess the dependence on the size of the input
data. The log–log plots of runtime (Fig. 6a, c) show nearly
ideal, linear scaling for large problem sizes (≥ 106 particles)
and only slight degradations from linear scaling for smaller
problem sizes. This nearly ideal scaling with respect to prob-
lem size is observed for both ERA5 and ERA-Interim data.
The estimated speedup of the optimized code over the base-
line code (Fig. 6b, d) is mostly greater than 1, indicating im-
provements in runtime. The speedup due to the optimization
of the meteorological data layout increases with increasing
numbers of particles but tends to saturate for 106 particles or
more. For the full set of physics kernels, we found a maxi-
mum speedup of 1.4 for both ERA5 and ERA-Interim. For
the advection kernel, we found a maximum speedup of 1.8
for ERA5 and a maximum speedup of 2.0 for ERA-Interim.

We performed an additional experiment on the data
structures of the meteorological fields, testing whether in-
cluding the temperature (T ) as a fourth component of
the AoS in addition to the wind and velocity fields
(u,v,ω), resulting in the combined 4-D array float
uvwt[EX][EY][EZ][4], would bring further runtime
benefits due to vectorized memory access. The test showed
that the performance of the advection module with the 4-D
array including temperature was lower, with the runtime of
the ERA5 simulations with 108 particles increasing by 20 %
and ERA-Interim by 3 %. Thus, on GPUs, further expansion
of the AoS may only be worthwhile if computationally in-
tensive modules would be added that combine the use of the
wind fields with temperature in a single computational ker-
nel. This might be relevant in future work, as we intend to
implement diabatic vertical transport in MPTRAC.

6 Optimization of particle data memory layout

The memory analysis with Nsight Compute showed that the
advection kernel is memory-bound and that the runtime de-
pends largely on the data transfers of meteorological data
from the GPU main memory to the caches and registers of
the GPU compute elements (Sect. 4). Starting from a set of
near-random globally distributed particles, the corresponding
memory access patterns of the advection kernel are also near
random. This leads to a notable fraction of cache misses and
a slowdown in the overall runtime of the kernel. Significant
improvements in the runtime of the compute kernel were ex-
pected due to better alignment of memory access.

For this reason, we utilized a sorting algorithm that re-
orders the particle data in memory to better align memory ac-
cess. MPTRAC’s new sorting module consists of three steps.
In the first step, we compute a linear box index for each
air parcel that represents the target location in memory. For
an air parcel located in the longitude–latitude–pressure box
[λi,λi+1]× [φj ,φj+1]× [pk,pk+1], the linear box index is
calculated as l = (i×nlat+j)×np+k, where nlat and np are
the numbers of latitudes and pressure levels of the 3-D meteo
fields, respectively. Considering that the 3-D fields are stored
in a row–major order in our code, sorting the particle data
according to the linear box index l ensures that we access the
meteorological data in order when we linearly iterate over all
the particles. In the second step, we therefore apply a sort-
ing algorithm to find the permutation P of the particles that
will reorder them according to the box index l. Here we used
the key-value sorting function of the Thrust parallel algo-
rithm library (Bell and Hoberock, 2012), which provides ef-
ficient implementations of sorting algorithms for both CPUs
and GPUs. For primitive data types such as integer numbers,
Thrust dispatches a highly tuned radix sort algorithm, which
is considerably faster than alternative comparison-based sort-
ing algorithms such as merge sort. In the third step, the in-
dividual arrays of particle data, i.e., their positions and any
additional variables per air parcel, are sorted according to P .
Here, the individual data of the arrays are swapped accord-
ing to P so that the data are aligned, and quasi-random access
to memory is avoided. All three steps are parallelized using
CUDA and OpenACC for offloading to GPUs or OpenMP
for executing on CPUs.

Figure 5 shows that there are significant runtime improve-
ments due to particle sorting for the largest test case using
ERA5 data and 108 particles. The total runtime of the sim-
ulations (Fig. 5a) was reduced from 477 to 201 s (−58 %).
The physics runtime was reduced from 377 to 107 s (−72 %).
The breakdown of the physics timers (Fig. 5b) shows that the
runtime of not only the advection kernel, but also most of the
other compute kernels was reduced. The largest reductions
in runtime were found for the advection kernel (−80%),
the subgrid-scale wind fluctuations (−77%), the sampling
of meteorological data along the trajectories (−76%), the
hydroxyl chemistry (−66%), and wet deposition (−65%).
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Figure 5. Runtime measurements for the largest test case using 108 particles and ERA5 data as input. Panel (a) shows the total runtime and
the group timers for physics computation, file I/O, and data transfers between CPU and GPU memory. Panel (b) shows a breakdown of the
physics timers. Results are shown for the baseline code, the optimization of the memory layout of the wind and velocity fields, the sorting of
the particle data, and the full optimization including both methods (see plot key).

These compute kernels require frequent access to the mete-
orological fields. The smallest reductions were found for the
calculation of exponential decay (−1%) and eddy diffusion
(−6%). These kernels do not require access to the meteoro-
logical data and therefore do not benefit from realignment.
Note that code outside of the physics calculations can also
benefit from particle sorting. For example, the runtime re-
quired to write the grid output is reduced because the grid
output requires the calculation of box averages of the parti-
cle data, which is faster if the particle data are already sorted
according to the grid boxes of the meteorological data. Note

that the simulation results from the particle sorting code and
the base version are merely statistically the same. This is
due to the fact that the reordering of the particle data means
that individual particles are assigned different random per-
turbations in the diffusion and convection modules during
the course of the simulations because the stream of random
numbers was not reordered accordingly.

The results of the scaling test in Fig. 6 show that the
speedup due to particle sorting increases with the number of
particles. This was expected, since as the number of particles
increases, there is a greater chance that the sorted particle
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Figure 6. Runtime (a, c) and speedup (b, d) of the optimized code versions with respect to the baseline code of MPTRAC (see plot key).
Scaling results for the full set of physics kernels (a, b) and the advection kernel only (c, d) are shown for different numbers of particles. The
colored curves show results for ERA5 data. The dashed gray curves show the corresponding results for ERA-Interim.

data will allow for better reuse of the meteorological data
from the caches. In particular, if there are multiple particles
in the same grid box of the meteorological data, this will al-
low for very efficient reuse of the data from the caches. For
the physics timers, we found a maximum speedup of a factor
of 3.5 for ERA5 and 4.4 for ERA-Interim for 108 particles
from particle sorting over the baseline code. For the advec-
tion kernel, we found a speedup of a factor of 5.0 for ERA5
and 10.0 for ERA-Interim. ERA-Interim has much larger grid
boxes than ERA5 and a smaller data volume, which means
that there is a higher chance that particles are in the same or
neighboring grid boxes and can effectively reuse data from
the caches, resulting in a much higher speedup for ERA-
Interim than ERA5. The 3-D fields of the ERA5 data cover
about 98.9×106 grid cells, while the ERA-Interim data cover
about 6.8× 106 grid cells, which is a factor of 14.5. Possi-
bly, the remarkable increase in speedup for ERA-Interim for
5× 106 particles or more is due to the fact that the average
number of particles per grid cell of the meteorological data
exceeds a factor of 1 at this point.

Since sorting can be numerically expensive, we introduced
a control parameter that allows the user to select the time in-
terval 1ts for sorting. Reducing the sorting frequency takes
advantage of the fact that many particles will remain close to
properly sorted for several time steps and will only eventu-
ally become unsorted due to advection, diffusion, and other
processes as the simulation progresses. This is illustrated in
Fig. 7, which shows individual runtime measurements of the
advection kernel during the simulation for sorted and un-
sorted particle data. For illustration, the particles were sorted
only once at the beginning of the simulations in this example.
During the 10 d time period shown here, it is found that the
particles become unsorted much faster in the ERA5 simula-
tion than in the ERA-Interim simulation. This is attributed to
the fact that ERA5 has smaller grid boxes and larger grid-
scale variability than ERA-Interim.

For the performance measurements presented earlier, we
have chosen 1ts = 1h for sorting, which corresponds to 20
time steps of the simulation with the ERA5 data. With this
setting, sorting causes a rather small overhead of only 1.5 s
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Figure 7. Runtime measurements of the advection kernel during a
10 d time period of ERA5 and ERA-Interim simulations with 108

particles. Different curves show the runtime measurements for un-
sorted particle data and for sorting the particles once at the begin-
ning of the simulations (see plot key).

or 1.4 % of the physics runtime for the largest ERA5 test
case on the GPUs in total. This surprisingly small overhead is
due to the highly efficient GPU implementation of the Thrust
library’s key-value sorting algorithm. In general, there is a
trade-off to consider, as more frequent sorting reduces the
physics runtime but requires more time for the sorting itself
and vice versa. We therefore performed a parameter study
on the choice of 1ts to find the best trade-off regarding the
sorting frequency. Figure 8 shows the speedup of the set of
physics timers, including the particle sorting, for different
choices of1ts. For the largest simulations with 108 particles,
it confirms that the best speedup is achieved for1ts = 1h for
ERA5, whereas1ts = 2h is recommended for ERA-Interim.

Finally, we evaluated the benefits of combining both opti-
mization methods, the improved memory layout of the mete-
orological fields (Sect. 5), and the particle data sorting (this
section). Figures 5 and 6 show that most of the runtime im-
provements are actually due to particle sorting, but adding
the optimization of the memory layout of the meteorological
fields still provides additional improvements. For the largest
ERA5 test case with 108 particles, the total runtime was re-
duced by another 5 % for the full optimizations compared
to particle sorting alone (Fig. 5). The physics runtime was
reduced by 10 %, and the advection kernel runtime was re-
duced by 27 %. The maximum speedup increased to 2.5 for
total runtime, 3.9 for the physics runtime, and 6.8 for the ad-
vection kernel (Fig. 6b, d) compared to the baseline.

7 Assessment of code optimization for CPUs

Throughout this study, we primarily focused on GPU opti-
mizations of the MPTRAC model. In this section, we dis-

Figure 8. Speedup of physics calculations due to particle sorting for
different sorting time intervals1ts. The colored curves show results
for ERA5 data for different numbers of particles n (see plot key).
The gray curves show the corresponding results for ERA-Interim.

cuss whether the code optimizations also led to improve-
ments when running on CPUs. Note that the codebase of the
CPU and GPU versions of MPTRAC is mostly the same, ex-
cept that OpenMP is used to distribute the computations in
the particle loop across the CPU cores, whereas OpenACC is
used to offload and parallelize the loop on the GPU device.
In addition, OpenACC is used for explicit memory manage-
ment to ensure that data for the computations are transferred
between CPU and GPU memory as needed. For a detailed
discussion of MPTRAC’s MPI–OpenMP–OpenACC paral-
lelization strategy, see Hoffmann et al. (2022).

Notable exceptions to the parallelization strategy of
MPTRAC are the random number generation and the parti-
cle sorting module. For random number generation, the GNU
Scientific Library (GSL; Galassi and Gough, 2009) is used
on the CPUs, whereas the cuRAND library (NVIDIA, 2023)
is used for GPUs. For particle sorting, a key-value sorting
algorithm of the Thrust parallel algorithm library was uti-
lized for the GPUs. For the CPUs, we also considered a key-
value sorting algorithm from the Thrust library, which pro-
vides OpenMP parallelization. Since we found that sorting
took significantly more time on the CPUs than on the GPUs,
we repeated the sweet-spot analysis described in Sect. 6 to
find the best trade-off for the sorting time interval1ts for the
CPUs. The analysis showed that for ERA5 data 1ts had to
be increased from 1 h for the GPUs to 6 h for the CPUs to
achieve the best speedup due to particle sorting.

Figure 9 shows the total runtime, the physics runtime, and
the runtime of selected modules for the largest test case of
ERA5 transport simulations with 108 particles on the CPUs.
This assessment was performed using 12 out of 48 physi-
cal CPU cores, which is the fraction of CPU cores shared
by each GPU device on the JUWELS Booster, having four
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Figure 9. Runtime measurements for the largest test case using 108 particles and ERA5 data as input for a CPU-only run on the JUWELS
Booster. Similar to Fig. 5, results are shown for the baseline code, the optimization of the memory layout of the wind and velocity fields, the
sorting of the particle data, and the full optimization including both methods (see plot key).

Figure 10. Sankey diagram showing the results of our optimization efforts for MPTRAC for the large ERA5 test case with 108 particles.
The plot shows the distribution of the mean runtime per time step for the baseline code on the left and for the optimized code on the right.
The distribution for the different geophysical modules and components of the code is in the middle. Note that the mean runtime has been
normalized if a module is called several times per time step (e.g., position check of air parcels) or if it is not called at every time step (e.g.,
meteo sampling, memory transfers, and sorting).
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GPU devices per compute node. The CPU-only simulation
therefore has the same baseline in terms of CPU cores as
the GPU run. The runtime measurements indicate that simi-
lar to the OpenACC GPU version, the OpenMP CPU version
of the code also benefits significantly from the optimizations
discussed earlier. The total runtime is reduced from 8904 to
7650 s (−14 %) by optimizing the meteorological data mem-
ory layout, to 6290 s (−29%) by particle sorting, and to
5877 s (−34%) by combining both optimizations. These im-
provements are largely due to improvements in the physics
calculations, which consume more than 99 % of the total run-
time of the simulations on the CPUs. For the advection ker-
nel, we found the runtime was reduced from 2297 s for the
baseline code to 1450 s (−37%) by optimizing the meteo-
rological data memory layout, to 964 s (−58%) by particle
sorting, and to 797 s (−65%) by combining both optimiza-
tions.

Comparing the runtime of the CPU simulations with the
GPU simulations (Figs. 5 and 9) indicates a significantly im-
proved throughput due to GPU acceleration. Due to the sig-
nificantly reduced runtime, this would also lead to signifi-
cant energy savings on the GPUs, despite their higher TDP
(Table 1). However, we refrain from further quantifying the
GPU-over-CPU speedup and energy consumption here. Our
CPU-only and GPU measurements were performed with a
single GPU and with the same baseline in terms of number
of CPU cores. However, this does not take into account a
potential higher peak performance of the CPUs with respect
to better OpenMP scaling and limited OpenACC scaling for
multiple GPUs on a compute node. In general, the CPUs of
the JUWELS Booster have relatively low computational per-
formance compared to other CPUs of the same technological
generation. A CPU-only run to estimate the GPU-over-CPU
speedup of MPTRAC should be performed considering an
HPC system with more powerful CPUs.

8 Summary and conclusions

With unprecedented parallel computing capabilities, GPUs
have become indispensable tools for Earth system modeling,
enabling faster and more comprehensive simulations that en-
hance our understanding of complex environmental dynam-
ics. Here, we outline efforts to optimize the MPTRAC La-
grangian particle dispersion model on GPUs, a model that
is essential for studying chemical and dynamical processes
as well as transport and mixing in the atmosphere. Our op-
timization efforts primarily targeted MPTRAC’s advection
kernel, which was found to dominate runtime, in particular
for our largest test case comprising 108 particles and using
ERA5 meteorological fields to drive the calculations. The fo-
cus of our study was on improving simulation runtime and
energy efficiency through optimized memory access patterns
and data structures, benefiting both GPU and CPU systems.

Detailed performance benchmarks compare baseline and
optimized MPTRAC code versions. The test case involved
modules to represent air parcel advection, eddy diffusion,
subgrid-scale wind fluctuations, convection, exponential de-
cay, and first-order chemical loss processes. Two meteoro-
logical reanalyses, ERA5 and ERA-Interim, are used to as-
sess scaling with respect to the size of the input data. Simula-
tions cover 24 h of time with different types of model output
and consider problem sizes ranging from 105 to 108 globally
distributed air parcels. The benchmarks employ MPTRAC
version 2.6, compiled with standard optimization flags for
the CPU and GPU versions. The performance benchmarking
was conducted on the JUWELS Booster at the Jülich Super-
computing Centre, Germany. The machine features state-of-
the-art NVIDIA A100 GPUs and AMD EPYC Rome 7402
CPUs interconnected via third-generation NVLINK.

Following initial inspection, the code optimization focused
on improving the memory layout and access pattern of the
meteorological data and the particle data. The timeline anal-
ysis with Nsight Systems identified the advection kernel as
the primary bottleneck of the code, requiring 55 % of the
runtime of the physics calculations of our large ERA5 test
case using 108 particles. The roofline and memory analy-
sis of the advection kernel showed that the advection kernel
is memory-bound, which further guided our efforts towards
data layout and memory access optimizations. The first opti-
mization restructured the layout of the meteorological data,
specifically of the horizontal wind and vertical velocity com-
ponents, for improved cache utilization. Substantial runtime
improvements result, with a 44 % reduction in runtime of
the advection kernel and 48 % reduction in the subgrid-scale
wind parameterization. Tests showed nearly linear scaling in
runtime, with the speedup due to the optimization saturating
at a factor of 1.4 as particle count rises.

Analyses using Nsight Compute suggested that
MPTRAC’s advection kernel is affected by near-random
memory access patterns due to near-randomly located air
parcels, causing frequent cache misses and performance
decline. To address this, a sorting algorithm was introduced
as a second optimization, reordering particle data for aligned
memory access, reducing cache misses, and therefore
enhancing runtime. The sorting process includes computing
a linear box index for the particles according to memory
alignment, applying a key-value sorting algorithm to find a
permutation for reordering, and rearranging the individual
data arrays of the particles according to the permutation.
Results demonstrate substantial runtime reductions of 72 %
for the physics calculations, with a maximum reduction of
80 % for the advection kernel. The speedup due to particle
sorting grows steadily with increasing problem size as
memory caches are used more and more effectively as the
number of air parcels per grid box of the meteorological data
increases. Combining the memory layout optimization of
the meteorological fields with particle data sorting provides
further improvements, reducing the runtime of the physics
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calculations by 75 % and of the advection kernel by 85 %.
Figure 10 summarizes the results of our optimization efforts.

The GPU and CPU codebase of MPTRAC is largely the
same, except for the use of OpenMP for CPU parallelization
and OpenACC for GPU offloading of the particle loop. How-
ever, random number generation requires specific libraries
(GSL for CPUs versus cuRAND for GPUs) and different
key-value sorting algorithms for CPUs and GPUs, as pro-
vided by the Thrust library. The evaluation of the largest
ERA5 transport simulations with 108 particles underlines
significant runtime improvements in the GPU optimizations
and for the CPUs. For our largest test case, we found a run-
time reduction of 34 % for the physics computations, includ-
ing a reduction of 65 % for the advection kernel. The code
improvements discussed here are considered to be architec-
ture independent to a large extent. Although we did not quan-
tify the GPU-over-CPU speedup and energy consumption, as
we limited this study to benchmarking the single GPU case,
a direct comparison of the runtime measurements generally
suggests a significant performance advantage of using GPUs
over CPUs.

Achieving performance portability is a particular chal-
lenge in scientific software development. A performance-
portable scientific code should exhibit high levels of perfor-
mance across different computing platforms, architectures,
and hardware configurations while maintaining its function-
ality and accuracy. Performance-portable scientific codes al-
low researchers to run simulations on different HPC systems,
ranging from traditional CPUs to specialized accelerators
such as GPUs, without sacrificing computational efficiency
or accuracy. The current study is limited to some extent in
that it focuses on the performance analysis and optimization
of MPTRAC on a highly relevant but single HPC system,
the JUWELS Booster. We intend to assess and further im-
prove the performance portability of MPTRAC by conduct-
ing a more detailed benchmarking study in future work.

Optimization of code performance is an ongoing process
that does not have a definitive endpoint due to multiple rea-
sons such as complexity of the software, changing require-
ments, evolving hardware, new algorithms and techniques,
and more. For the MPTRAC model, more detailed analyses
of the compute kernels and benchmarking on other HPC sys-
tems are of interest. Considering the fact that the computa-
tions are memory-bound, reducing the size of the meteoro-
logical fields by data compression might be promising. Fur-
thermore, kernel fusion might help to increase arithmetic in-
tensity. Nevertheless, the code optimizations discussed here
highlight substantial performance benefits with MPTRAC on
GPUs and CPUs, bringing the model closer to applications
on upcoming exascale HPC systems.

Code and data availability. The MPTRAC model (Hoffmann
et al., 2016, 2022) is distributed under the terms and conditions
of the GNU General Public License (GPL) version 3. The ver-

sion 2.6 release of MPTRAC used in this paper is archived on
Zenodo (https://doi.org/10.5281/zenodo.10067751, Hoffmann
et al., 2023a). Newer versions of MPTRAC are available from
the repository at https://github.com/slcs-jsc/mptrac (last access:
30 October 2023). The scripts for running the compute jobs
and for analyzing and plotting the results of this study are also
archived on Zenodo (https://doi.org/10.5281/zenodo.10065785,
Hoffmann, 2023). The ERA5 and ERA-Interim reanalysis data
products (Dee et al., 2011; Hersbach et al., 2020) were retrieved
from ECMWF’s Meteorological Archival and Retrieval System
(MARS, ECMWF, 2023, https://www.ecmwf.int/en/forecasts/
datasets/browse-reanalysis-datasets).
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