Articles | Volume 17, issue 7
https://doi.org/10.5194/gmd-17-2783-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-2783-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
REHEATFUNQ (REgional HEAT-Flow Uncertainty and aNomaly Quantification) 2.0.1: a model for regional aggregate heat flow distributions and anomaly quantification
Malte Jörn Ziebarth
CORRESPONDING AUTHOR
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
Sebastian von Specht
Institute of Mathematics, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
Related authors
No articles found.
Arno Zang, Peter Niemz, Sebastian von Specht, Günter Zimmermann, Claus Milkereit, Katrin Plenkers, and Gerd Klee
Earth Syst. Sci. Data, 16, 295–310, https://doi.org/10.5194/essd-16-295-2024, https://doi.org/10.5194/essd-16-295-2024, 2024
Short summary
Short summary
We present experimental data collected in 2015 at Äspö Hard Rock Laboratory. We created six cracks in a rock mass by injecting water into a borehole. The cracks were monitored using special sensors to study how the water affected the rock. The goal of the experiment was to figure out how to create a system for generating heat from the rock that is better than what has been done before. The data collected from this experiment are important for future research into generating energy from rocks.
Cited articles
Agrawal, N., Bikineev, A., Borland, M., Bristow, P. A., Guazzone, M., Kormanyos, C., Holin, H., Lalande, B., Maddock, J., Miller, E., Murphy, J., Pulver, M., Råde, J., Sewani, G., Sobotta, B., Thompson, N., van den Berg, T., Walker, D., and Zhang, X.: Boost C++ Libraries, https://www.boost.org/doc/libs/master/libs/math/doc/html/math_toolkit/double_exponential/de_tanh_sinh.html, last access: 16 November 2022. a
Alefeld, G. E., Potra, F. A., and Shi, Y.: Algorithm 748: Enclosing Zeros of Continuous Functions, ACM Trans. Math. Softw., 21, 327–344, https://doi.org/10.1145/210089.210111, 1995. a, b
Badros, G. J., Borning, A., and Stuckey, P. J.: The Cassowary Linear Arithmetic Constraint Solving Algorithm, ACM Trans. Comput.-Hum. Interact., 8, 267–306, https://doi.org/10.1145/504704.504705, 2001. a
Baldi, P.: A Computational Theory of Surprise, Springer US, Boston, MA, 1–25, ISBN 978-1-4757-3585-7, https://doi.org/10.1007/978-1-4757-3585-7_1, 2002. a, b
Baldi, P. and Itti, L.: Of bits and wows: A Bayesian theory of surprise with applications to attention, Neural Networks, 23, 649–666, https://doi.org/10.1016/j.neunet.2009.12.007, 2010. a
Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., and Smith, K.: Cython: The Best of Both Worlds, Computing in Science & Engineering, 13, 31–39, https://doi.org/10.1109/MCSE.2010.118, 2011. a
Bemmaor, A. C.: Modeling the Diffusion of New Durable Goods: Word-of-Mouth Effect Versus Consumer Heterogeneity, 201–229, Springer Netherlands, Dordrecht, ISBN 978-94-011-1402-8, https://doi.org/10.1007/978-94-011-1402-8_6, 1994. a
Bercovici, D. and Mulyukova, E.: Mantle Convection, pp. 1059–1079, Springer International Publishing, ISBN 978-3-030-58631-7, https://doi.org/10.1007/978-3-030-58631-7_130, 2021. a
Berrut, J.-P. and Trefethen, L. N.: Barycentric Lagrange Interpolation, SIAM Review, 46, 501–517, https://doi.org/10.1137/S0036144502417715, 2004. a, b, c
Blackwell, D. D., Steele, J. L., and Brott, C. A.: The terrain effect on terrestrial heat flow, J. Geophys. Res.-Sol. Ea., 85, 4757–4772, https://doi.org/10.1029/JB085iB09p04757, 1980. a, b, c
Bringedal, C., Berre, I., Nordbotten, J. M., and Rees, D. A. S.: Linear and nonlinear convection in porous media between coaxial cylinders, Phys. Fluids, 23, 094109, https://doi.org/10.1063/1.3637642, 2011. a
Brune, J. N.: Heat Flow on the Creeping Section of the San Andreas Fault: A Localized Transient Perspective, in: AGU Fall Meeting Abstracts, 6–10 December 2002, San Francisco, California, USA, EID: S21A-0979, 2002. a
Byrd, R. H., Peihuang, L., and Nocedal, J.: A limited-memory algorithm for bound-constrained optimization, https://digital.library.unt.edu/ark:/67531/metadc666315/ (last access: 25 July 2023), 1996. a
Cacace, M., Scheck-Wenderoth, M., Noack, V., Cherubini, Y., and Schellschmidt, R.: Modelling the Surface Heat Flow Distribution in the Area of Brandenburg (Northern Germany), Energy Proced., 40, 545–553, https://doi.org/10.1016/j.egypro.2013.08.063, 2013. a, b
Christensen, U. R.: Core Dynamo, pp. 55–63, Springer Netherlands, Dordrecht, ISBN 978-90-481-8702-7, https://doi.org/10.1007/978-90-481-8702-7_38, 2011. a
Conn, A. R., Gould, N. I. M., and Toint, P. L.: Trust Region Methods, Society for Industrial and Applied Mathematics, https://doi.org/10.1137/1.9780898719857, 2000. a
Covo, S. and Elalouf, A.: A novel single-gamma approximation to the sum of independent gamma variables, and a generalization to infinitely divisible distributions, Electron. J. Stat., 8, 894–926, https://doi.org/10.1214/14-EJS914, 2014. a
Crameri, F.: Scientific colour maps, Zenodo [data set], https://doi.org/10.5281/zenodo.4491293, 2021. a
d'Alessio, M. A., Williams, C. F., and Bürgmann, R.: Frictional strength heterogeneity and surface heat flow: Implications for the strength of the creeping San Andreas fault, J. Geophys. Res.-Sol. Ea., 111, B05410, https://doi.org/10.1029/2005JB003780, 2006. a, b
David, F. N. and Johnson, N. L.: The Probability Integral Transformation When Parameters are Estimated from the Sample, Biometrika, 35, 182–190, 1948. a
Davies, J. H. and Davies, D. R.: Earth's surface heat flux, Solid Earth, 1, 5–24, https://doi.org/10.5194/se-1-5-2010, 2010. a
Dierckx, P.: An algorithm for smoothing, differentiation and integration of experimental data using spline functions, J. Comput. Appl. Math., 1, 165–184, https://doi.org/10.1016/0771-050X(75)90034-0, 1975. a
Ekström, M.: Alternatives to maximum likelihood estimation based on spacings and the Kullback–Leibler divergence, J. Stat. Plan. Infer., 138, 1778–1791, https://doi.org/10.1016/j.jspi.2007.06.031, 2008. a
Endres, S. C., Sandrock, C., and Focke, W. W.: A simplicial homology algorithm for Lipschitz optimisation, J. Global Optim., 72, 181–217, https://doi.org/10.1007/s10898-018-0645-y, 2018. a
Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., and Zimmermann, P.: MPFR: A Multiple-Precision Binary Floating-Point Library with Correct Rounding, ACM Trans. Math. Softw., 33, 13–es, https://doi.org/10.1145/1236463.1236468, 2007. a
Fuchs, S., Norden, B., and International Heat Flow Commission: The Global Heat Flow Database: Release 2021, https://doi.org/10.5880/fidgeo.2021.014, 2021. a
GDAL/OGR contributors: GDAL/OGR Geospatial Data Abstraction software Library, Zenodo [code], https://doi.org/10.5281/zenodo.5884351, 2022. a
Giezeman, G.-J. and Wesselink, W.: 2D Polygons, in: CGAL User and Reference Manual, CGAL Editorial Board, 5.5.1 edn., https://doc.cgal.org/5.5.1/Manual/packages.html#PkgPolygon2 (last access: 25 March 2024), 2022. a
Gonnet, P.: A Review of Error Estimation in Adaptive Quadrature, ACM Comput. Surv., 44, 22, https://doi.org/10.1145/2333112.2333117, 2012. a
Goutorbe, B., Poort, J., Lucazeau, F., and Raillard, S.: Global heat flow trends resolved from multiple geological and geophysical proxies, Geophys. J. Int., 187, 1405–1419, https://doi.org/10.1111/j.1365-246X.2011.05228.x, 2011. a, b, c
Graham, R. L., Lubachevsky, B. D., Nurmela, K., and Östergård, P. R. J.: Dense packings of congruent circles in a circle, Discrete Mathematics, 181, 139–154, https://doi.org/10.1016/S0012-365X(97)00050-2, 1998. a
Granger, B. E. and Pérez, F.: Jupyter: Thinking and Storytelling With Code and Data, Comput. Sci. Eng., 23, 7–14, https://doi.org/10.1109/MCSE.2021.3059263, 2021. a
Granlund, T. and the GMP development team: GNU MP: The GNU Multiple Precision Arithmetic Library, https://gmplib.org/ (last access: 25 March 2024), version 6.2.1, 2020. a
Guennebaud, G., Jacob, B., and the Eigen development team: Eigen v3, http://eigen.tuxfamily.org (last access: 25 March 2024), 2010. a
Gupta, H. K., ed.: Encyclopedia of Solid Earth Geophysics, vol. 1, Springer, Dordrecht, ISBN 978-90-481-8701-0, https://doi.org/10.1007/978-90-481-8702-7, 2011. a
Harlé, P., Kushnir, A. R. L., Aichholzer, C., Heap, M. J., Hehn, R., Maurer, V., Baud, P., Richard, A., Genter, A., and Duringer, P.: Heat flow density estimates in the Upper Rhine Graben using laboratory measurements of thermal conductivity on sedimentary rocks, Geothermal Energy, 7, 18, https://doi.org/10.1186/s40517-019-0154-3, 2019. a
Henyey, T. L. and Wasserburg, G. J.: Heat flow near major strike-slip faults in California, J. Geophys. Res., 76, 7924–7946, https://doi.org/10.1029/JB076i032p07924, 1971. a, b, c
Hewitt, D. R.: Vigorous convection in porous media, Proceedings of the Royal Society A: Mathematical, Phys. Eng. Sci., 476, 20200111, https://doi.org/10.1098/rspa.2020.0111, 2020. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Jaupart, C. and Mareschal, J.-C.: Heat Flow and Thermal Structure of the Lithosphere, vol. 6 of Treatise on Geophysics, 217–251, https://doi.org/10.1016/B978-044452748-6.00104-8, 2007. a
Johansson, F.: Arbitrary-precision computation of the gamma function, Maple Transactions, 3, 14591, https://doi.org/10.5206/mt.v3i1.14591, 2023. a
Jordahl, K., Van den Bossche, J., Fleischmann, M., McBride, J., Wasserman, J., Richards, M., Garcia Badaracco, A., Snow, A. D., Gerard, J., Tratner, J., Perry, M., Ward, B., Farmer, C., Hjelle, G. A., Cochran, M., Taves, M., Gillies, S., Caria, G., Culbertson, L., Bartos, M., Eubank, N., Bell, R., Sangarshanan, Flavin, J., Rey, S., Albert, M., Bilogur, A., Ren, C., Arribas-Bel, D., and Mesejo-León, D.: geopandas/geopandas: v0.12.1, Zenodo [code], https://doi.org/10.5281/zenodo.7262879, 2022. a
Kano, Y., Mori, J., Fujio, R., Ito, H., Yanagidani, T., Nakao, S., and Ma, K.-F.: Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake, Geophys. Res. Lett., 33, L14306, https://doi.org/10.1029/2006GL026733, 2006. a
Karney, C. F. F.: GeographicLib, version 1.51, https://geographiclib.sourceforge.io/C++/1.51 (last access: 26 March 2024), 2022. a
Kass, R. E. and Raftery, A. E.: Bayes Factors, J. Am. Stat. Assoc., 90, 773–795, https://doi.org/10.1080/01621459.1995.10476572, 1995. a, b, c
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C., and Jupyter development team: Jupyter Notebooks – a publishing format for reproducible computational workflows, in: Positioning and Power in Academic Publishing: Players, Agents and Agendas, edited by: Loizides, F. and Schmidt, B., IOS Press, the Netherlands, 87–90, https://doi.org/10.3233/978-1-61499-649-1-87, 2016. a, b
Kroese, D. P., Taimre, T., and Botev, Z. I.: Probability Distributions, chap. 4, 85–151, John Wiley & Sons, Ltd, ISBN 9781118014967, https://doi.org/10.1002/9781118014967.ch4, 2011. a
Kronrod, A. S.: Nodes and Weights of Quadrature Formulas: Sixteen-place Tables, Consultants Bureau, 1965. a
Kullback, S.: Information Theory and Statistics, John Wiley & Sons, Inc., 1959. a
Landström, O., Larson, S. Å., Lind, G., and Malmqvist, D.: Geothermal investigations in the Bohus granite area in southwestern Sweden, Tectonophysics, 64, 131–162, https://doi.org/10.1016/0040-1951(80)90266-8, 1980. a
Laurie, D. P.: Calculation of Gauss-Kronrod Quadrature Rules, Math. Comput., 66, 1133–1145, https://doi.org/10.1090/S0025-5718-97-00861-2, 1997. a
Leemis, L. M. and McQueston, J. T.: Univariate Distribution Relationships, The American Statistician, 62, 45–53, https://doi.org/10.1198/000313008X270448, 2008. a
López, C. O. and Beasley, J. E.: A heuristic for the circle packing problem with a variety of containers, Eur. J. Oper. Res., 214, 512–525, https://doi.org/10.1016/j.ejor.2011.04.024, 2011. a
Mareschal, J.-C. and Jaupart, C.: Energy Budget of the Earth, pp. 361–368, Springer International Publishing, ISBN 978-3-030-58631-7, https://doi.org/10.1007/978-3-030-58631-7_64, 2021. a
Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J., Terrel, A. R., Roučka, V., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and Scopatz, A.: SymPy: symbolic computing in Python, PeerJ Computer Science, 3, e103, https://doi.org/10.7717/peerj-cs.103, 2017. a, b
Miller, R. B.: Bayesian Analysis of the Two-Parameter Gamma Distribution, Technometrics, 22, 65–69, https://doi.org/10.2307/1268384, 1980. a, b, c, d
Milner, K. R.: Third Uniform California Earthquake Rupture Forecast (UCERF3) Fault System Solutions, Zenodo [data set], https://doi.org/10.5281/zenodo.5519802, 2014. a, b, c
Minka, T. P.: Estimating a Gamma Distribution, https://www.microsoft.com/en-us/research/publication/estimating-gamma-distribution/ (last access: 26 March 2024), 2002. a
Molnar, P. and England, P.: Temperatures, heat flux, and frictional stress near major thrust faults, J. Geophys. Res.-Sol. Ea., 95, 4833–4856, https://doi.org/10.1029/JB095iB04p04833, 1990. a
Morgan, P.: Heat Flow, Continental, 573–582, Springer Netherlands, Dordrecht, ISBN 978-90-481-8702-7, https://doi.org/10.1007/978-90-481-8702-7_73, 2011. a, b
Moya, D., Aldás, C., and Kaparaju, P.: Geothermal energy: Power plant technology and direct heat applications, Renew. Sust. Energ. Rev., 94, 889–901, https://doi.org/10.1016/j.rser.2018.06.047, 2018. a
Mysovskikh, I. P.: Simpson formula, in: Encyclopedia of Mathematics, edited by: Hazewinkel, M., http://encyclopediaofmath.org/index.php?title=Simpson_formula&oldid=17966 (last access: 26 March 2024), 2006. a
Nakagami, M.: The m-Distribution – A General Formula of Intensity Distribution of Rapid Fading, in: Statistical Methods in Radio Wave Propagation, edited by Hoffman, W. C., 3–36, Pergamon, ISBN 978-0-08-009306-2, https://doi.org/10.1016/B978-0-08-009306-2.50005-4, 1960. a
Nelder, J. A. and Mead, R.: A Simplex Method for Function Minimization, The Computer Journal, 7, 308–313, https://doi.org/10.1093/comjnl/7.4.308, 1965. a
Norden, B., Förster, A., Förster, H.-J., and Fuchs, S.: Temperature and pressure corrections applied to rock thermal conductivity: impact on subsurface temperature prognosis and heat-flow determination in geothermal exploration, Geothermal Energy, 8, 1, https://doi.org/10.1186/s40517-020-0157-0, 2020. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Pérez, F. and Granger, B. E.: IPython: a System for Interactive Scientific Computing, Comput. Sci. Eng., 9, 21–29, https://doi.org/10.1109/MCSE.2007.53, 2007. a
Peña, C., Heidbach, O., Moreno, M., Bedford, J., Ziegler, M., Tassara, A., and Oncken, O.: Impact of power-law rheology on the viscoelastic relaxation pattern and afterslip distribution following the 2010 Mw 8.8 Maule earthquake, Earth Planet. Sc. Lett., 542, 116292, https://doi.org/10.1016/j.epsl.2020.116292, 2020. a
Pitman, J.: Probability, Springer, ISBN 978-0-387-94594-1, 1993. a
Pollack, H. N., Hurter, S. J., and Johnson, J. R.: Heat flow from the Earth's interior: Analysis of the global data set, Re. Geophys., 31, 267–280, https://doi.org/10.1029/93RG01249, 1993. a, b
Proinov, P. D.: Discrepancy and integration of continuous functions, J. Approx. Theory, 52, 121–131, https://doi.org/10.1016/0021-9045(88)90051-2, 1988. a
PROJ contributors: PROJ coordinate transformation software library, Zenodo [code], https://doi.org/10.5281/zenodo.5884394, 2022. a
Sass, J. H. and Beardsmore, G.: Heat Flow Measurements, Continental, pp. 569–573, Springer Netherlands, Dordrecht, ISBN 978-90-481-8702-7, https://doi.org/10.1007/978-90-481-8702-7_72, 2011. a
Scholz, C. H.: The Strength of the San Andreas Fault: A Critical Analysis, 301–311, American Geophysical Union (AGU), https://doi.org/10.1029/170GM30, 2006. a
Snow, A. D., Whitaker, J., Cochran, M., Van den Bossche, J., Mayo, C., Miara, I., Cochrane, P., de Kloe, J., Karney, C. F. F., Fernandes, F., Couwenberg, B., Lostis, G., Dearing, J., Ouzounoudis, G., Jurd, B., Gohlke, C., Hoese, D., Itkin, M., May, R., Little, B., de Bittencourt, H. P., Shadchin, A., Wiedemann, B. M., Barker, C., Willoughby, C., DWesl, Hemberger, D., Haberthür, D., and Popov, E.: pyproj4/pyproj: 3.4.1 Release, version 3.4.1, Zenodo [code], https://doi.org/10.5281/zenodo.7430570, 2022. a
Stevens, C. W., Mccaffrey, R., Bock, Y., Genrich, J. F., Pubellier, M., and Subarya, C.: Evidence for Block Rotations and Basal Shear in the World's Fastest Slipping Continental Shear Zone in Nw New Guinea, pp. 87–99, American Geophysical Union (AGU), ISBN 9781118670446, https://doi.org/10.1029/GD030p0087, 2002. a
Takahasi, H. and Mori, M.: Double Exponential Formulas for Numerical Integration, Publications of the Research Institute for Mathemtical Sciences, 9, 721–741, 1973. a
Takahasi, H. and Mori, M.: Double Exponential Formulas for Numerical Integration, Publ. Res. I. Math. Sci., 9, 721–741, https://doi.org/10.2977/prims/1195192451, 1974. a
Tanaka, K., Sugihara, M., Murota, K., and Mori, M.: Function Classes for Double Exponential Integration Formulas, Numer. Math., 111, 631–655, https://doi.org/10.1007/s00211-008-0195-1, 2009. a
The mpmath development team: mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0), http://mpmath.org/ (last access: 26 March 2024), 2023. a
The pandas development team: pandas-dev/pandas: Pandas, Zenodo [code], https://doi.org/10.5281/zenodo.7344967, 2022. a
Thomopoulos, N. T.: Probability Distributions, Springer International Publishing AG, 1st edn., ISBN 978-3-319-76042-1, https://doi.org/10.1007/978-3-319-76042-1, 2018. a, b
Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M., and DiMarco, S. F.: True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection, Oceanography, 29, 9–13, https://doi.org/10.5670/oceanog.2016.66, 2016. a
Torres, T., Anselmi, N., Nayeri, P., Rocca, P., and Haupt, R.: Low Discrepancy Sparse Phased Array Antennas, Sensors, 21, 7816, https://doi.org/10.3390/s21237816, 2021. a
van der Velden, E.: CMasher: Scientific colormaps for making accessible, informative and 'cmashing' plots, J. Open Source Softw., 5, 2004, https://doi.org/10.21105/joss.02004, 2020. a
van der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy Array: A Structure for Efficient Numerical Computation, Comput. Sci. Eng., 13, 22–30, https://doi.org/10.1109/MCSE.2011.37, 2011. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A. P., Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C. N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D. A., Hagen, D. R., Pasechnik, D. V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A., Ingold, G.-L., Allen, G. E., Lee, G. R., Audren, H., Probst, I., Dietrich, J. P., Silterra, J., Webber, J. T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J. L., de Miranda Cardoso, J. V., Reimer, J., Harrington, J., Rodríguez, J. L. C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P. A., Lee, P., McGibbon, R. T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T. J., Robitaille, T. P., Spura, T., Jones, T. R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y. O., Vázquez-Baeza, Y., and SciPy 1.0 Contributors: SciPy 1.0: fundamental algorithms for scientific computing in Python, Nature Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a, b, c, d, e, f
Wang, Q., Zhang, X., Zhang, Y., and Yi, Q.: AUGEM: Automatically generate high performance Dense Linear Algebra kernels on x86 CPUs, in: SC '13: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, 1–12, https://doi.org/10.1145/2503210.2503219, 2013. a
Wessel, P. and Smith, W. H. F.: A global, self-consistent, hierarchical, high-resolution shoreline database, J. Geophys. Res.-Sol. Ea., 101, 8741–8743, https://doi.org/10.1029/96JB00104, 1996 (data available at: https://www.soest.hawaii.edu/pwessel/gshhg/, last access: 26 March 2024). a
Williams, C. F., Grubb, F. V., and Galanis Jr., S. P.: Heat flow in the SAFOD pilot hole and implications for the strength of the San Andreas Fault, Geophys. Res. Lett., 31, https://doi.org/10.1029/2003GL019352, 2004. a
Ziebarth, M. J.: PDToolbox: a Python probability distribution toolbox, GFZ Data Services [code], https://doi.org/10.5880/GFZ.2.6.2022.002, 2022a. a
Ziebarth, M. J.: FlotteKarte – a Python library for quick and versatile cartography based on PROJ4-string syntax and using Matplotlib, NumPy, and PyPROJ under the hood, v. 0.2.2, GFZ Data Services [code], https://doi.org/10.5880/GFZ.2.6.2022.003, 2022b. a
Ziebarth, M. J.: REHEATFUNQ: A Python package for the inference of regional aggregate heat flow distributions and heat flow anomalies, v. 1.4.0, GFZ Data Services [code], https://doi.org/10.5880/GFZ.2.6.2023.002, 2023. a, b, c, d
Ziebarth, M. J.: REHEATFUNQ: REgional HEAT-Flow Uncertainty and aNomaly Quantification, Python Package Version 2.0.1, Zenodo [code], https://doi.org/10.5281/zenodo.10614892, 2024. a, b
Zondervan-Zwijnenburg, M., Peeters, M., Depaoli, S., and Van de Schoot, R.: Where Do Priors Come From? Applying Guidelines to Construct Informative Priors in Small Sample Research, Res. Hum. Dev., 14, 305–320, https://doi.org/10.1080/15427609.2017.1370966, 2017. a
Short summary
Thermal energy from Earth’s active interior constantly dissipates through Earth’s surface. This heat flow is not spatially uniform, and its exact pattern is hard to predict since it depends on crustal and mantle properties, both varying across scales. Our new model REHEATFUNQ addresses this difficulty by treating the fluctuations of heat flow within a region statistically. REHEATFUNQ estimates the regional distribution of heat flow and quantifies known structural signals therein.
Thermal energy from Earth’s active interior constantly dissipates through Earth’s surface. This...