Articles | Volume 16, issue 17
https://doi.org/10.5194/gmd-16-5113-2023
https://doi.org/10.5194/gmd-16-5113-2023
Model evaluation paper
 | 
06 Sep 2023
Model evaluation paper |  | 06 Sep 2023

Hazard assessment modeling and software development of earthquake-triggered landslides in the Sichuan–Yunnan area, China

Xiaoyi Shao, Siyuan Ma, and Chong Xu

Related authors

Modeling seismic hazard and landslide occurrence probabilities in northwestern Yunnan, China: exploring complex fault systems with multi-segment rupturing in a block rotational tectonic zone
Jia Cheng, Chong Xu, Xiwei Xu, Shimin Zhang, and Pengyu Zhu
Nat. Hazards Earth Syst. Sci., 25, 857–877, https://doi.org/10.5194/nhess-25-857-2025,https://doi.org/10.5194/nhess-25-857-2025, 2025
Short summary
Optical images reveal the role of high temperatures in triggering the 2021 Chamoli landslide
Jing Tian, Wentao Yang, Jian Fang, and Chong Xu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2786,https://doi.org/10.5194/egusphere-2024-2786, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
The China Active Faults Database (CAFD) and its web system
Xiyan Wu, Xiwei Xu, Guihua Yu, Junjie Ren, Xiaoping Yang, Guihua Chen, Chong Xu, Keping Du, Xiongnan Huang, Haibo Yang, Kang Li, and Haijian Hao
Earth Syst. Sci. Data, 16, 3391–3417, https://doi.org/10.5194/essd-16-3391-2024,https://doi.org/10.5194/essd-16-3391-2024, 2024
Short summary
LANDSLIDES TRIGGERED BY THE 2015 GORKHA, NEPAL EARTHQUAKE
C. Xu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1989–1993, https://doi.org/10.5194/isprs-archives-XLII-3-1989-2018,https://doi.org/10.5194/isprs-archives-XLII-3-1989-2018, 2018
Landslides triggered by the 12 January 2010 Port-au-Prince, Haiti, Mw = 7.0 earthquake: visual interpretation, inventory compiling, and spatial distribution statistical analysis
C. Xu, J. B. H. Shyu, and X. Xu
Nat. Hazards Earth Syst. Sci., 14, 1789–1818, https://doi.org/10.5194/nhess-14-1789-2014,https://doi.org/10.5194/nhess-14-1789-2014, 2014

Related subject area

Earth and space science informatics
Moving beyond post hoc explainable artificial intelligence: a perspective paper on lessons learned from dynamical climate modeling
Ryan J. O'Loughlin, Dan Li, Richard Neale, and Travis A. O'Brien
Geosci. Model Dev., 18, 787–802, https://doi.org/10.5194/gmd-18-787-2025,https://doi.org/10.5194/gmd-18-787-2025, 2025
Short summary
Remote-sensing-based forest canopy height mapping: some models are useful, but might they provide us with even more insights when combined?
Nikola Besic, Nicolas Picard, Cédric Vega, Jean-Daniel Bontemps, Lionel Hertzog, Jean-Pierre Renaud, Fajwel Fogel, Martin Schwartz, Agnès Pellissier-Tanon, Gabriel Destouet, Frédéric Mortier, Milena Planells-Rodriguez, and Philippe Ciais
Geosci. Model Dev., 18, 337–359, https://doi.org/10.5194/gmd-18-337-2025,https://doi.org/10.5194/gmd-18-337-2025, 2025
Short summary
Checking the consistency of 3D geological models
Marion N. Parquer, Eric A. de Kemp, Boyan Brodaric, and Michael J. Hillier
Geosci. Model Dev., 18, 71–100, https://doi.org/10.5194/gmd-18-71-2025,https://doi.org/10.5194/gmd-18-71-2025, 2025
Short summary
The effect of lossy compression of numerical weather prediction data on data analysis: a case study using enstools-compression 2023.11
Oriol Tintó Prims, Robert Redl, Marc Rautenhaus, Tobias Selz, Takumi Matsunobu, Kameswar Rao Modali, and George Craig
Geosci. Model Dev., 17, 8909–8925, https://doi.org/10.5194/gmd-17-8909-2024,https://doi.org/10.5194/gmd-17-8909-2024, 2024
Short summary
GNNWR: an open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev., 17, 8455–8468, https://doi.org/10.5194/gmd-17-8455-2024,https://doi.org/10.5194/gmd-17-8455-2024, 2024
Short summary

Cited articles

Allstadt, K. E., Jibson, R. W., Thompson, E. M., Massey, C. I., Wald, D. J., Godt, J. W., and Rengers, F. K.: Improving near-real-time coseismic landslide models: Lessons learned from the 2016 Kaikōura, New Zealand, Earthquake, B. Seismol. Soc. Am., 108, 1649–1664, https://doi.org/10.1785/0120170297, 2018. 
Bai, S. B., Lu, P., and Wang, J.: Landslide susceptibility assessment of the Youfang Catchment using logistic regression, J. Mt. Sci., 816–827, https://doi.org/10.1007/s11629-014-3171-5, 2015. 
Bragagnolo, L., da Silva, R. V., and Grzybowski, J. M. V.: Landslide susceptibility mapping with r.landslide: A free open-source GIS-integrated tool based on Artificial Neural Networks, Environ. Modell. Softw., 123, 104565, https://doi.org/10.1016/j.envsoft.2019.104565, 2020. 
Brenning, A.: Spatial prediction models for landslide hazards: review, comparison and evaluation, Nat. Hazards Earth Syst. Sci., 5, 853–862, https://doi.org/10.5194/nhess-5-853-2005, 2005. 
Broeckx, J., Vanmaercke, M., Duchateau, R., and Poesen, J.: A data-based landslide susceptibility map of Africa, Earth-Sci. Rev., 185, 102–121, https://doi.org/10.1016/j.earscirev.2018.05.002, 2018. 
Download
Short summary
Scientific understandings of the distribution of coseismic landslides, followed by emergency and medium- and long-term risk assessment, can reduce landslide risk. The aim of this study is to propose an improved three-stage spatial prediction strategy and develop corresponding hazard assessment software called Mat.LShazard V1.0, which provides a new application tool for coseismic landslide disaster prevention and mitigation in different stages.
Share