Articles | Volume 16, issue 17
https://doi.org/10.5194/gmd-16-5113-2023
https://doi.org/10.5194/gmd-16-5113-2023
Model evaluation paper
 | 
06 Sep 2023
Model evaluation paper |  | 06 Sep 2023

Hazard assessment modeling and software development of earthquake-triggered landslides in the Sichuan–Yunnan area, China

Xiaoyi Shao, Siyuan Ma, and Chong Xu

Related authors

Optical images reveal the role of high temperatures in triggering the 2021 Chamoli landslide
Jing Tian, Wentao Yang, Jian Fang, and Chong Xu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2786,https://doi.org/10.5194/egusphere-2024-2786, 2024
Short summary
The China Active Faults Database (CAFD) and its web system
Xiyan Wu, Xiwei Xu, Guihua Yu, Junjie Ren, Xiaoping Yang, Guihua Chen, Chong Xu, Keping Du, Xiongnan Huang, Haibo Yang, Kang Li, and Haijian Hao
Earth Syst. Sci. Data, 16, 3391–3417, https://doi.org/10.5194/essd-16-3391-2024,https://doi.org/10.5194/essd-16-3391-2024, 2024
Short summary
Modeling Seismic Hazard and Landslide Potentials in Northwestern Yunnan, China: Exploring Complex Fault Systems with multi-segment rupturing in a Block Rotational Tectonic Zone
Jia Cheng, Chong Xu, Xiwei Xu, Shimin Zhang, and Pengyu Zhu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-96,https://doi.org/10.5194/nhess-2024-96, 2024
Revised manuscript under review for NHESS
Short summary
LANDSLIDES TRIGGERED BY THE 2015 GORKHA, NEPAL EARTHQUAKE
C. Xu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1989–1993, https://doi.org/10.5194/isprs-archives-XLII-3-1989-2018,https://doi.org/10.5194/isprs-archives-XLII-3-1989-2018, 2018
Landslides triggered by the 12 January 2010 Port-au-Prince, Haiti, Mw = 7.0 earthquake: visual interpretation, inventory compiling, and spatial distribution statistical analysis
C. Xu, J. B. H. Shyu, and X. Xu
Nat. Hazards Earth Syst. Sci., 14, 1789–1818, https://doi.org/10.5194/nhess-14-1789-2014,https://doi.org/10.5194/nhess-14-1789-2014, 2014

Related subject area

Earth and space science informatics
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024,https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors
Chunhua Jiang, Xiang Gao, Huizhong Zhu, Shuaimin Wang, Sixuan Liu, Shaoni Chen, and Guangsheng Liu
Geosci. Model Dev., 17, 5939–5959, https://doi.org/10.5194/gmd-17-5939-2024,https://doi.org/10.5194/gmd-17-5939-2024, 2024
Short summary
kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation
Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer
Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024,https://doi.org/10.5194/gmd-17-5897-2024, 2024
Short summary
GNNWR: An Open-Source Package of Spatiotemporal Intelligent Regression Methods for Modeling Spatial and Temporal Non-Stationarity
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-62,https://doi.org/10.5194/gmd-2024-62, 2024
Revised manuscript accepted for GMD
Short summary
Accelerating Lagrangian transport simulations on graphics processing units: performance optimizations of Massive-Parallel Trajectory Calculations (MPTRAC) v2.6
Lars Hoffmann, Kaveh Haghighi Mood, Andreas Herten, Markus Hrywniak, Jiri Kraus, Jan Clemens, and Mingzhao Liu
Geosci. Model Dev., 17, 4077–4094, https://doi.org/10.5194/gmd-17-4077-2024,https://doi.org/10.5194/gmd-17-4077-2024, 2024
Short summary

Cited articles

Allstadt, K. E., Jibson, R. W., Thompson, E. M., Massey, C. I., Wald, D. J., Godt, J. W., and Rengers, F. K.: Improving near-real-time coseismic landslide models: Lessons learned from the 2016 Kaikōura, New Zealand, Earthquake, B. Seismol. Soc. Am., 108, 1649–1664, https://doi.org/10.1785/0120170297, 2018. 
Bai, S. B., Lu, P., and Wang, J.: Landslide susceptibility assessment of the Youfang Catchment using logistic regression, J. Mt. Sci., 816–827, https://doi.org/10.1007/s11629-014-3171-5, 2015. 
Bragagnolo, L., da Silva, R. V., and Grzybowski, J. M. V.: Landslide susceptibility mapping with r.landslide: A free open-source GIS-integrated tool based on Artificial Neural Networks, Environ. Modell. Softw., 123, 104565, https://doi.org/10.1016/j.envsoft.2019.104565, 2020. 
Brenning, A.: Spatial prediction models for landslide hazards: review, comparison and evaluation, Nat. Hazards Earth Syst. Sci., 5, 853–862, https://doi.org/10.5194/nhess-5-853-2005, 2005. 
Broeckx, J., Vanmaercke, M., Duchateau, R., and Poesen, J.: A data-based landslide susceptibility map of Africa, Earth-Sci. Rev., 185, 102–121, https://doi.org/10.1016/j.earscirev.2018.05.002, 2018. 
Download
Short summary
Scientific understandings of the distribution of coseismic landslides, followed by emergency and medium- and long-term risk assessment, can reduce landslide risk. The aim of this study is to propose an improved three-stage spatial prediction strategy and develop corresponding hazard assessment software called Mat.LShazard V1.0, which provides a new application tool for coseismic landslide disaster prevention and mitigation in different stages.