Articles | Volume 16, issue 1
Development and technical paper
10 Jan 2023
Development and technical paper |  | 10 Jan 2023

Operational water forecast ability of the HRRR-iSnobal combination: an evaluation to adapt into production environments

Joachim Meyer, John Horel, Patrick Kormos, Andrew Hedrick, Ernesto Trujillo, and S. McKenzie Skiles

Related authors

Mapping snow depth and volume at the alpine watershed scale from aerial imagery using Structure from Motion
Joachim Meyer, McKenzie Skiles, Jeffrey Deems, Kat Boremann, and David Shean
Hydrol. Earth Syst. Sci. Discuss.,,, 2021
Revised manuscript not accepted
Short summary
Mapping snow depth and volume at the alpine watershed scale from aerial imagery using Structure from Motion
Joachim Meyer, S. McKenzie Skiles, Jeffrey Deems, Kat Bormann, and David Shean
The Cryosphere Discuss.,,, 2021
Manuscript not accepted for further review
Short summary

Related subject area

GPEP v1.0: the Geospatial Probabilistic Estimation Package to support Earth science applications
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173,,, 2024
Short summary
GEMS v1.0: Generalizable Empirical Model of Snow Accumulation and Melt, based on daily snow mass changes in response to climate and topographic drivers
Atabek Umirbekov, Richard Essery, and Daniel Müller
Geosci. Model Dev., 17, 911–929,,, 2024
Short summary v1.0: a flexible Python package for modeling solute transport and transit times using StorAge Selection functions
Ciaran J. Harman and Esther Xu Fei
Geosci. Model Dev., 17, 477–495,,, 2024
Short summary
rSHUD v2.0: advancing the Simulator for Hydrologic Unstructured Domains and unstructured hydrological modeling in the R environment
Lele Shu, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev., 17, 497–527,,, 2024
Short summary
GLOBGM v1.0: a parallel implementation of a 30 arcsec PCR-GLOBWB-MODFLOW global-scale groundwater model
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300,,, 2024
Short summary

Cited articles

Anderson, E. A.: A point energy and mass balance model of a snow cover, United States, National Weather Service, (last access: 28 February 2022), 1976. 
Ayers, J., Ficklin, D. L., Stewart, I. T., and Strunk, M.: Comparison of CMIP3 and CMIP5 projected hydrologic conditions over the Upper Colorado River Basin, Int. J. Climatol., 36, 3807–3818,, 2016. 
Bellaire, S., Jamieson, J. B., and Fierz, C.: Forcing the snow-cover model SNOWPACK with forecasted weather data, The Cryosphere, 5, 1115–1125,, 2011. 
Bellaire, S., Jamieson, J. B., and Fierz, C.: Corrigendum to “Forcing the snow-cover model SNOWPACK with forecasted weather data” published in The Cryosphere, 5, 1115–1125, 2011, The Cryosphere, 7, 511–513,, 2013. 
Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., Olson, J. B., James, E. P., Dowell, D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J. S., and Manikin, G. S.: A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh, Mon. Weather Rev., 144, 1669–1694,, 2016. 
Short summary
Freshwater resupply from seasonal snow in the mountains is changing. Current water prediction methods from snow rely on historical data excluding the change and can lead to errors. This work presented and evaluated an alternative snow-physics-based approach. The results in a test watershed were promising, and future improvements were identified. Adaptation to current forecast environments would improve resilience to the seasonal snow changes and helps ensure the accuracy of resupply forecasts.