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Abstract. Operational water-resource forecasters, such as
the Colorado Basin River Forecast Center (CBRFC) in the
Western United States, currently rely on historical records
to calibrate the temperature-index models used for snowmelt
runoff predictions. This data dependence is increasingly
challenged, with global and regional climatological factors
changing the seasonal snowpack dynamics in mountain wa-
tersheds. To evaluate and improve the CBRFC modeling op-
tions, this work ran the physically based snow energy bal-
ance iSnobal model, forced with outputs from the High-
Resolution Rapid Refresh (HRRR) numerical weather pre-
diction model across 4 years in a Colorado River Basin fore-
cast region. Compared to in situ, remotely sensed, and the
current operational CBRFC model data, the HRRR-iSnobal
combination showed well-reconstructed snow depth patterns
and magnitudes until peak accumulation. Once snowmelt set
in, HRRR-iSnobal showed slower simulated snowmelt rela-
tive to observations, depleting snow on average up to 34 d
later. The melting period is a critical component for water
forecasting. Based on the results, there is a need for revised
forcing data input preparation (shortwave radiation) required
by iSnobal, which is a recommended future improvement to
the model. Nevertheless, the presented performance and ar-
chitecture make HRRR-iSnobal a promising combination for
the CBRFC production needs, where there is a demonstrated
change to the seasonal snow in the mountain ranges around
the Colorado River Basin. The long-term goal is to introduce
the HRRR-iSnobal combination in day-to-day CBRFC oper-

ations, and this work created the foundation to expand and
evaluate larger CBRFC domains.

1 Introduction

Freshwater supply, originating as melt from seasonal snow-
pack runoff, has experienced a shift in timing and magni-
tude in recent decades (Mote et al., 2018; Stewart, 2009).
Higher observed temperatures during the winter (Musselman
et al., 2021), for instance, lead to precipitation phase changes
resulting in more precipitation as rain over snow in low-
elevation areas (Feng and Hu, 2007; Knowles et al., 2006).
The magnitude of the changes varies regionally (Harpold et
al., 2012; Skiles and Painter, 2017), which increases the com-
plexity of understanding and forecasting the impacts. Chang-
ing snowpack trends are expected to continue, as evidenced
by simulations with predicted future climate conditions (Cho
et al., 2021; Ikeda et al., 2021; Li et al., 2017; Musselman
et al., 2017). This presents a challenge from a modeling per-
spective, especially in operational settings, where historical
data are the basis for creating forecasts. Here, the increas-
ingly annually different snow accumulation and snowmelt
patterns make it harder to generate a consistent and accu-
rate prediction of snowpack runoff for the seasonally snow-
covered mountain ranges supplying freshwater to the down-
stream regions.

Presently, a subset of the hydrologic forecast agencies in
the United States uses temperature-index models, such as
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SNOW-17 (Anderson, 1976), which have historically per-
formed well in operational settings while requiring few me-
teorological observations (Franz et al., 2008). In principle,
SNOW-17 calculates the snowmelt using the correlation be-
tween air temperature and available net solar radiation melt
energy and a calibration factor, which increases as the melt
period progresses (Anderson, 1976; Franz et al., 2010). The
best model predictions are with domain-specific calibration
parameters from historical data with the modeled year fol-
lowing the snow accumulation and melt conditions from the
past (He et al., 2011). Once conditions depart from the histor-
ical average, such as lower snow albedo from highly variable
inter-annual dust deposition events (Bryant et al., 2013), the
SNOW-17 model forecast errors increase and require signif-
icant forecaster interaction to account for the variable condi-
tions. One effort to improve the accuracy of SNOW-17 ap-
plied the Bayesian Model Averaging method across an en-
semble of 12 snow models, each consisting of different com-
ponents from SNOW-17 (Franz et al., 2010). Although the
results improved compared to running SNOW-17 as a stan-
dalone application, the setup was only tested at the 1-D point
scale and required different weights for the individual mod-
els between test locations. The increased complexity makes
the method challenging to apply across larger spatial scales
in daily operations.

One alternative approach to improve operational forecast-
ing results is using physically based models that incorporate
more meteorological measurements and are not calibrated on
long-term historical observation data. Physically based mod-
eling is also referred to as “energy-balance” (Griessinger et
al., 2019) or “process-based” (Clark et al., 2015) in the litera-
ture, and in the context of this work, we will use “physically
based”. In general, physically based models use additional
weather observations outside of temperature and precipita-
tion, such as relative humidity, wind speeds, and radiation, to
resolve the mass and energy balances of the snowpack, which
determines the snowmelt rate and meltwater runoff (Marks
and Dozier, 1992). From the several physically based snow
model options developed to date (e.g., CROCUS, Vionnet
et al., 2012; Factorial Snow Model, Essery, 2015; SNOW-
PACK, Lehning et al., 2002; SnowModel, Liston and Elder,
2006), this work focused on iSnobal. Initially, iSnobal was
implemented as a two-layer snowpack model for a single
point location (Marks and Dozier, 1992; Marks et al., 1992)
and evolved later to a spatially distributed version (Marks
et al., 1999), maintaining the design and input data require-
ments of the point-level version. A recent addition to the
iSnobal modeling pipeline is the Spatial Modeling for Re-
source Framework (SMRF, Havens et al., 2017), which as-
sists in distributing the forcing data across the model do-
main. To streamline the iSnobal data preparation and exe-
cution workflow and increase reproducibility, the Automated
Water Supply Model (AWSM) combined iSnobal and SMRF
into a single modeling framework (Havens et al., 2020). To
this date, iSnobal has been successfully deployed to simu-

late snowpacks in watershed sizes from less than 1 km2 to
over 1000 km2 (Garen and Marks, 2005; Hedrick et al., 2018,
2020; Kormos et al., 2014).

The increased meteorological measurement requirements
to calculate the mass and energy balances of physically based
models cannot always be satisfied by in situ observation net-
works. Where instrumentation sites are present in the mod-
eled domain, the available observations are not guaranteed to
provide all required model inputs such as wind speed or radi-
ation, can have data gaps through time, or do not satisfy the
necessary data quality. An alternative to in situ stations is us-
ing outputs from numerical weather prediction (NWP) mod-
els, which are generally spatially and temporally complete
and provide all the required forcing variables from a single
source. The adaptation of NWP model output to provide forc-
ing data for snow models is ongoing and has been success-
fully tested as a standalone source for point simulations (Bel-
laire et al., 2011, 2013; Iwamoto et al., 2008) or spatially in
combination with data assimilation and filtering techniques
(Griessinger et al., 2019; Vernay et al., 2022). Adding NWP
as a possible weather measurement input source to iSnobal
was first evaluated in Havens et al. (2019), where downscaled
and bias-corrected observations from the Weather Research
and Forecasting (WRF) Model had the best results. A follow-
up effort to the WRF integration into iSnobal also added sup-
port for the High-Resolution Rapid Refresh (HRRR) model
(Benjamin et al., 2016) from the National Oceanic and At-
mospheric Administration (NOAA). The HRRR model has
been under active development since it became the United
States National Weather Service’s (NWS) operational fore-
cast model in late 2014 (Bytheway et al., 2017) and is cur-
rently in its fourth and final iteration. HRRR assimilates
available real-time observations every hour and produces
forecasts up to 18 h in advance. The forecast outputs are pub-
lished with 3 km spatial resolution for the continental United
States and the Alaska domain and are publicly available via
different providers (Google Cloud Platform, Amazon Web
Services, NOAA), making them readily integrable for re-
search and operational purposes (Gowan et al., 2022).

Among the many regions impacted by the changing sea-
sonal snow and environmental conditions around the globe
(Ayers et al., 2016; Cho et al., 2021; Christensen and Let-
tenmaier, 2007; Dettinger et al., 2015) is the Western United
States of America, where 53 % to 70 % of the annual fresh-
water supply originates from seasonal snowmelt (Li et al.,
2017). For example, the Colorado River Basin (CRB), with
its headwaters located in the Rocky Mountains, is currently
trending towards a shorter duration and reduced extent of
winter snow cover based on in situ measurements from 1984
to 2009 (Harpold et al., 2012) and earlier maximum snow
water equivalent (SWE) dates compared to long-term his-
torical records (Musselman et al., 2021). The CRB region
also has an increase in snow darkening following the depo-
sition of light-absorbing particles (Skiles and Painter, 2017;
Skiles et al., 2012), which accelerates snowmelt timing and
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magnitude (Painter et al., 2018). Freshwater supply forecast-
ing in this region is done by the Colorado Basin River Fore-
cast Center (CBRFC), part of the NWS in the United States
of America. The CBRFC uses SNOW-17 as part of its op-
erational water availability forecasting model and faces in-
creased challenges with the near-term observed and predicted
seasonal snow changes. Using the historic model calibration
records (30 to 40 years) to derive SNOW-17 parameters does
not fully reflect the climate variability in the recent decade,
and the long-term data will continue to be less representative
in the future (Musselman et al., 2017). Incorporating the dif-
ferent timing and magnitudes of snowmelt requires updated
methods.

In this paper, the HRRR-iSnobal combination is docu-
mented and described for the first time and assessed across
4 water years (2018 to 2021) in the East River Watershed,
Colorado, USA. The model evaluation was in collaboration
with the CBRFC to gauge the feasibility of supplementing
SNOW-17 with a physically based model. A recent report by
the United States Bureau of Reclamation evaluated iSnobal
as a “flight qualified” product and supports the increased use
of physically based models (Nowak et al., 2022). In contrast
to the current literature evaluating iSnobal in operational set-
tings, this work focuses on HRRR as a standalone forcing
input source without bias corrections (Havens et al., 2019)
or updates from spatial observations (Hedrick et al., 2018,
2020). Removing input data corrections or model updates
through in situ observations increases the CBRFC’s ability
to adapt the workflow into their daily operations and speeds
up model preparation and execution times. For the overall
iSnobal model assessment, the simulated snow depth was
compared against measured observations at discrete in situ
snow measurement stations and spatially at discrete points
in time against aerial snow depth maps. The iSnobal simu-
lated runoff was compared to the basin hydrograph for basin-
averaged assessment. Finally, HRRR-iSnobal precipitation
inputs and SWE outputs were compared to SNOW-17 to as-
sess the differences between the models. This work is an ef-
fort to support the increased inclusion of physically based
models in operational water supply forecasting in snow-
dominated environments. Broadly, this work also contributes
to the NWS Advanced Hydrologic Prediction Service pro-
gram operational goals (Council, 2006) by aiming to make
hydrological forecasting more accurate and resilient in the
face of change.

2 Study area

The East River Watershed (ERW) is a high alpine watershed
located in the Upper Gunnison River Basin, part of the Col-
orado River Basin. The East River is one of two primary trib-
utaries of the Gunnison River, which discharges downstream
into the Colorado River (Fig. 1). A stream gauge station at
an elevation of 2440 m near Almont, Colorado, is operated

by the United States Geological Survey (USGS) and moni-
tors the streamflow of the East River year-round. This station
is the central discharge point for seasonal snow runoff in the
watershed. The ERW has representative characteristics for
mountain watersheds in Colorado with an average elevation
of 3266 m, a high vertical elevation relief (1420 m; Hubbard
et al., 2018), and a mixture of different vegetation types (bush
and grassland or mixed conifer and aspen trees).

There are three Snow Telemetry (SNOTEL) stations with
available snow depth measurements that are operated by
the United States Department of Agriculture National Re-
source Conservation Service (USDA-NRCS) in the modeled
domain: Schofield Pass (elevation: 3261 m), Butte (eleva-
tion: 3097 m), and Upper Taylor (elevation: 3243 m). The
Upper Taylor station does not sit within the ERW bound-
aries but was included in this study to expand the num-
ber of available in situ comparison sites within the model
domain. The CBRFC divides the ERW into three topo-
graphical hydrologic response units (HRUs): lower, mid-
dle, and upper (Fig. 1). All HRUs are based on elevation
(2896 m/9500 ft < middle < 3353 m/11 000 ft) and are mod-
eled independently of each other (Council, 2006). The divi-
sion will be used in this work to refer to the respective spatial
area.

3 Model

3.1 Model architecture

A complete setup of the iSnobal model requires the in-
stallation of several components (Fig. 2). First, the “Basin
Setup” tool (https://github.com/USDA-ARS-NWRC/basin_
setup, last access: 28 February 2022) is installed, which as-
sists in setting up the model domain boundaries, output reso-
lution, and collecting the elevation and vegetation data. This
one-time process is not repeated between simulation years
and is stored in one central basin metadata file. Next, the
daily execution components of the model are set up and con-
sist of

– Katana (https://github.com/USDA-ARS-NWRC/
katana, last access: 28 February 2022),

– SMRF (https://github.com/USDA-ARS-NWRC/smrf,
last access: 28 February 2022), and

– AWSM (https://github.com/USDA-ARS-NWRC/
awsm, last access: 28 February 2022).

Katana is a pre-processing module that uses the WindNinja
model (Forthofer et al., 2014) at its core to downscale the
HRRR wind data to a higher resolution (e.g., from HRRR
3 km to 200 m). The SMRF module (Havens et al., 2017)
develops the high-resolution hourly spatial forcing data re-
quired by iSnobal using coarser-resolution HRRR surface
variables. AWSM (Havens et al., 2020) is the overarching
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Figure 1. Overviews of the East River Watershed (black boundaries) and iSnobal modal domain (orange outline) are shown on the left. There
are three SNOTEL sites along with the stream gauge station. The watershed is divided into three HRUs by the CBRFC. The location of the
watershed and area of the Colorado River Basin is shown on the right. Basemap (right): © ESRI.

Figure 2. Overview of the iSnobal model architecture showing the
one-time setup process and the daily execution workflow.

control software that streamlines the execution for each time
step and the iteration from one day to the next between
SMRF and iSnobal.

All the above components were written and are maintained
by the United States Department of Agriculture, Agricul-
ture Research Service (USDA-ARS) in Boise, Idaho, USA.

Each component is fully open-source software and instal-
lable from the source via GitHub (https://github.com, last ac-
cess: 28 February 2022) or downloadable as a Docker con-
tainer. A Docker container is a virtualized environment that
combines the required operating system, libraries, and the ap-
plication itself into one executable entity.

3.2 Model configuration

Each component of the model (Katana, SMRF, AWSM) is
controlled by a configuration file that allows the user to cus-
tomize parameters used during execution. For instance, when
distributing forcing data from HRRR with SMRF, the user
can change values for minimum and maximum air temper-
ature, maximum and minimum snow grain sizes when cal-
culating albedo decay, or the height above ground when cal-
culating turbulent fluxes from the wind data. An overview
of the possible options and default values for each com-
ponent is available in the respective published documen-
tation. For this application, no parameters were changed
from the default values, and the configuration files are
available on GitHub (https://github.com/UofU-Cryosphere/
isnoda, last access: 28 February 2022).
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3.3 East River Watershed model domain setup and
execution

Elevation data at 1/3 arcsec (approximately 10 m) resolu-
tion from the USGS National Elevation Dataset and 30 m
vegetation data (height and type) from the USGS through
the LANDFIRE spatial products were used as input for the
Basin Setup tool. Both data sources are publicly available
and distributed through the USGS (see the “Data availabil-
ity” section). Basin Setup was further configured to prepare
the ERW model domain at a 50 m spatial resolution, resulting
in 837× 656 grid cells and an area of 1373 km2. This spatial
resolution was guided by the recommendations of Winstral
et al. (2014), which found that iSnobal output resolutions of
around 100 m kept the errors for SWE and surface water in-
put (SWI) below ±5 % during the melt season compared to
coarser resolutions. We further selected the 50 m resolution
to keep the resampling of the vegetation data from LAND-
FIRE minimal and removed the need to interpolate the spatial
snow depth product used in validation (Sect. 4). This reso-
lution additionally better represents the terrain complexity,
relevant for radiation calculations and interpolation of the
HRRR-supplied forcing data within SMRF. Lastly, we also
found that the 50 m resolution does not inhibit daily run times
and scales for the operational requirements.

Snowpack mass and energy fluxes were simulated with iS-
nobal from 2018 through 2021 in 1 h time steps, matching
the HRRR temporal resolution. The model was configured
to store the end-of-day values (e.g., snow depth) or accumu-
lated daily values (e.g., SWI), matching the temporal resolu-
tion of the available in situ comparison observations and the
SNOW-17 inputs and outputs, which are further explained in
the model comparison section. A single simulation year starts
on 1 October and ends on 30 September. This date range is
a “water year” and a standard definition for hydrologic fore-
casting in the United States.

3.4 Model forcing data

The meteorological inputs required to run the model were re-
trieved from the sixth-hour HRRR forecast product. HRRR
is undergoing active development, and the water years sim-
ulated in this study used the product versions HRRRv2 (Oc-
tober 2017 to July 2018), HRRRv3 (July 2018 to Novem-
ber 2020), and HRRRv4 (December 2020 to August 2021).
Using the sixth-hour HRRR forecast allows for better utiliza-
tion of model physics along with the assimilated observations
(Bytheway et al., 2017) and is a common practice for other
NWP input products (Schirmer and Jamieson, 2015).

The required iSnobal forcing input data supplied from
HRRR are air temperature, relative humidity, incoming
shortwave radiation, wind speed and direction, and total pre-
cipitation. Using the wind data from HRRR (U and V com-
ponent, 10 m above ground), Katana resolves the wind data
to a 200 m resolution using the model domain elevation

data. The 200 m resolution was a compromise between the
iSnobal-simulated resolution (50 m) and the increased com-
putational resources required by WindNinja to downscale
from the 3 km HRRR grid.

3.5 iSnobal and SMRF description

Using temporally complete meteorological input data, the iS-
nobal model (Marks et al., 1999) simulates snowpack evolu-
tion by solving energy and mass balance fluxes. As a two-
layer model, the top layer is designated for all energy and
mass exchanges between the snow surface and the atmo-
sphere. The bottom layer acts as an interface for mass and
energy exchanges between the top and a single soil layer. At
each simulated time step (1 h for the current application), the
model calculates the snowpack net radiative, sensible, latent,
conductive, and advective energy fluxes. Once the net energy
fluxes of the two snow layers exceed the cold content (the
energy required to raise the temperature across both layers to
0 ◦C) and the snow meltwater amount exceeds the maximum
liquid water holding capacity of the snowpack, the water out-
flow of the snowpack is calculated and added to the SWI for
that time step. At the end of a time step, the updated snow-
pack state variables (depth, density, temperature, and liquid
water content) are stored and used as initialization values at
the beginning of the next time step.

Before calculating the fluxes, the input data are spatially
interpolated and distributed for the model domain in SMRF,
which also prepares additional essential variables for the en-
ergy balance calculations in iSnobal. The variables include
information for precipitation phase, precipitation tempera-
ture, percentage of snow in precipitation, and water vapor
pressure. The required net shortwave radiation input used in
iSnobal is calculated by SMRF from the topographically ad-
justed incoming clear-sky radiation (Dozier and Frew, 1990)
and reduced with the percentage of cloud cover. The cloud
cover itself is determined by the supplied incoming short-
wave radiation from HRRR. An additional adjustment to the
incident shortwave radiation reduces the value by vegeta-
tion type and height information from the vegetation meta-
data following Link and Marks (1999). The amount of re-
flected shortwave radiation is calculated using a simulated
snow albedo derived with a time-decay function based on the
time duration since the last snowfall. The difference between
the cloud and vegetation-adjusted incident shortwave and the
reflected shortwave results in the net shortwave radiation at
the snow surface.

The net longwave radiation is calculated similarly to the
net shortwave radiation in SMRF. First, the percentage of
cloud cover is used to adjust the incoming longwave fluxes
from a theoretical clear-sky atmosphere before the vegetation
data are used to do a final correction (Link and Marks, 1999).
From the downscaled wind data from the Katana module,
SMRF interpolates the wind speeds to the configured output
resolution. The SMRF options include the ability to account
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Figure 3. SNOTEL Schofield Pass site location relative to the con-
figured model output resolution of 50 m (green-dashed grid). No
site was centered in one pixel, and a spatial 2× 2 grid surrounding
the site was used for simulated HRRR-iSnobal comparison values.
Basemap: © ESRI.

for precipitation redistribution using the speed and direction
wind data according to Winstral and Marks (2002). However,
this option was not used in this study and reduced potential
error sources when comparing the HRRR precipitation input
data to SNOW-17, which is explained in Sect. 4 below.

A detailed description of the energy balance equations and
data preparation can be found in Marks et al. (1992, 1998,
1999), Link and Marks (1999), and Havens et al. (2017,
2020). All energy and mass balance calculations in iSnobal
are based on a fixed spatial grid and a configurable time inter-
val. The main driver for the chosen time interval to update the
snowpack conditions is the temporal resolution of the input
data, which needs to be fine enough to resolve diurnal cli-
matic variations (e.g., temperature or shortwave radiation).

3.6 Model computing environment

The computational resources required for running the model
in this work were provided by the Center for High Perfor-
mance Computing at the University of Utah. All model com-
ponents were installed from the source, with the exception of
Katana, where the containerized option was selected due to
the complexity of dependent libraries. The installation was
documented and published on GitHub (https://github.com/
UofU-Cryosphere/isnoda, last access: 28 February 2022) and
extends the official documentation for each component with
instructions for a shared compute environment and helper
scripts for data download and model execution.

4 Model comparison

Two types of measurements were used to compare selected
iSnobal outputs with reference values: discrete in situ time-
series measurements and spatially distributed snapshots at
a single point in time. The in situ observations were the
quality-controlled end-of-day values for snow depth mea-
surements from the three SNOTEL stations. This assessment
against the SNOTEL data used a spatial maximum and min-
imum of a 2× 2 grid surrounding the point location of the
sites (Fig. 3). This approach was based on visual inspections
of the locations. Each site showed an offset to the center of
the model output cell, and a spatial grid was deemed more
appropriate to account for the physiographic variability sur-
rounding their location. For the years with available Airborne
Snow Observatory (ASO, Painter et al., 2016) aerial observa-
tions (2018 to 2020), simulated snow depths were compared
to the ASO lidar-based snow depth products. The range of
snow depth values on ASO flight days was also included in
the in situ time-series comparison and used the same 2× 2
grid surrounding the SNOTEL sites (Fig. 3).

The spatial point in time comparison used the snow depth
maps from ASO, which surveyed the area twice in 2018 and
2019 and once in 2020. In 2018 and 2019, the first survey
happened during the snow accumulation season, and the sec-
ond survey happened after peak SWE during snowmelt pro-
gression. In 2020, the area was surveyed before peak SWE.
The spatial resolution of the ASO snow depth maps matched
the iSnobal model resolution of 50 m, and the spatial ex-
tent overlapped with the ERW boundaries. Across the years,
the ASO snow depth maps were subtracted from the model-
simulated snow depth on a pixel-by-pixel basis. Addition-
ally, HRRR-iSnobal-simulated snow depths were compared
to ASO snow depths in each HRU. The goal of this compar-
ison was to check for any spatial biases in simulated snow
depths across elevation bands or aspects and for different
snow conditions (accumulating or melting) in years with two
flights (2018 and 2019).

To assess how well HRRR-iSnobal compares to SNOW-
17 for operational forecasting, the precipitation input and
the outputs of SWE and SWI were compared. The data for
SNOW-17 were supplied by the CBRFC. Mean areal SNOW-
17 precipitation inputs originate from quality-controlled
measurement stations in and around ERW and are combined
using a weighting equation that is derived during calibration
targeting PRISM (Parameter elevation Regression on Inde-
pendent Slopes Model) statistical mapping grids. The com-
parison of precipitation and SWE used the CBRFC HRU di-
vision (Fig. 1) and summarized the iSnobal-HRRR data by
the respective area. The SWI comparison also included the
stream gauge discharge at the basin pour point and aggre-
gated the model outputs within the watershed boundaries.
This assessment used a 7 d moving average window to re-
duce daily spikes in the time series. The focus of this evalu-
ation was on timing and magnitude; in a basin like ERW, the
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simulated SWI should follow the temporal pattern measured
at the stream gauge, which is dominated by the snowmelt
runoff (Carroll et al., 2018). Neither of the model outputs
is considered the true value; rather, the intercomparison was
undertaken to understand how (and why) the models may dif-
fer.

5 Results

5.1 Run time

Running the model through an entire water year took around
18 h in total, with WindNinja taking one-third of the time
and AWSM accounting for the remaining 12 h. The compute
times are based on a machine with 24 processor cores, 24 GB
of RAM, and hyper-threading enabled, which increased the
number of processing threads to 48. The storage requirement
for the input data was 10 GB, with the model output occu-
pying another 100 GB of space. Iterating from one day to
the next took less than 5 min, including data download, pre-
processing, and running the model. This reasonably fast ex-
ecution and total storage requirement showed that the model
could be implemented in day-to-day operations.

5.2 Point comparison

For the two sites within the ERW boundaries (Butte and
Schofield Pass), the simulated depths prior to peak snow
depth had mean differences of 12 % to −16 % at Butte and
1 % to −21 % at Schofield Pass across the years. The Upper
Taylor site had consistently higher than observed snow depth:
21 % to 37 %. The site-specific differences were not affected
by annual differences in the snow accumulation magnitudes.
Examples of an average snow depth year (2018) and an
above-average year (2019) are shown in Fig. 4. Results for
2020 and 2021 are shown in Fig. S1 in the Supplement.

After the seasonal peak snow depth, simulated snow
depths around all three SNOTEL stations deviated from ob-
servations, and the range of simulated values increased. No-
tably, the date for snow disappearance was simulated later
with a varying difference in days relative to observations
across all years. For instance, the difference between HRRR-
iSnobal and all SNOTEL sites was between 11 and 59 d in
2018 and between −8 and 59 d in 2019. An overview of
the differences between observations and simulation dates is
shown in Table 1. Consequently, the percentage mean dif-
ference between HRRR-iSnobal and SNOTEL snow depths
increased considerably, and values at the Butte site were be-
tween 27 % and −6 %. The Schofield Pass site mean differ-
ences ranged from 19 % to −46 % (−0.27 m). This disagree-
ment in snowmelt rates and snow disappearance is further
discussed in Sect. 6.4. An overview of the per-year and site
differences is shown in Fig. S2, with mean differences given
in Table S1. Overall, the snow depth comparison to observa-

tions over multiple years showed that the model can capture
peak snow depth timing and magnitude.

A cross-comparison of snow depths on ASO flight days
between the observed in situ SNOTEL sites, ASO remotely
sensed values, and HRRR-iSnobal-simulated values showed
a mixed result for agreement across the SNOTEL locations.
At the Butte site, the early survey flights across all years
had HRRR-iSnobal consistently higher than ASO. However,
the measured values at this SNOTEL site agreed more with
the 2× 2 spatial grid snow depths of HRRR-iSnobal (differ-
ence ranging from −0.19 to +0.13 m for all years) versus
ASO (−0.48 to −0.07 m). The 2018 late survey flight val-
ues agreed across all three sources for Butte, where snow
was completely melted. In 2019, HRRR-iSnobal still had
snow present, with ASO and SNOTEL showing complete
meltout. Schofield Pass had good agreement across all snow
depth values for the early 2018 flight (HRRR-iSnobal dif-
ference +/−0.04 m; ASO +0.05 m and −0.16 m), whereas
the above-average 2019 season had lower values in HRRR-
iSnobal with ASO capturing the SNOTEL depth value. The
2018 late survey flight had iSnobal-HRRR and ASO above
the Schofield Pass value, with HRRR-iSnobal and ASO hav-
ing a similar spatial range (HRRR-iSnobal: 0.34 m; ASO:
0.25 m). In 2019, the late survey flight captured the site value
(1.50 m) in HRRR-iSnobal (range from 0.84 to 1.61 m) and
ASO (1.25 to 1.68 m). The Upper Taylor site location was
only included in the early 2019 flight and confirmed the
strong overestimation by HRRR-iSnobal (1.61 to 2.06 m) as
the ASO snow depth values (1.40 to 1.61 m) agreed with the
SNOTEL depth (1.45 m). The agreement between ASO and
SNOTEL and overestimation by HRRR-iSnobal was in both
late survey flights for 2018 and 2019 at the Upper Taylor lo-
cation, as the snow depths approached 0 m. An overview of
snow depth values across all ASO flight years is given in Ta-
ble S2. Overall, using ASO as an additional snow depth refer-
ence data set at discrete point locations in the model domain
showed no consistent oversimulation or undersimulation for
HRRR-iSnobal across the years.

5.3 Spatial comparison

Integrated over the full basin, simulated snow depths agreed
with ASO snow depths, with median differences of 0.20 m
(early survey) and 0.00 m (late survey) in 2018, −0.06 m
(early) and 0.00 m (late) in 2019, and 0.06 m in 2020. The
distribution of the differences is shown with the “All” cat-
egory in Fig. 5. Generally, between two flights in the same
season, the agreement was best during late flights in the mid-
dle and lower HRU (Fig. 5a and b). An aerial overview with
per-grid cell difference for the 2018 and 2019 flights is shown
in Fig. 6, and 2020 can be found in Fig. S3. Within lower,
middle, and upper HRU elevations, the widest range in the
1 snow depth distribution was consistently found at the up-
per HRU (standard deviation (SD) between 0.53 and 0.99 m
across the flights), while the lower HRU (SD 0.03 to 0.55 m)
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Table 1. Overview of date differences for the last day with snow present between the HRRR-iSnobal and SNOTEL sites.

SNOTEL site Melt dates 2018 2019 2020 2021

Butte
SNOTEL 6 May 8 Jun 12 May 12 May
HRRR-iSnobal 24 to 25 May 24 to 26 Jun 26 to 28 May 31 May to 2 Jun

Difference 18–19 d 16–18 d 14–16 d 19–21 d

Schofield Pass
SNOTEL 29 May 3 Jul 3 Jun 2 Jun
HRRR-iSnobal 9 to 23 Jun 25 Jun to 25 Jul 29 May to 17 Jun 5 to 20 Jun

Difference 11–25 d −8–22 d −5–14 d 3–18 d

Upper Taylor
SNOTEL 10 May 12 Jun 13 May 13 May
HRRR-iSnobal 10 Jun to 8 Jul 3 Jul to 10 Aug 31 May to 5 Jul 6 Jun to 5 Jul

Difference 31–59 d 21–59 d 18–53 d 24–53 d

Figure 4. Snow depth comparison between the HRRR-iSnobal and SNOTEL sites for the years 2018 (a) and 2019 (b). The orange-shaded
areas represent the range of 2× 2 grid cell values from HRRR-iSnobal surrounding the site. The ranges of the grid cell (50 m) values from
ASO surveys are shown by the black bars. Note the different y scales between 2018 and 2019.

and middle HRU showed similar ranges (SD 0.22 to 0.53 m).
The distributions of 1 snow depth for the late survey in each
year showed positive biases, indicating a general overestima-
tion of snow depths by HRRR-iSnobal, consistent with the
observed slower snow depth decrease during the snowmelt
season at the SNOTEL sites (Fig. 4).

The snow depth differences binned by aspect for the en-
tire watershed indicated a bias, with variation during flight
dates and the two years (Fig. 7a and b). In both early flights,
higher snow depth was measured on eastern aspects relative
to other aspects, and the widest ranges in snow depth dif-
ferences were on northern aspects in both late flights. The
closest agreement between modeled and ASO snow depths
was on the east- to south-facing slopes during late flights, as
most snow was melted at that time of the season.

5.4 SNOW-17 comparison

Generally, precipitation used as an input to SNOW-17 was
consistently higher than the HRRR precipitation input used
for iSnobal across all years. The difference ranged from
HRRR being 25 % (2021) to 5 % (2018) lower, integrated
across all HRUs. A summary of the comparison, per HRU
and for the full watershed, is in Table 2. Using SNOW-17
as the reference, the daily total amount difference was con-
sistent across the HRUs and years, with no high ratio dif-
ferences (Fig. S4). For total amounts per HRU, the poor-
est agreement was in the lower HRU in 2020, with HRRR
36 % lower. The best agreement was found in the middle
HRU in 2018, with a match of 99 %. The differences per
HRU were not correlated with whether it was a high or low
snow year, with similar agreement in 2018 (lowest snow) and
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Figure 5. Snow depth differences for early and late surveys for the years 2018 and 2019 between HRRR-iSnobal and ASO. Panels (a) and
(b) categorize the differences by elevation HRU (low, middle, upper), with “All” showing the basin-wide difference.

Table 2. Overview of precipitation inputs and SWE outputs for HRRR-iSnobal and SNOW-17 classified by HRU.

HRU 2018 2019 2020 2021

Precip. SWE Precip. SWE Precip. SWE Precip. SWE

Lower
HRRR-iSnobal 300 7352 496 24 976 265 12 897 325 12 183
SNOW-17 333 5888 566 26 653 413 16 816 418 13 509

Ratio 90 % 125 % 88 % 94 % 64 % 77 % 78 % 90 %

Middle
HRRR-iSnobal 491 30 567 796 66 744 471 34 448 468 31 574
SNOW-17 495 25 375 859 67 347 573 39 788 606 37 270

Ratio 99 % 120 % 93 % 99 % 82 % 87 % 77 % 85 %

Upper
HRRR-iSnobal 667 45 639 1076 107 478 658 52 176 599 49 037
SNOW-17 707 59 676 1196 135 108 723 75 563 832 74 739

Ratio 94 % 76 % 90 % 80 % 91 % 69 % 72 % 66 %

All
HRRR-iSnobal 1458 83 558 2368 199 198 1394 99 521 1392 92 794
SNOW-17 1535 90 939 2621 229 108 1709 132 167 1856 125 518

Total 95 % 92 % 90 % 87 % 82 % 75 % 75 % 74 %

Note: precipitation (Precip.) and SWE values are shown in millimeters.

2019 (highest snow). The poorest overall agreement (2020
and 2021) had a higher precipitation amount for SNOW-17
(2020: 18 %, 2021: 25 %), which was not reflected in the
SNOTEL site comparison. The snow depth across all sites in
2020 had a mean difference between−0.20 and+0.23 m and
between −0.17 and +0.02 m in 2021 in the pre-melt season
(Fig. S2). Both of the years had similar HRRR total precipita-
tion amounts compared to 2018 (differences 2020: −64 mm,
2021:−66 mm), which is also supported by the similar depth
at all SNOTEL sites to 2018 (Fig. S1).

Across the four years, all three HRUs showed similar tem-
poral patterns for daily total SWE in the snowpack, although
HRRR-iSnobal SWE was lower in magnitude (Fig. 8) and

expected following the precipitation comparison (Table 2).
Consequently, the largest difference between the two mod-
els was in the upper HRU (HRRR-iSnobal between −34 %
and −20 %), with less difference in the middle (HRRR-
iSnobal between +20 % and −15 %) and lower (HRRR-
iSnobal between +25 % and −23 %) HRUs. As with the
SNOTEL depth comparison, the basin SWE from HRRR-
iSnobal showed longer persistence of snow compared to
SNOW-17. This lag is most apparent in the lower and mid-
dle HRU, with the upper HRU having similar SWE depletion
timing.

The watershed 7 d moving average of simulated HRRR-
iSnobal SWI compared to SNOW-17 matched the SWI tim-
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Figure 6. Spatial comparison of simulated HRRR-iSnobal against observed ASO lidar-based snow depths for 2018 and 2019. Early sur-
veys (a, c) and late surveys (b, d) subtracted ASO values per grid cell from HRRR-iSnobal (50 m resolution).

ing of the first peak at the beginning of every melt sea-
son (Fig. 9). Afterwards, the SNOW-17 mean volume was
lower, with HRRR-iSnobal showing more water outflow.
This difference in magnitude can in part be explained by
the difference in SWE, where HRRR-iSnobal SWE persisted
longer into the melt season, with SNOW-17 depleting earlier
(Fig. 8). Compared to the stream gauge, HRRR-iSnobal fol-
lowed the hydrograph timing and magnitude pattern across
the years. During the annual snowmelt pulse, HRRR-iSnobal
stayed higher relative to the discharge at the gauge. This

higher peak was expected, as a portion of SWI is taken
up by the ground, plants, and atmosphere before reaching
the gauge. In summary, the general patterns and magnitude
of HRRR-iSnobal SWI showed no underforecasting at any
point in the melt season when compared to simulated SNOW-
17 SWI and measured stream gauge discharge.
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Figure 7. Snow depth differences for the water years 2018 (a) and 2019 (b) between ASO and HRRR-iSnobal binned by aspect.

Figure 8. Total SWE comparison per HRU across 4 years between SNOW-17 (dashed lines) and HRRR-iSnobal (solid lines).

6 Discussion

6.1 HRRR precipitation

The results for the snow depth comparison to SNOTEL and
ASO indicated that the HRRR precipitation allowed iSnobal
to simulate the snow mass balance well. This is promising be-
cause HRRR data are distributed at 3 km resolution and are
much coarser than the 50 m model output resolution, which
is needed to resolve the different physical processes influenc-
ing the snowpack evolution in this type of terrain (Winstral
et al., 2014). The difference in resolutions makes it chal-
lenging to properly adjust for the topographic precipitation
differences, especially with the model domain’s high verti-
cal relief (1420 m). Kilometer-scale NWP model resolutions
are known to underestimate snowfall at higher elevations,
and complex terrain is particularly challenging for simulating
snowpack evolution with inconsistent snowfall trends (Ikeda
et al., 2010). The current solutions to “bias-correct” and im-
prove NWP precipitation based on topography are basin-
and application-specific. For example, Bellaire et al. (2011,
2013) applied a constant correction factor, and Griessinger

et al. (2019) corrected and filtered with observations from a
dense in situ network. These approaches require in situ obser-
vation and basin-specific knowledge that is not always avail-
able, reducing transferability to other regions. Ultimately, the
fewer corrections needed for forcing inputs results in greater
potential to scale and adapt model setups into forecast oper-
ations. The presented workflow here had no changes to the
HRRR inputs, and precipitation was used “as is”.

Given the different methods to determine precipitation in
HRRR and as inputs to SNOW-17, a match between the two
was not expected. The calibration process for SNOW-17 pre-
cipitation inputs uses spatially sparse in situ point measure-
ments and empirical data from previous water years. As an
atmospheric model, HRRR is a product of assimilated obser-
vation, physically based modeling, and a fundamentally dif-
ferent approach. Neither set of precipitation values was con-
sidered the truth, and accurately measuring precipitation is
an unsolved challenge in mountain terrain. Additional work
is needed to understand the variation in HRRR values rela-
tive to the calibrated precipitation used by the CBRFC across
these water years (i.e., poorer agreement in 2020 and 2021).
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Figure 9. Time series comparison of simulated HRRR-iSnobal SWI and SNOW-17 SWI against the measured USGS stream gauge discharge
across the 4 water years. Note: the data for SNOW-17 SWI were not available for 2021.

6.2 Comparison data sources

The snow depth comparison of this work used in situ point
observations and aerial spatial measurements. Both sources
had no consistent agreement, with the spatial measurements
tending to be lower than the point data. This underestimation
has been shown to exist when comparing point data to spa-
tial averages of snow depth from lidar (Trujillo and Lehning,
2015). Similarly, in situ snow depth estimates from point ob-
servation stations, such as SNOTEL, are known to only rep-
resent a small surrounding footprint because of the large het-
erogeneity of snow depth in alpine environments (Molotch
and Bales, 2005). This limitation, in part, can explain the
higher spread of the iSnobal snow depths to the SNOTEL
stations, as the values represent a larger area around them
(Fig. 3). The strength of SNOTEL station data is as long-term
historical records, from which index methods could be de-
veloped and help understand changes over long timeframes
(Harpold et al., 2012; Musselman et al., 2021; Trujillo and
Molotch, 2014). In the case of this work, it was the only
source available to allow a model performance assessment
over multiple years. The results from the SNOTEL compari-
son gave confidence that the HRRR forcing inputs provided
a quality long-term input source, in terms of capturing peak
snow depth, for a watershed with only sparse in situ meteo-
rological observations across different snow seasons.

The addition of aerial observations, such as ASO, has im-
proved the ability to retrieve snow depth over large areas
and supplies valuable validation data used in many studies
(Brandt et al., 2020; Hedrick et al., 2018; McGrath et al.,
2019). In this work, the ASO maps enabled a spatial compar-
ison that was impossible in the past. The comparison identi-
fied differences in snow depth at high elevations and across
aspects that are not possible with SNOTEL stations, which
are generally located at relatively flat middle and lower ele-
vations (e.g., below 3261 m in ERW). Additionally, the snow
depth disagreements between measured ASO and SNOTEL
highlighted that SNOTEL observations could not represent
snow conditions at 50 m model output resolutions either, and
caution is urged when using SNOTEL snow depth data as

“truth” for spatially distributed models. Likewise, the incon-
sistent comparison results to SNOTEL showed that coarser
aerial product resolutions should also not be treated as truth,
and snow depths can vary within short distances due to the
high spatial variability of mountain terrain.

6.3 Physically based models

Accurately simulating the seasonal snow accumulation and
depletion across multiple years and different topographic re-
gions through a single model is still an unsolved challenge.
However, physically based models are better suited to ful-
filling this need when compared to temperature-index-based
models. Existing studies using long-term records of SNO-
TEL measurements have identified a need for physically
based modeling approaches as they can better show the im-
pacts on water supply from current and projected climatolog-
ical changes (Harpold et al., 2012; Musselman et al., 2021;
Trujillo and Molotch, 2014). Physically based models are ca-
pable of accounting for scenarios such as shifting snowmelt
rates (Musselman et al., 2017), changes to the length of snow
accumulation and melt season (Trujillo and Molotch, 2014),
accelerated melt due to darker snow (Skiles and Painter,
2019), and rain-on-snow events (Marks et al., 1998).

The HRRR-iSnobal combination in this work closely sim-
ulated the snow depth observations from one region across
different seasonal characteristics (average vs. non-average
year) without a priori region-specific knowledge. All re-
quired forcing data per water year only used the HRRR-
forecasted observations of that year, replacing the sparse in
situ measurements that are interpolated and calibrated with
historical data. The interpolation and calibration procedures
are essential steps in the current SNOW-17 workflow of the
CBRFC and require regional forecaster experience. Voiding
this need gives a major operational advantage by simplifying
model application and enhancing the ability to adapt to envi-
ronmental changes across different regions and water years.

In addition to the streamlined forcing data preparation,
the advantages during the water year simulation include
the replacement of region-specific parameters required by
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temperature-index models (e.g., the SNOW-17 melt factor)
with the energy balance calculations from physically based
models. The index model parameters depend again on fore-
caster experience and require forecaster changes in response
to changing environmental conditions (average vs. non-
average). In this work, there was no need to change the model
configuration between the 2018 (average) and 2019 (above-
average) years in HRRR-iSnobal. The seasonal differences
were accounted for explicitly as the snow energy balance
calculations include influences such as shortwave radiation
(Marks and Dozier, 1992), longwave radiation (Link and
Marks, 1999), and turbulent fluxes from terrain-dependent
wind speeds (Winstral and Marks, 2002). Lastly, iSnobal is
a spatially distributed model run with a user-defined output
resolution (50 m in this study) and set up with site-specific
elevation and vegetation data information from the model
domain. This configuration negated the need to divide the
model domain into uniform and simplified HRUs to simulate
the topographic differences of the model domain accurately.

In summary, physically based models remove the depen-
dence on long-term historical calibration data, reduce the
need for user intervention due to parametrization issues, re-
quire less model domain specific user knowledge, and better
represent physiographic influences. All these factors com-
bined result in improved scalability across different sea-
sonal and terrain-dependent snowpack dynamics. Gradually
adding these models into operational settings, with architec-
tures presented in this work, can enhance snowpack informa-
tion in response to current environmental perturbations and
expand the ability to adapt to current and future water supply
forecast needs.

6.4 Improvements to iSnobal

The consistent longer presence of snow in HRRR-iSnobal
relative to the observations across the simulated years high-
lighted an area for improvement. One cause of the delay
is attributed to the too low amount of calculated shortwave
radiation by SMRF not providing enough energy to drive
snowmelt in iSnobal. An obvious option that influences the
calculation is the snow albedo time-decay function, which
has caused high uncertainty in many different model types
and scales (Chen et al., 2014; Clark et al., 2015; Krinner et
al., 2018; Qu and Hall, 2014; Ryken et al., 2020). The de-
cay function determines the snow albedo based on the time
of the last snowfall when the albedo gets reset, and the decay
starts anew. A drawback of this approach is excluding other
events that change the albedo, such as dust deposition. Solu-
tions for the 1-dimensional iSnobal model improved the sim-
ulated snowmelt timing and forced the model with observed
snow albedo (Miller et al., 2016; Skiles and Painter, 2019;
Skiles et al., 2015, 2012). Scaling this solution and adapting
it into spatially distributed models requires data sources with
daily updated and spatially complete snow albedo, which
are available today from remote sensing observations. For

instance, the combined Moderate-Resolution Imaging Spec-
troradiometer (MODIS) Snow Covered Area and Grain Size
(MODSCAG) and Dust Radiative Forcing (MODDRFS) in
Snow (Rittger et al., 2020) provides daily observation with
500 m spatial resolution. This spatial and temporal resolu-
tion fulfills the requirements of a model data source. With the
demonstrated need for improved snow disappearance dates
of this work, improved results by using observations in other
work, and the availability of remote sensing products, we
suggest integrating remotely sensed snow albedo into iS-
nobal.

Though relatively sparse in time, the spatial snow depth
comparison results highlighted another area to target with
HRRR-iSnobal. The snow depth differences by aspect
(Fig. 5c and d) indicated an iSnobal energy balance issue
as there was no strong aspect bias coming from the HRRR
precipitation data (Fig. S5). This difference could also be
caused by the disabled feature to account for wind redistri-
bution. However, the closer agreements on the south-facing
aspect, especially in the late survey ASO surveys, suggest
that improving the incoming shortwave radiation could help
address this model bias. Shortwave radiation is currently a to-
pographically adjusted calculation (Dozier and Frew, 1990)
by SMRF when preparing iSnobal forcing inputs. One al-
ternative to this approach is to use the supplied values by
HRRR, reducing model complexity and computation times.
The addition of remotely sensed albedo and alternative han-
dling for incoming shortwave radiation will be the follow-up
effort for iSnobal to this work.

7 Conclusions

This work presented and evaluated the spatially distributed
iSnobal model forced with HRRR meteorological data to ex-
pand the model options and support operational water fore-
casts for the CBRFC. The model was assessed over one
representative headwater basin in the CRB with an area of
1373 km2 for 4 consecutive water years (2018 to 2021) at
a 50 m spatial resolution and hourly time steps. There were
several key outcomes from this effort. (1) Execution times
from one to the next day and total storage requirements
would allow operational forecasters to run HRRR-iSnobal
alongside current production environments. (2) HRRR pro-
vided meteorological input data that enabled iSnobal to sim-
ulate close to the observed snow depths up to peak accu-
mulation. (3) iSnobal radiation calculations need revisions
to improve melt timing and to address geographic aspect
bias. (4) Simulated timing and magnitude of iSnobal SWI
followed the observed hydrograph at the basin stream gauge.

From the model comparison, the iSnobal SWE was lower
than the SNOW-17 SWE and consistent with the lower pre-
cipitation inputs from HRRR than the SNOW-17 inputs.
iSnobal had lower snow depths at higher elevations rela-
tive to aerial observations and was attributed to the coarser
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model output resolution of HRRR relative to the topogra-
phy and the simulated spatial resolution. Model runs in ad-
ditional basins are ongoing and will allow further evalua-
tion if this is consistent. Despite these differences, iSnobal
simulated snow depths close to measured values across the
watershed up to the melt period. Once snowmelt set in, iS-
nobal snow depths showed greater disagreement than the ob-
served in situ measurement sites and simulated longer snow
persistence. The discrepancy between observed and simu-
lated snowmelt timing, and therefore magnitude, was con-
sistent across the years, including above-average and below-
average snow years. Accurately simulating snow depletion
timing is important for operational adoption. Future work to
address snowmelt timing aims to improve snow energy bal-
ance calculations, specifically by using remotely observed
snow albedo data and updating the net shortwave radiation
treatment in iSnobal. Nevertheless, as the world transitions
into a future that is less similar to the past and statistical
models become less reliable, this work showed that HRRR-
iSnobal could be a valuable supplement to operational water
supply forecasting methods in snow-dominated regions.

Code availability. The software components used to run the
model and analyze the results are publicly available. iSnobal
model components are available via the USDA ARS NWRC
GitHub page: https://github.com/USDA-ARS-NWRC (last
access: 28 February 2022). For this study, GitHub forks for
SMRF (https://doi.org/10.5281/zenodo.6543935; Havens et
al., 2022a), AWSM (https://doi.org/10.5281/zenodo.6543919;
Havens et al., 2022b), and weather forecast retrieval
(https://doi.org/10.5281/zenodo.6543579; Havens et al., 2022c)
were created to capture the model code at the time of completing
this study as no official version was released. The forks can be
found under https://github.com/UofU-Cryosphere (last access:
28 February 2022). Additions to model setup and result analysis
code are stored on https://doi.org/10.5281/zenodo.7452230 (Meyer
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