Methods for assessment of models
05 Sep 2022
Methods for assessment of models
| 05 Sep 2022
Characterizing uncertainties of Earth system modeling with heterogeneous many-core architecture computing
Yangyang Yu et al.
Related authors
Zhenming Wang, Shaoqing Zhang, Yishuai Jin, Yinglai Jia, Yangyang Yu, Yang Gao, Xiaolin Yu, Mingkui Li, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 16, 705–717, https://doi.org/10.5194/gmd-16-705-2023, https://doi.org/10.5194/gmd-16-705-2023, 2023
Short summary
Short summary
To improve the numerical model predictability of monthly extended-range scales, we use the simplified slab ocean model (SOM) to restrict the complicated sea surface temperature (SST) bias from a 3-D dynamical ocean model. As for SST prediction, whether in space or time, the WRF-SOM is verified to have better performance than the WRF-ROMS, which has a significant impact on the atmosphere. For extreme weather events such as typhoons, the predictions of WRF-SOM are in good agreement with WRF-ROMS.
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Yuyang Li, Jiewen Shen, Bin Zhao, Runlong Cai, Shuxiao Wang, Yang Gao, Manish Shrivastava, Da Gao, Jun Zheng, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2023-15, https://doi.org/10.5194/acp-2023-15, 2023
Preprint under review for ACP
Short summary
Short summary
We set up a new parameterization for 1.4 nm particle formation rates from sulfuric acid (SA)-dimethylamine (DMA) nucleation, fully including the effects of coagulation scavenging and cluster stability. Incorporating the new parameterization into a 3-D chemical transport models, we achieved better consistencies between simulation results and observation data. This new parameterization provides new insights into atmospheric nucleation simulations and its effects on atmospheric pollution or health.
Zhenming Wang, Shaoqing Zhang, Yishuai Jin, Yinglai Jia, Yangyang Yu, Yang Gao, Xiaolin Yu, Mingkui Li, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 16, 705–717, https://doi.org/10.5194/gmd-16-705-2023, https://doi.org/10.5194/gmd-16-705-2023, 2023
Short summary
Short summary
To improve the numerical model predictability of monthly extended-range scales, we use the simplified slab ocean model (SOM) to restrict the complicated sea surface temperature (SST) bias from a 3-D dynamical ocean model. As for SST prediction, whether in space or time, the WRF-SOM is verified to have better performance than the WRF-ROMS, which has a significant impact on the atmosphere. For extreme weather events such as typhoons, the predictions of WRF-SOM are in good agreement with WRF-ROMS.
Yu Lin, Leiming Zhang, Qinchu Fan, He Meng, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 22, 16073–16090, https://doi.org/10.5194/acp-22-16073-2022, https://doi.org/10.5194/acp-22-16073-2022, 2022
Short summary
Short summary
In this study, we analyzed 7-year (from May 2014 to April 2021) concentration data of six criteria air pollutants (PM2.5, PM10, O3, NO2, CO and SO2) as well as the sum of NO2 and O3 in six cities in South China. Three different analysis methods were used to identify emission-driven interannual variations and perturbations from varying weather conditions. In addition, a self-developed method was further introduced to constrain analysis uncertainties.
Jiaxu Guo, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Xianwei Wu, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-264, https://doi.org/10.5194/gmd-2022-264, 2022
Preprint under review for GMD
Short summary
Short summary
To further improve the efficiency of experiments using SCAM, we train a neural network-based surrogate model to support large-scale sensitivity analysis and tuning of combinations of multiple parameters. Using a hybrid method, we explore the joint sensitivity of multi-parameter combinations to typical cases and identify the most sensitive three-parameter combination out of eleven, and perform a tuning process that reduces the error of precipitation in these cases.
Jingzhe Sun, Yingjing Jiang, Shaoqing Zhang, Weimin Zhang, Lv Lu, Guangliang Liu, Yuhu Chen, Xiang Xing, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 15, 4805–4830, https://doi.org/10.5194/gmd-15-4805-2022, https://doi.org/10.5194/gmd-15-4805-2022, 2022
Short summary
Short summary
An online ensemble coupled data assimilation system with the Community Earth System Model is designed and evaluated. This system uses the memory-based information transfer approach which avoids frequent I/O operations. The observations of surface pressure, sea surface temperature, and in situ temperature and salinity profiles can be effectively assimilated into the coupled model. That will facilitate a long-term high-resolution climate reanalysis once the algorithm efficiency is much improved.
Lu Yang, Hongli Fu, Xiaofan Luo, Shaoqing Zhang, and Xuefeng Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-92, https://doi.org/10.5194/tc-2022-92, 2022
Revised manuscript under review for TC
Short summary
Short summary
During the melting season in Arctic, sea ice thickness is difficult to detect directly by the satellite remote sensing. A bivariate regression model is put forward in this study to construct sea ice thickness. Comparisons with observations show that the new sea ice thickness data has some advantages over other data sets. The experiment shows that the model is expected to provide an available data for improving the forecast accuracy of sea ice variables in the Arctic sea ice melting season.
Xiajie Yang, Qiaoqiao Wang, Nan Ma, Weiwei Hu, Yang Gao, Zhijiong Huang, Junyu Zheng, Bin Yuan, Ning Yang, Jiangchuan Tao, Juan Hong, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 3743–3762, https://doi.org/10.5194/acp-22-3743-2022, https://doi.org/10.5194/acp-22-3743-2022, 2022
Short summary
Short summary
We use the GEOS-Chem model with additional anthropogenic and biomass burning chlorine emissions combined with updated parameterizations for N2O5 + Cl chemistry to investigate the impacts of chlorine chemistry on air quality in China. Our study not only significantly improves the model's performance but also demonstrates the importance of non-sea-salt chlorine sources as well as an appropriate parameterization for N2O5 + Cl chemistry to the impact of chlorine chemistry in China.
Yating Gao, Dihui Chen, Yanjie Shen, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 22, 1515–1528, https://doi.org/10.5194/acp-22-1515-2022, https://doi.org/10.5194/acp-22-1515-2022, 2022
Short summary
Short summary
This study focuses on spatiotemporal heterogeneity of observed gaseous amines, NH3, their particulate counterparts in PM2.5 over different sea zones, and the disproportional release of alkaline gases and corresponding particulate counterparts from seawater in the sea zones in terms of different extents of enrichment of TMAH+ and DMAH+ in the sea surface microlayer (SML). A novel hypothesis is delivered.
Ying Zhou, Simo Hakala, Chao Yan, Yang Gao, Xiaohong Yao, Biwu Chu, Tommy Chan, Juha Kangasluoma, Shahzad Gani, Jenni Kontkanen, Pauli Paasonen, Yongchun Liu, Tuukka Petäjä, Markku Kulmala, and Lubna Dada
Atmos. Chem. Phys., 21, 17885–17906, https://doi.org/10.5194/acp-21-17885-2021, https://doi.org/10.5194/acp-21-17885-2021, 2021
Short summary
Short summary
We characterized the connection between new particle formation (NPF) events in terms of frequency, intensity and growth at a near-highway location in central Beijing and at a background mountain site 80 km away. Due to the substantial contribution of NPF to the global aerosol budget, identifying the conditions that promote the occurrence of regional NPF events could help understand their contribution on a large scale and would improve their implementation in global models.
Dihui Chen, Yanjie Shen, Juntao Wang, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 21, 16413–16425, https://doi.org/10.5194/acp-21-16413-2021, https://doi.org/10.5194/acp-21-16413-2021, 2021
Short summary
Short summary
The study provides solid evidence to demonstrate that atmospheric trimethylamine (TMAgas) and particulate trimethylaminium in PM2.5 (TMAH+) observed in marine atmospheres were uniquely derived from seawater emissions. As sea-derived TMAgas correlated significantly with DMAgas and NH3gas, sea-derived DMAgas and NH3gas can be estimated and can quantify the contribution to the observed species in the marine atmosphere. Similarly, the contributions of primary DMAH+ have also been estimated.
Zhao Liu, Shaoqing Zhang, Yang Shen, Yuping Guan, and Xiong Deng
Nonlin. Processes Geophys., 28, 481–500, https://doi.org/10.5194/npg-28-481-2021, https://doi.org/10.5194/npg-28-481-2021, 2021
Short summary
Short summary
A general methodology is introduced to capture regime transitions of the Atlantic meridional overturning circulation (AMOC). The assimilation models with different parameters simulate different paths for the AMOC to switch between equilibrium states. Constraining model parameters with observations can significantly mitigate the model deviations, thus capturing AMOC regime transitions. This simple model study serves as a guideline for improving coupled general circulation models.
Liya Ma, Yujiao Zhu, Mei Zheng, Yele Sun, Lei Huang, Xiaohuan Liu, Yang Gao, Yanjie Shen, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 21, 183–200, https://doi.org/10.5194/acp-21-183-2021, https://doi.org/10.5194/acp-21-183-2021, 2021
Short summary
Short summary
In this study, we investigate three patterns of new particles growing to CCN (cloud condensation nuclei) size, i.e., one-stage growth and two-stage growth-A and growth-B patterns. Combining the observations of gaseous pollutants and measured or modeled particulate chemical species, the three growth patterns were discussed regarding the spatial heterogeneity, formation of secondary aerosols, and evaporation of semivolatile particulates as was the survival probability of new particles to CCN size.
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Yang Gao, Deqiang Zhang, Juntao Wang, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 20, 9665–9677, https://doi.org/10.5194/acp-20-9665-2020, https://doi.org/10.5194/acp-20-9665-2020, 2020
Short summary
Short summary
Through the cruise campaign conducted over marginal seas in China, we found that the concentrations of condensation nuclei (Ncn) and cloud condensation nuclei (Nccn) were 1 order of magnitude larger than those in remote clear marine atmospheres, indicating overwhelming contributions from marine traffic emissions and long-range continental transport. Moreover, we derived regression equations used to estimate Ncn and Nccn from SO2 when the direct observations of Ncn and Nccn are not available.
Zhi-Zhen Ni, Kun Luo, Yang Gao, Xiang Gao, Fei Jiang, Cheng Huang, Jian-Ren Fan, Joshua S. Fu, and Chang-Hong Chen
Atmos. Chem. Phys., 20, 5963–5976, https://doi.org/10.5194/acp-20-5963-2020, https://doi.org/10.5194/acp-20-5963-2020, 2020
Short summary
Short summary
The Weather Research Forecast with Chemistry (WRF-Chem) model was used to simulate spatial and temporal O3 evolution in the Yangtze River Delta (YRD) region. Various atmospheric processes were analyzed to determine the influential factors of ozone formation through the integrated process rate method. This paper provides insight into urban O3 formation and dispersion during tropical cyclone events and supports the Model Intercomparison Study Asia Phase III (MICS-Asia Phase III).
Yi Zeng, Minghuai Wang, Chun Zhao, Siyu Chen, Zhoukun Liu, Xin Huang, and Yang Gao
Geosci. Model Dev., 13, 2125–2147, https://doi.org/10.5194/gmd-13-2125-2020, https://doi.org/10.5194/gmd-13-2125-2020, 2020
Short summary
Short summary
Dust aerosol can impact many processes of the Earth system, but large uncertainties still remain in dust simulations. In this study, we investigated dust simulation sensitivity to two dust emission schemes and three dry deposition schemes using WRF-Chem. An optimal combination of dry deposition scheme and dust emission scheme has been identified to best simulate the dust storm in comparison with observation. Our results highlight the importance of dry deposition schemes for dust simulation.
Xiadong An, Lifang Sheng, Qian Liu, Chun Li, Yang Gao, and Jianping Li
Atmos. Chem. Phys., 20, 4667–4680, https://doi.org/10.5194/acp-20-4667-2020, https://doi.org/10.5194/acp-20-4667-2020, 2020
Short summary
Short summary
Severe haze occurred in the North China Plain (NCP) in November to December 2015. We found that the two Rossby waveguides within the westerly jet originating from the Mediterranean were responsible for the haze formation in the NCP. The weak East Asia winter monsoon and anomalous circulation with ascending motion over southern China and descending motion over the NCP related to the two Rossby waveguides, which modulated haze accumulation and favored the maintenance of severe haze.
Jiangyu Li and Shaoqing Zhang
Geosci. Model Dev., 13, 1035–1054, https://doi.org/10.5194/gmd-13-1035-2020, https://doi.org/10.5194/gmd-13-1035-2020, 2020
Short summary
Short summary
Two assimilation systems developed using two nearly independent wave models are used to study the influences of various error sources including mode bias on wave data assimilation; a statistical method is explored to make full use of the merits of individual assimilation systems for bias correction, thus improving wave analysis greatly. This study opens a door to further our understanding of physical processes in waves and associated air–sea interactions for improving wave modeling.
Mingchen Ma, Yang Gao, Yuhang Wang, Shaoqing Zhang, L. Ruby Leung, Cheng Liu, Shuxiao Wang, Bin Zhao, Xing Chang, Hang Su, Tianqi Zhang, Lifang Sheng, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 19, 12195–12207, https://doi.org/10.5194/acp-19-12195-2019, https://doi.org/10.5194/acp-19-12195-2019, 2019
Short summary
Short summary
Ozone pollution has become severe in China, and extremely high ozone episodes occurred in summer 2017 over the North China Plain. While meteorology impacts are clear, we find that enhanced biogenic emissions, previously ignored by the community, driven by high vapor pressure deficit, land cover change and urban landscape contribute substantially to ozone formation. This study has significant implications for ozone pollution control with more frequent heat waves and urbanization growth in future.
Juntao Wang, Yanjie Shen, Kai Li, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 19, 8845–8861, https://doi.org/10.5194/acp-19-8845-2019, https://doi.org/10.5194/acp-19-8845-2019, 2019
Short summary
Short summary
In this paper, we studied the spatiotemporal variability of Ncn and particle number size distributions, as well as Nccn and CCN activities over the NWPO in the spring of 2014. We found that a pool of nucleation-mode atmospheric particles is aloft over the NWPO. Through comprehensive comparison with observations in the literature, we illustrate the characteristics of Ncn and Nccn over the NWPO in 2014 and reveal their changes against the results measured two decades ago.
Junxi Zhang, Yang Gao, L. Ruby Leung, Kun Luo, Huan Liu, Jean-Francois Lamarque, Jianren Fan, Xiaohong Yao, Huiwang Gao, and Tatsuya Nagashima
Atmos. Chem. Phys., 19, 887–900, https://doi.org/10.5194/acp-19-887-2019, https://doi.org/10.5194/acp-19-887-2019, 2019
Short summary
Short summary
ACCMIP simulations were used to study NOy deposition over East Asia in the future. Both dry and wet NOy deposition show significant decreases in the 2100s under RCP4.5 and RCP8.5 due to large anthropogenic emission reduction. The changes in climate only significantly affect the wet deposition primarily linked to changes in precipitation. Over the coastal seas of China, weaker transport of NOy from land due to emission reduction infers a larger impact from shipping and lightning emissions.
Ge Zhang, Yang Gao, Wenju Cai, L. Ruby Leung, Shuxiao Wang, Bin Zhao, Minghuai Wang, Huayao Shan, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 19, 565–576, https://doi.org/10.5194/acp-19-565-2019, https://doi.org/10.5194/acp-19-565-2019, 2019
Short summary
Short summary
Based on observed data, this study reveals a distinct seesaw feature of abnormally high and low PM2.5 concentrations in December 2015 and January 2016 over North China. The mechanism of the seesaw pattern was found to be linked to a super El Niño and the Arctic Oscillation (AO). During the mature phase of El Niño in December 2015, the weakened East Asian winter monsoon favors strong haze formation; however, the circulation pattern was reversed in the next month due to the phase change of the AO.
Yujiao Zhu, Kai Li, Yanjie Shen, Yang Gao, Xiaohuan Liu, Yang Yu, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 19, 89–113, https://doi.org/10.5194/acp-19-89-2019, https://doi.org/10.5194/acp-19-89-2019, 2019
Short summary
Short summary
In this paper, we investigate new particle formation (NPF) events during seven cruises. NPF events were observed on 25 days and were most likely associated with the long-range transport of anthropogenic air pollutants. The relationship between the net generated amount of new particles and their apparent formation rate is established and explained in terms of the roles of different vapor precursors. The survival probability of new particles to CCN size is also discussed.
Junxi Zhang, Yang Gao, Kun Luo, L. Ruby Leung, Yang Zhang, Kai Wang, and Jianren Fan
Atmos. Chem. Phys., 18, 9861–9877, https://doi.org/10.5194/acp-18-9861-2018, https://doi.org/10.5194/acp-18-9861-2018, 2018
Short summary
Short summary
We used a regional model to investigate the impact of atmosphere with high temperature and low wind speed on ozone concentration. When these compound events (heat waves and stagnant weather) occur simultaneously, a striking ozone enhancement is revealed. This type of compound event is projected to increase more dominantly compared to single events in the future over the US, Europe, and China, implying the importance of reducing emissions in order to alleviate the impact from the compound events.
Pei Hou, Shiliang Wu, Jessica L. McCarty, and Yang Gao
Atmos. Chem. Phys., 18, 8173–8182, https://doi.org/10.5194/acp-18-8173-2018, https://doi.org/10.5194/acp-18-8173-2018, 2018
Short summary
Short summary
Atmospheric aerosols can be affected not only by emissions, but also meteorology, in particular precipitation. Analyses of the historical meteorological data based on multiple datasets show significant changes in precipitation characteristics, including precipitation intensity and frequency, over various regions around the world. We find that the precipitation changes over the past 30 years can easily lead to perturbations in atmospheric aerosols by 10 % or higher at the regional scale.
Zhi-zhen Ni, Kun Luo, Yang Gao, Fei Jiang, Xiang Gao, Jian-ren Fan, and Chang-hong Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-76, https://doi.org/10.5194/acp-2018-76, 2018
Revised manuscript not accepted
Short summary
Short summary
A unique mechanism was found to modulate the high ozone episodes in Hangzhou during G20 summit: Driven by tropical cyclone convergence, prevailing north winds brought in emission sources; with invasion of tropical cycle, subsidence air and stagnant weather was induced, as well as the urban heat island effect, intensifying the ozone enhancement. Different atmospheric processes were further analyzed to elucidate the control factors of ozone formation through integrated process rate method.
Chengzhi Xing, Cheng Liu, Shanshan Wang, Ka Lok Chan, Yang Gao, Xin Huang, Wenjing Su, Chengxin Zhang, Yunsheng Dong, Guangqiang Fan, Tianshu Zhang, Zhenyi Chen, Qihou Hu, Hang Su, Zhouqing Xie, and Jianguo Liu
Atmos. Chem. Phys., 17, 14275–14289, https://doi.org/10.5194/acp-17-14275-2017, https://doi.org/10.5194/acp-17-14275-2017, 2017
Short summary
Short summary
Vertical profiles of the aerosol extinction coefficient and NO2 and HCHO concentrations were retrieved from MAX-DOAS measurement, while vertical distribution of O3 was obtained using ozone lidar. The measured O3 vertical distribution indicates that the ozone production not only occurs at surface level but also at higher altitudes (about 1.1 km), which are not directly related to horizontal and vertical transportation but are mainly influenced by the abundance of VOCs in the lower troposphere.
Yuxin Zhao, Xiong Deng, Shaoqing Zhang, Zhengyu Liu, Chang Liu, Gabriel Vecchi, Guijun Han, and Xinrong Wu
Nonlin. Processes Geophys., 24, 681–694, https://doi.org/10.5194/npg-24-681-2017, https://doi.org/10.5194/npg-24-681-2017, 2017
Short summary
Short summary
Here with a simple coupled model that simulates typical scale interactions in the climate system, we study the optimal OTWs for the coupled media so that climate signals can be most accurately recovered by CDA. Results show that an optimal OTW determined from the de-correlation timescale provides maximal observational information that best fits the characteristic variability of the coupled medium during the data blending process.
Yujiao Zhu, Caiqing Yan, Renyi Zhang, Zifa Wang, Mei Zheng, Huiwang Gao, Yang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 17, 9469–9484, https://doi.org/10.5194/acp-17-9469-2017, https://doi.org/10.5194/acp-17-9469-2017, 2017
Short summary
Short summary
This study reports the distinct effects of street canyons on new particle formation (NPF) under warm or cold ambient temperature conditions because of on-road vehicle emissions; i.e., stronger condensation sinks are responsible for the reduced NPF in the springtime, but efficient nucleation and partitioning of gaseous species contribute to the enhanced NPF in the wintertime. The oxidization of biogenic organics is suggested to play an important role in growing new particles.
Xiaolin Yu, Shaoqing Zhang, Xiaopei Lin, and Mingkui Li
Nonlin. Processes Geophys., 24, 125–139, https://doi.org/10.5194/npg-24-125-2017, https://doi.org/10.5194/npg-24-125-2017, 2017
Short summary
Short summary
Parameter estimation (PE) with a global coupled data assimilation (CDA) system can improve the runs, but the improvement remains in a limited range. We have to come back to simple models to sort out the sources of noises. Incomplete observations and the chaotic nature of the atmosphere have much stronger influences on the PE through the state estimation (SE) process. Here, we propose the guidelines of how to enhance the signal-to-noise ratio under partial SE status.
Xiaomeng Huang, Qiang Tang, Yuheng Tseng, Yong Hu, Allison H. Baker, Frank O. Bryan, John Dennis, Haohuan Fu, and Guangwen Yang
Geosci. Model Dev., 9, 4209–4225, https://doi.org/10.5194/gmd-9-4209-2016, https://doi.org/10.5194/gmd-9-4209-2016, 2016
Short summary
Short summary
Refining model resolution is helpful for representing climate processes. With resolution increasing, the computational cost will become very huge. We designed a new solver to accelerate the high-resolution ocean simulation so as to reduce the computational cost and make full use of the computing resource of supercomputers. Our results show that the simulation speed of the improved ocean component with 0.1° resolution achieves 10.5 simulated years per wall-clock day on 16875 CPU cores.
S. Xu, X. Huang, L.-Y. Oey, F. Xu, H. Fu, Y. Zhang, and G. Yang
Geosci. Model Dev., 8, 2815–2827, https://doi.org/10.5194/gmd-8-2815-2015, https://doi.org/10.5194/gmd-8-2815-2015, 2015
Short summary
Short summary
In this paper, we redesign the mpiPOM with GPUs. Specifically, we first convert the model from its original Fortran form to a new CUDA-C version, POM.gpu-v1.0. Then we optimize the code on each of the GPUs, the communications between the GPUs, and the I/O between the GPUs and the CPUs.
We show that the performance of the new model on a workstation containing 4 GPUs is comparable to that on a powerful cluster with 408 standard CPU cores, and it reduces the energy consumption by a factor of 6.8.
G.-J. Han, X.-F. Zhang, S. Zhang, X.-R. Wu, and Z. Liu
Nonlin. Processes Geophys., 21, 357–366, https://doi.org/10.5194/npg-21-357-2014, https://doi.org/10.5194/npg-21-357-2014, 2014
Related subject area
Numerical methods
The Intelligent Prospector v1.0: geoscientific model development and prediction by sequential data acquisition planning with application to mineral exploration
Predicting peak daily maximum 8 h ozone and linkages to emissions and meteorology in Southern California using machine learning methods (SoCAB-8HR V1.0)
Transfer learning for landslide susceptibility modeling using domain adaptation and case-based reasoning
ISMIP-HOM benchmark experiments using Underworld
spyro: a Firedrake-based wave propagation and full-waveform-inversion finite-element solver
Spatial filtering in a 6D hybrid-Vlasov scheme to alleviate adaptive mesh refinement artifacts: a case study with Vlasiator (versions 5.0, 5.1, and 5.2.1)
A Bayesian data assimilation framework for lake 3D hydrodynamic models with a physics-preserving particle filtering method using SPUX-MITgcm v1
A fast, single-iteration ensemble Kalman smoother for sequential data assimilation
A mixed finite element discretisation of the shallow water equations
Multifidelity Monte Carlo Estimation for Efficient Uncertainty Quantification in Climate-Related Modeling
Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol applied to Earth system models
Impact of the numerical solution approach of a plant hydrodynamic model (v0.1) on vegetation dynamics
Parallelized Domain Decomposition for Multi-Dimensional Lagrangian Random Walk, Mass-Transfer Particle Tracking Schemes
Islet: interpolation semi-Lagrangian element-based transport
Multi-dimensional hydrological–hydraulic model with variational data assimilation for river networks and floodplains
Assessing the robustness and scalability of the accelerated pseudo-transient method
Fast Barnes Interpolation
Assessment of stochastic weather forecast of precipitation near European cities, based on analogs of circulation
Modelling large‐scale landform‐evolution with a stream‐power law for glacial erosion (OpenLEM v37): Benchmarking experiments against a more process-based description of ice flow (iSOSIA v3.4.3)
University of Warsaw Lagrangian Cloud Model (UWLCM) 2.0: adaptation of a mixed Eulerian–Lagrangian numerical model for heterogeneous computing clusters
Prediction error growth in a more realistic atmospheric toy model with three spatiotemporal scales
On numerical broadening of particle-size spectra: a condensational growth study using PyMPDATA 1.0
Lossy checkpoint compression in full waveform inversion: a case study with ZFPv0.5.5 and the overthrust model
Blockworlds 0.1.0: a demonstration of anti-aliased geophysics for probabilistic inversions of implicit and kinematic geological models
Efficient high-dimensional variational data assimilation with machine-learned reduced-order models
Improved double Fourier series on a sphere and its application to a semi-implicit semi-Lagrangian shallow-water model
SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python
Flow-Py v1.0: a customizable, open-source simulation tool to estimate runout and intensity of gravitational mass flows
Massively Parallel Modeling and Inversion of Electrical Resistivity Tomography data using PFLOTRAN
Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES
A three-dimensional variational data assimilation system for aerosol optical properties based on WRF-Chem v4.0: design, development, and application of assimilating Himawari-8 aerosol observations
Implementation of a Gaussian Markov random field sampler for forward uncertainty quantification in the Ice-sheet and Sea-level System Model v4.19
A method for assessment of the general circulation model quality using the K-means clustering algorithm: a case study with GETM v2.5
An explicit GPU-based material point method solver for elastoplastic problems (ep2-3De v1.0)
MagIC v5.10: a two-dimensional message-passing interface (MPI) distribution for pseudo-spectral magnetohydrodynamics simulations in spherical geometry
Machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets
Recalculation of error growth models' parameters for the ECMWF forecast system
How biased are our models? – a case study of the alpine region
B-flood 1.0: an open-source Saint-Venant model for flash-flood simulation using adaptive refinement
A micro-genetic algorithm (GA v1.7.1a) for combinatorial optimization of physics parameterizations in the Weather Research and Forecasting model (v4.0.3) for quantitative precipitation forecast in Korea
SymPKF (v1.0): a symbolic and computational toolbox for the design of parametric Kalman filter dynamics
NDCmitiQ v1.0.0: a tool to quantify and analyse greenhouse gas mitigation targets
Combining ensemble Kalman filter and reservoir computing to predict spatiotemporal chaotic systems from imperfect observations and models
The Coastline Evolution Model 2D (CEM2D) V1.1
An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3
Ocean Plastic Assimilator v0.2: assimilation of plastic concentration data into Lagrangian dispersion models
Development of a moving point source model for shipping emission dispersion modeling in EPISODE–CityChem v1.3
Efficient Bayesian inference for large chaotic dynamical systems
Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation in GemPy 2.1
Retrieval of process rate parameters in the general dynamic equation for aerosols using Bayesian state estimation: BAYROSOL1.0
John Mern and Jef Caers
Geosci. Model Dev., 16, 289–313, https://doi.org/10.5194/gmd-16-289-2023, https://doi.org/10.5194/gmd-16-289-2023, 2023
Short summary
Short summary
In this work, we formulate the sequential geoscientific data acquisition problem as a problem that is similar to playing chess against nature, except the pieces are not fully observed. Solutions to these problems are given in AI and rarely used in geoscientific data planning. We illustrate our approach to a simple 2D problem of mineral exploration.
Ziqi Gao, Yifeng Wang, Petros Vasilakos, Cesunica E. Ivey, Khanh Do, and Armistead G. Russell
Geosci. Model Dev., 15, 9015–9029, https://doi.org/10.5194/gmd-15-9015-2022, https://doi.org/10.5194/gmd-15-9015-2022, 2022
Short summary
Short summary
While the national ambient air quality standard of ozone is based on the 3-year average of the fourth highest 8 h maximum (MDA8) ozone concentrations, these predicted extreme values using numerical methods are always biased low. We built four computational models (GAM, MARS, random forest and SVR) to predict the fourth highest MDA8 ozone in Southern California using precursor emissions, meteorology and climatological patterns. All models presented acceptable performance, with GAM being the best.
Zhihao Wang, Jason Goetz, and Alexander Brenning
Geosci. Model Dev., 15, 8765–8784, https://doi.org/10.5194/gmd-15-8765-2022, https://doi.org/10.5194/gmd-15-8765-2022, 2022
Short summary
Short summary
A lack of inventory data can be a limiting factor in developing landslide predictive models, which are crucial for supporting hazard policy and decision-making. We show how case-based reasoning and domain adaptation (transfer-learning techniques) can effectively retrieve similar landslide modeling situations for prediction in new data-scarce areas. Using cases in Italy, Austria, and Ecuador, our findings support the application of transfer learning for areas that require rapid model development.
Till Sachau, Haibin Yang, Justin Lang, Paul D. Bons, and Louis Moresi
Geosci. Model Dev., 15, 8749–8764, https://doi.org/10.5194/gmd-15-8749-2022, https://doi.org/10.5194/gmd-15-8749-2022, 2022
Short summary
Short summary
Knowledge of the internal structures of the major continental ice sheets is improving, thanks to new investigative techniques. These structures are an essential indication of the flow behavior and dynamics of ice transport, which in turn is important for understanding the actual impact of the vast amounts of water trapped in continental ice sheets on global sea-level rise. The software studied here is specifically designed to simulate such structures and their evolution.
Keith J. Roberts, Alexandre Olender, Lucas Franceschini, Robert C. Kirby, Rafael S. Gioria, and Bruno S. Carmo
Geosci. Model Dev., 15, 8639–8667, https://doi.org/10.5194/gmd-15-8639-2022, https://doi.org/10.5194/gmd-15-8639-2022, 2022
Short summary
Short summary
Finite-element methods (FEMs) permit the use of more flexible unstructured meshes but are rarely used in full waveform inversions (FWIs), an iterative process that reconstructs velocity models of earth’s subsurface, due to computational and memory storage costs. To reduce those costs, novel software is presented allowing the use of high-order mass-lumped FEMs on triangular meshes, together with a material-property mesh-adaptation performance-enhancing strategy, enabling its use in FWIs.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Artur Safin, Damien Bouffard, Firat Ozdemir, Cintia L. Ramón, James Runnalls, Fotis Georgatos, Camille Minaudo, and Jonas Šukys
Geosci. Model Dev., 15, 7715–7730, https://doi.org/10.5194/gmd-15-7715-2022, https://doi.org/10.5194/gmd-15-7715-2022, 2022
Short summary
Short summary
Reconciling the differences between numerical model predictions and observational data is always a challenge. In this paper, we investigate the viability of a novel approach to the calibration of a three-dimensional hydrodynamic model of Lake Geneva, where the target parameters are inferred in terms of distributions. We employ a filtering technique that generates physically consistent model trajectories and implement a neural network to enable bulk-to-skin temperature conversion.
Colin Grudzien and Marc Bocquet
Geosci. Model Dev., 15, 7641–7681, https://doi.org/10.5194/gmd-15-7641-2022, https://doi.org/10.5194/gmd-15-7641-2022, 2022
Short summary
Short summary
Iterative optimization techniques, the state of the art in data assimilation, have largely focused on extending forecast accuracy to moderate- to long-range forecast systems. However, current methodology may not be cost-effective in reducing forecast errors in online, short-range forecast systems. We propose a novel optimization of these techniques for online, short-range forecast cycles, simultaneously providing an improvement in forecast accuracy and a reduction in the computational cost.
James Kent, Thomas Melvin, and Golo Albert Wimmer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-225, https://doi.org/10.5194/gmd-2022-225, 2022
Preprint under review for GMD
Short summary
Short summary
This paper introduces the Met Office's new shallow water model. The shallow water model is a building block towards the Met Office's new atmospheric dynamical core. The shallow water model is tested on a number of standard spherical shallow water test cases, including flow over mountains and unstable jets. Results show that the model produces similar results to other shallow water models in the literature.
Anthony Gruber, Max Gunzburger, Lili Ju, Rihui Lan, and Zhu Wang
EGUsphere, https://doi.org/10.5194/egusphere-2022-797, https://doi.org/10.5194/egusphere-2022-797, 2022
Short summary
Short summary
Our work applies a novel technical tool, "multifidelity Monte Carlo" (MFMC) estimation, to three climate-related benchmark experiments involving oceanic, atmospheric, and glacial modeling. By considering useful quantities such as maximum sea height and total (kinetic) energy, we show that MFMC leads to predictions which are more accurate and less costly than those obtained by standard methods. This suggests MFMC as a potential drop-in replacement for estimation in realistic climate models.
Vijay S. Mahadevan, Jorge E. Guerra, Xiangmin Jiao, Paul Kuberry, Yipeng Li, Paul Ullrich, David Marsico, Robert Jacob, Pavel Bochev, and Philip Jones
Geosci. Model Dev., 15, 6601–6635, https://doi.org/10.5194/gmd-15-6601-2022, https://doi.org/10.5194/gmd-15-6601-2022, 2022
Short summary
Short summary
Coupled Earth system models require transfer of field data between multiple components with varying spatial resolutions to determine the correct climate behavior. We present the Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol to evaluate the accuracy, conservation properties, monotonicity, and local feature preservation of four different remapper algorithms for various unstructured mesh problems of interest. Future extensions to more practical use cases are also discussed.
Yilin Fang, L. Ruby Leung, Ryan Knox, Charlie Koven, and Ben Bond-Lamberty
Geosci. Model Dev., 15, 6385–6398, https://doi.org/10.5194/gmd-15-6385-2022, https://doi.org/10.5194/gmd-15-6385-2022, 2022
Short summary
Short summary
Accounting for water movement in the soil and water transport within the plant is important for plant growth in Earth system modeling. We implemented different numerical approaches for a plant hydrodynamic model and compared their impacts on the simulated aboveground biomass (AGB) at single points and globally. We found care should be taken when discretizing the number of soil layers for numerical simulations as it can significantly affect AGB if accuracy and computational costs are of concern.
Lucas Schauer, Michael J. Schmidt, Nicholas B. Engdahl, Stephen D. Pankavich, David A. Benson, and Diogo Bolster
EGUsphere, https://doi.org/10.5194/egusphere-2022-781, https://doi.org/10.5194/egusphere-2022-781, 2022
Short summary
Short summary
We develop a multi-dimensional, parallelized domain decomposition strategy for mass-transfer particle tracking methods in two and three dimensions, investigate different procedures for decomposing the domain, and prescribe an optimal tiling based on physical problem parameters and the number of available CPU cores. For an optimally subdivided diffusion problem, the parallelized algorithm achieves nearly perfect linear speedup in comparison with the serial run up to thousands of cores.
Andrew M. Bradley, Peter A. Bosler, and Oksana Guba
Geosci. Model Dev., 15, 6285–6310, https://doi.org/10.5194/gmd-15-6285-2022, https://doi.org/10.5194/gmd-15-6285-2022, 2022
Short summary
Short summary
Tracer transport in atmosphere models can be computationally expensive. We describe a flexible and efficient interpolation semi-Lagrangian method, the Islet method. It permits using up to three grids that share an element grid: a dynamics grid for computing quantities such as the wind velocity; a physics parameterizations grid; and a tracer grid. The Islet method performs well on a number of verification problems and achieves high performance in the E3SM Atmosphere Model version 2.
Léo Pujol, Pierre-André Garambois, and Jérôme Monnier
Geosci. Model Dev., 15, 6085–6113, https://doi.org/10.5194/gmd-15-6085-2022, https://doi.org/10.5194/gmd-15-6085-2022, 2022
Short summary
Short summary
This contribution presents a new numerical model for representing hydraulic–hydrological quantities at the basin scale. It allows modeling large areas at a low computational cost, with fine zooms where needed. It allows the integration of local and satellite measurements, via data assimilation methods, to improve the model's match to observations. Using this capability, good matches to in situ observations are obtained on a model of the complex Adour river network with fine zooms on floodplains.
Ludovic Räss, Ivan Utkin, Thibault Duretz, Samuel Omlin, and Yuri Y. Podladchikov
Geosci. Model Dev., 15, 5757–5786, https://doi.org/10.5194/gmd-15-5757-2022, https://doi.org/10.5194/gmd-15-5757-2022, 2022
Short summary
Short summary
Continuum mechanics-based modelling of physical processes at large scale requires huge computational resources provided by massively parallel hardware such as graphical processing units. We present a suite of numerical algorithms, implemented using the Julia language, that efficiently leverages the parallelism. We demonstrate that our implementation is efficient, scalable and robust and showcase applications to various geophysical problems.
Bruno K. Zürcher
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-116, https://doi.org/10.5194/gmd-2022-116, 2022
Revised manuscript has not been submitted
Short summary
Short summary
We present a novel algorithm to efficiently compute Barnes interpolation, which is a method for transforming data values recorded at irregularly spaced points into a corresponding regular grid. In contrast to naive implementations that have an algorithmic complexity that depends directly on both the number of sample points and the grid size, our approach reduces this dependency essentially to the number of grid points.
Meriem Krouma, Pascal Yiou, Céline Déandreis, and Soulivanh Thao
Geosci. Model Dev., 15, 4941–4958, https://doi.org/10.5194/gmd-15-4941-2022, https://doi.org/10.5194/gmd-15-4941-2022, 2022
Short summary
Short summary
We evaluated the skill of a stochastic weather generator (SWG) to forecast precipitation at different time scales and in different areas of western Europe from analogs of Z500 hPa. The SWG has the skill to simulate precipitation for 5 and 10 d. We found that forecast weaknesses can be associated with specific weather patterns. The comparison with ECMWF forecasts confirms the skill of our model. This work is important because it provides information about weather forecasts over specific areas.
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
EGUsphere, https://doi.org/10.5194/egusphere-2022-352, https://doi.org/10.5194/egusphere-2022-352, 2022
Short summary
Short summary
In this study, we benchmark a topography-based model for glacier erosion (OpenLEM) with a well-established process-based model (iSOSIA). Our experiments show that large-scale erosion patterns and, in particular, the transformation of valley length geometry from fluvial to glacial conditions are very similar in both models. This finding enables the application of OpenLEM to study the influence of climate and tectonics on glaciated mountains with reasonable computational effort on standard PCs.
Piotr Dziekan and Piotr Zmijewski
Geosci. Model Dev., 15, 4489–4501, https://doi.org/10.5194/gmd-15-4489-2022, https://doi.org/10.5194/gmd-15-4489-2022, 2022
Short summary
Short summary
Detailed computer simulations of clouds are important for understanding Earth's atmosphere and climate. The paper describes how the UWLCM has been adapted to work on supercomputers. A distinctive feature of UWLCM is that air flow is calculated by processors at the same time as cloud droplets are modeled by graphics cards. Thanks to this, use of computing resources is maximized and the time to complete simulations of large domains is not affected by communications between supercomputer nodes.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 15, 4147–4161, https://doi.org/10.5194/gmd-15-4147-2022, https://doi.org/10.5194/gmd-15-4147-2022, 2022
Short summary
Short summary
A scale-dependent error growth described by a power law or by a quadratic hypothesis is studied in Lorenz’s system with three spatiotemporal levels. The validity of power law is extended by including a saturation effect. The quadratic hypothesis can only serve as a first guess. In addition, we study the initial error growth for the ECMWF forecast system. Fitting the parameters, we conclude that there is an intrinsic limit of predictability after 22 days.
Michael A. Olesik, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, Simon Unterstrasser, and Sylwester Arabas
Geosci. Model Dev., 15, 3879–3899, https://doi.org/10.5194/gmd-15-3879-2022, https://doi.org/10.5194/gmd-15-3879-2022, 2022
Short summary
Short summary
In systems such as atmospheric clouds, droplets undergo growth through condensation of vapor. The broadness of the resultant size spectrum of droplets influences precipitation likelihood and the radiative properties of clouds. One of the inherent limitations of simulations of the problem is the so-called numerical diffusion causing overestimation of the spectrum width, hence the term numerical broadening. In the paper, we take a closer look at one of the algorithms used in this context: MPDATA.
Navjot Kukreja, Jan Hückelheim, Mathias Louboutin, John Washbourne, Paul H. J. Kelly, and Gerard J. Gorman
Geosci. Model Dev., 15, 3815–3829, https://doi.org/10.5194/gmd-15-3815-2022, https://doi.org/10.5194/gmd-15-3815-2022, 2022
Short summary
Short summary
Full waveform inversion (FWI) is a partial-differential equation (PDE)-constrained optimization problem that is notorious for its high computational load and memory footprint. In this paper we present a method that combines recomputation with lossy compression to accelerate the computation with minimal loss of precision in the results. We show this using experiments running FWI with a variety of compression settings on a popular academic dataset.
Richard Scalzo, Mark Lindsay, Mark Jessell, Guillaume Pirot, Jeremie Giraud, Edward Cripps, and Sally Cripps
Geosci. Model Dev., 15, 3641–3662, https://doi.org/10.5194/gmd-15-3641-2022, https://doi.org/10.5194/gmd-15-3641-2022, 2022
Short summary
Short summary
This paper addresses numerical challenges in reasoning about geological models constrained by sensor data, especially models that describe the history of an area in terms of a sequence of events. Our method ensures that small changes in simulated geological features, such as the position of a boundary between two rock layers, do not result in unrealistically large changes to resulting sensor measurements, as occur presently using several popular modeling packages.
Romit Maulik, Vishwas Rao, Jiali Wang, Gianmarco Mengaldo, Emil Constantinescu, Bethany Lusch, Prasanna Balaprakash, Ian Foster, and Rao Kotamarthi
Geosci. Model Dev., 15, 3433–3445, https://doi.org/10.5194/gmd-15-3433-2022, https://doi.org/10.5194/gmd-15-3433-2022, 2022
Short summary
Short summary
In numerical weather prediction, data assimilation is frequently utilized to enhance the accuracy of forecasts from equation-based models. In this work we use a machine learning framework that approximates a complex dynamical system given by the geopotential height. Instead of using an equation-based model, we utilize this machine-learned alternative to dramatically accelerate both the forecast and the assimilation of data, thereby reducing need for large computational resources.
Hiromasa Yoshimura
Geosci. Model Dev., 15, 2561–2597, https://doi.org/10.5194/gmd-15-2561-2022, https://doi.org/10.5194/gmd-15-2561-2022, 2022
Short summary
Short summary
This paper proposes a new double Fourier series (DFS) method on a sphere that improves the numerical stability of a model compared with conventional DFS methods. The shallow-water model and the advection model using the new DFS method give stable results without the appearance of high-wavenumber noise near the poles. The model using the new DFS method is faster than the model using spherical harmonics (especially at high resolutions) and gives almost the same results.
Mirko Mälicke
Geosci. Model Dev., 15, 2505–2532, https://doi.org/10.5194/gmd-15-2505-2022, https://doi.org/10.5194/gmd-15-2505-2022, 2022
Short summary
Short summary
I preset SciKit-GStat, a well-documented and tested Python package for variogram estimation. The variogram is the core means of geostatistics, which almost all other methods rely on. Geostatistical interpolation and field generation are widely spread in geoscience, i.e., for data assimilation or modeling.
While SciKit-GStat focuses on effective and intuitive variogram estimation, it can interface with other prominent packages and make its variograms available for a multitude of methods.
Christopher J. L. D'Amboise, Michael Neuhauser, Michaela Teich, Andreas Huber, Andreas Kofler, Frank Perzl, Reinhard Fromm, Karl Kleemayr, and Jan-Thomas Fischer
Geosci. Model Dev., 15, 2423–2439, https://doi.org/10.5194/gmd-15-2423-2022, https://doi.org/10.5194/gmd-15-2423-2022, 2022
Short summary
Short summary
The term gravitational mass flow (GMF) covers various natural hazard processes such as snow avalanches, rockfall, landslides, and debris flows. Here we present the open-source GMF simulation tool Flow-Py. The model equations are based on simple geometrical relations in three-dimensional terrain. We show that Flow-Py is an educational, innovative GMF simulation tool with three computational experiments: 1. validation of implementation, 2. performance, and 3. expandability.
Piyoosh Jaysaval, Glenn E. Hammond, and Timothy C. Johnson
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-66, https://doi.org/10.5194/gmd-2022-66, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
We present a robust and highly scalable implementation of numerical forward modeling and inversion algorithms for geophysical electrical resistivity tomography data. The implementation is publicly available and developed within the framework of PFLOTRAN (www.pflotran.org), an open-source, state-of-the-art massively parallel subsurface flow and transport simulation code. The paper details all the theoretical and implementation aspects of the new capabilities along with test examples.
Evan Baker, Anna B. Harper, Daniel Williamson, and Peter Challenor
Geosci. Model Dev., 15, 1913–1929, https://doi.org/10.5194/gmd-15-1913-2022, https://doi.org/10.5194/gmd-15-1913-2022, 2022
Short summary
Short summary
We have adapted machine learning techniques to build a model of the land surface in Great Britain. The model was trained using data from a very complex land surface model called JULES. Our model is faster at producing simulations and predictions and can investigate many different scenarios, which can be used to improve our understanding of the climate and could also be used to help make local decisions.
Daichun Wang, Wei You, Zengliang Zang, Xiaobin Pan, Yiwen Hu, and Yanfei Liang
Geosci. Model Dev., 15, 1821–1840, https://doi.org/10.5194/gmd-15-1821-2022, https://doi.org/10.5194/gmd-15-1821-2022, 2022
Short summary
Short summary
This paper presents a 3D variational data assimilation system for aerosol optical properties, including aerosol optical thickness (AOT) retrievals and lidar-based aerosol profiles, which was developed for a size-resolved sectional model in WRF-Chem. To directly assimilate aerosol optical properties, an observation operator based on the Mie scattering theory was designed. The results show that Himawari-8 AOT assimilation can significantly improve model aerosol analyses and forecasts.
Kevin Bulthuis and Eric Larour
Geosci. Model Dev., 15, 1195–1217, https://doi.org/10.5194/gmd-15-1195-2022, https://doi.org/10.5194/gmd-15-1195-2022, 2022
Short summary
Short summary
We present and implement a stochastic solver to sample spatially and temporal varying uncertain input parameters in the Ice-sheet and Sea-level System Model, such as ice thickness or surface mass balance. We represent these sources of uncertainty using Gaussian random fields with Matérn covariance function. We generate random samples of this random field using an efficient computational approach based on solving a stochastic partial differential equation.
Urmas Raudsepp and Ilja Maljutenko
Geosci. Model Dev., 15, 535–551, https://doi.org/10.5194/gmd-15-535-2022, https://doi.org/10.5194/gmd-15-535-2022, 2022
Short summary
Short summary
A model's ability to reproduce the state of a simulated object is always a subject of discussion. A new method for the multivariate assessment of numerical model skills uses the K-means algorithm for clustering model errors. All available data that fall into the model domain and simulation period are incorporated into the skill assessment. The clustered errors are used for spatial and temporal analysis of the model accuracy. The method can be applied to different types of geoscientific models.
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 14, 7749–7774, https://doi.org/10.5194/gmd-14-7749-2021, https://doi.org/10.5194/gmd-14-7749-2021, 2021
Short summary
Short summary
We propose an implementation of the material point method using graphical processing units (GPUs) to solve elastoplastic problems in three-dimensional configurations, such as the granular collapse or the slumping mechanics, i.e., landslide. The computational power of GPUs promotes fast code executions, compared to a traditional implementation using central processing units (CPUs). This allows us to study complex three-dimensional problems tackling high spatial resolution.
Rafael Lago, Thomas Gastine, Tilman Dannert, Markus Rampp, and Johannes Wicht
Geosci. Model Dev., 14, 7477–7495, https://doi.org/10.5194/gmd-14-7477-2021, https://doi.org/10.5194/gmd-14-7477-2021, 2021
Short summary
Short summary
In this work we discuss a two-dimensional distributed parallelization of MagIC, an open-source code for the numerical solution of the magnetohydrodynamics equations. Such a parallelization involves several challenges concerning the distribution of work and data. We detail our algorithm and compare it with the established, optimized, one-dimensional distribution in the context of the dynamo benchmark and discuss the merits of both implementations.
Moritz Lange, Henri Suominen, Mona Kurppa, Leena Järvi, Emilia Oikarinen, Rafael Savvides, and Kai Puolamäki
Geosci. Model Dev., 14, 7411–7424, https://doi.org/10.5194/gmd-14-7411-2021, https://doi.org/10.5194/gmd-14-7411-2021, 2021
Short summary
Short summary
This study aims to replicate computationally expensive high-resolution large-eddy simulations (LESs) with regression models to simulate urban air quality and pollutant dispersion. The model development, including feature selection, model training and cross-validation, and detection of concept drift, has been described in detail. Of the models applied, log-linear regression shows the best performance. A regression model can replace LES unless high accuracy is needed.
Hynek Bednář, Aleš Raidl, and Jiří Mikšovský
Geosci. Model Dev., 14, 7377–7389, https://doi.org/10.5194/gmd-14-7377-2021, https://doi.org/10.5194/gmd-14-7377-2021, 2021
Short summary
Short summary
Forecast errors in numerical weather prediction systems grow in time. To quantify the impacts of this growth, parametric error growth models may be employed. This study recalculates and newly defines parameters for several statistic models approximating error growth in the ECMWF forecasting system. Accurate values of parameters are important because they are used to evaluate improvements of the forecasting systems or to estimate predictability.
Denise Degen, Cameron Spooner, Magdalena Scheck-Wenderoth, and Mauro Cacace
Geosci. Model Dev., 14, 7133–7153, https://doi.org/10.5194/gmd-14-7133-2021, https://doi.org/10.5194/gmd-14-7133-2021, 2021
Short summary
Short summary
In times of worldwide energy transitions, an understanding of the subsurface is increasingly important to provide renewable energy sources such as geothermal energy. To validate our understanding of the subsurface we require data. However, the data are usually not distributed equally and introduce a potential misinterpretation of the subsurface. Therefore, in this study we investigate the influence of measurements on temperature distribution in the European Alps.
Geoffroy Kirstetter, Olivier Delestre, Pierre-Yves Lagrée, Stéphane Popinet, and Christophe Josserand
Geosci. Model Dev., 14, 7117–7132, https://doi.org/10.5194/gmd-14-7117-2021, https://doi.org/10.5194/gmd-14-7117-2021, 2021
Short summary
Short summary
The development of forecasting tools may help to limit the impacts of flash floods. Our purpose here is to demonstrate the possibility of using b-flood, which is a 2D tool based on shallow-water equations and adaptive mesh refinement.
Sojung Park and Seon K. Park
Geosci. Model Dev., 14, 6241–6255, https://doi.org/10.5194/gmd-14-6241-2021, https://doi.org/10.5194/gmd-14-6241-2021, 2021
Short summary
Short summary
One of the biggest uncertainties in numerical weather predictions (NWPs) comes from treating subgrid-scale physical processes. Physical processes, such as cumulus, microphysics, and planetary boundary layer processes, are parameterized in NWP models by empirical and theoretical backgrounds. We developed an interface between a micro-genetic algorithm and the WRF model for a combinatorial optimization of physics for heavy rainfall events in Korea. The system improved precipitation forecasts.
Olivier Pannekoucke and Philippe Arbogast
Geosci. Model Dev., 14, 5957–5976, https://doi.org/10.5194/gmd-14-5957-2021, https://doi.org/10.5194/gmd-14-5957-2021, 2021
Short summary
Short summary
This contributes to research on uncertainty prediction, which is important either for determining the weather today or estimating the risk in prediction. The problem is that uncertainty prediction is numerically very expensive. An alternative has been proposed wherein uncertainty is presented in a simplified form with only the dynamics of certain parameters required. This tool allows for the determination of the symbolic equations of these parameter dynamics and their numerical computation.
Annika Günther, Johannes Gütschow, and Mairi Louise Jeffery
Geosci. Model Dev., 14, 5695–5730, https://doi.org/10.5194/gmd-14-5695-2021, https://doi.org/10.5194/gmd-14-5695-2021, 2021
Short summary
Short summary
The mitigation components of the nationally determined contributions (NDCs) under the Paris Agreement are essential in our fight against climate change. Regular updates with increased ambition are requested to limit global warming to 1.5–2 °C. The new and easy-to-update open-source tool NDCmitiQ can be used to quantify the NDCs' mitigation targets and construct resulting emissions pathways. In use cases, we show target uncertainties from missing clarity, data, and methodological challenges.
Futo Tomizawa and Yohei Sawada
Geosci. Model Dev., 14, 5623–5635, https://doi.org/10.5194/gmd-14-5623-2021, https://doi.org/10.5194/gmd-14-5623-2021, 2021
Short summary
Short summary
A new method to predict chaotic systems from observation and process-based models is proposed by combining machine learning with data assimilation. Our method is robust to the sparsity of observation networks and can predict more accurately than a process-based model when it is biased. Our method effectively works when both observations and models are imperfect, which is often the case in geoscience. Therefore, our method is useful to solve a wide variety of prediction problems in this field.
Chloe Leach, Tom Coulthard, Andrew Barkwith, Daniel R. Parsons, and Susan Manson
Geosci. Model Dev., 14, 5507–5523, https://doi.org/10.5194/gmd-14-5507-2021, https://doi.org/10.5194/gmd-14-5507-2021, 2021
Short summary
Short summary
Numerical models can be used to understand how coastal systems evolve over time, including likely responses to climate change. However, many existing models are aimed at simulating 10- to 100-year time periods do not represent a vertical dimension and are thus unable to include the effect of sea-level rise. The Coastline Evolution Model 2D (CEM2D) presented in this paper is an advance in this field, with the inclusion of the vertical coastal profile against which the water level can be altered.
Steven J. Phipps, Jason L. Roberts, and Matt A. King
Geosci. Model Dev., 14, 5107–5124, https://doi.org/10.5194/gmd-14-5107-2021, https://doi.org/10.5194/gmd-14-5107-2021, 2021
Short summary
Short summary
Simplified schemes, known as parameterisations, are sometimes used to describe physical processes within numerical models. However, the values of the parameters are uncertain. This introduces uncertainty into the model outputs. We develop a simple approach to identify plausible ranges for model parameters. Using a model of the Antarctic Ice Sheet, we find that the value of one parameter can depend on the values of others. We conclude that a single optimal set of parameter values does not exist.
Axel Peytavin, Bruno Sainte-Rose, Gael Forget, and Jean-Michel Campin
Geosci. Model Dev., 14, 4769–4780, https://doi.org/10.5194/gmd-14-4769-2021, https://doi.org/10.5194/gmd-14-4769-2021, 2021
Short summary
Short summary
We present a new algorithm developed at The Ocean Cleanup to update ocean plastic models based on measurements from the field to improve future cleaning operations. Prepared in collaboration with MIT researchers, this initial study presents its use in several analytical and real test cases in which two observers in a flow field record regular observations to update a plastic forecast. We demonstrate this improves the prediction, even with inaccurate knowledge of the water flows driving plastic.
Kang Pan, Mei Qi Lim, Markus Kraft, and Epaminondas Mastorakos
Geosci. Model Dev., 14, 4509–4534, https://doi.org/10.5194/gmd-14-4509-2021, https://doi.org/10.5194/gmd-14-4509-2021, 2021
Short summary
Short summary
A new moving point source (MPS) model was developed to simulate the dispersion of emissions generated by the moving ships. Compared to the commonly used line source (LS) or fixed point source (FPS) model, the MPS model provides more emission distribution details generated by the moving ships and matches reasonably with the measurements. Therefore, the MPS model should be a valuable alternative for the environmental society to evaluate the pollutant dispersion contributed from the moving ships.
Sebastian Springer, Heikki Haario, Jouni Susiluoto, Aleksandr Bibov, Andrew Davis, and Youssef Marzouk
Geosci. Model Dev., 14, 4319–4333, https://doi.org/10.5194/gmd-14-4319-2021, https://doi.org/10.5194/gmd-14-4319-2021, 2021
Short summary
Short summary
Model predictions always contain uncertainty. But in some cases, such as weather forecasting or climate modeling, chaotic unpredictability increases the difficulty to say exactly how much uncertainty there is. We combine two recently proposed mathematical methods to show how the uncertainty can be analyzed in models that are simplifications of true weather models. The results can be extended in the future to show how forecasts from large-scale models can be improved.
Alexander Schaaf, Miguel de la Varga, Florian Wellmann, and Clare E. Bond
Geosci. Model Dev., 14, 3899–3913, https://doi.org/10.5194/gmd-14-3899-2021, https://doi.org/10.5194/gmd-14-3899-2021, 2021
Short summary
Short summary
Uncertainty is an inherent property of any model of the subsurface. We show how geological topology information – how different regions of rocks in the subsurface are connected – can be used to train uncertain geological models to reduce uncertainty. More widely, the method demonstrates the use of probabilistic machine learning (Bayesian inference) to train structural geological models on auxiliary geological knowledge that can be encoded in graph structures.
Matthew Ozon, Aku Seppänen, Jari P. Kaipio, and Kari E. J. Lehtinen
Geosci. Model Dev., 14, 3715–3739, https://doi.org/10.5194/gmd-14-3715-2021, https://doi.org/10.5194/gmd-14-3715-2021, 2021
Short summary
Short summary
Experimental research has provided large amounts of high-quality data on aerosol over the last 2 decades. However, inference of the process rates (e.g., the rates at which particles are generated) is still typically done by simple curve-fitting methods and does not assess the credibility of the estimation. The devised method takes advantage of the Bayesian framework to not only retrieve the state of the observed aerosol system but also to estimate the process rates (e.g., growth rate).
Cited articles
Andrysco, M., Jhala, R., and Lerner, S.: Printing floating-point numbers: a
faster, always correct method, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 51, 555–567,
https://doi.org/10.1145/2837614.2837654, 2016.
Arteaga, A., Fuhrer, O., and Hoefler, T.: Designing Bit-Reproducible
Portable High-Performance Applications, 2014 IEEE International Parallel
& Distributed Processing Symposium (IPDPS), USA, 1235–1244,
https://doi.org/10.1109/IPDPS.2014.127, 2014.
Bailey, D. H.: Resolving numerical anomalies in scientific computation,
Lawrence Berkeley National Laboratory, University of California, USA, https://escholarship.org/uc/item/2qf8v4bn (last access: 30 August 2022), 2008.
Baker, A. H., Hammerling, D. M., Levy, M. N., Xu, H., Dennis, J. M., Eaton, B. E., Edwards, J., Hannay, C., Mickelson, S. A., Neale, R. B., Nychka, D., Shollenberger, J., Tribbia, J., Vertenstein, M., and Williamson, D.: A new ensemble-based consistency test for the Community Earth System Model (pyCECT v1.0), Geosci. Model Dev., 8, 2829–2840, https://doi.org/10.5194/gmd-8-2829-2015, 2015.
Donahue, A. S. and Caldwell, P. M.: Impact of Physics Parameterization
Ordering in A Global Atmosphere Model, J. Adv. Model. Earth Sy., 10, 481–499,
https://doi.org/10.1002/2017MS001067, 2018.
Düben, P. D., Joven, J., Lingamneni, A., McNamara, H., Micheli, G. D.,
Palem, K. V., and Palmer, T. N.: On the use of inexact, pruned hardware in
atmospheric modelling, Phil. Trans. R. Soc. A, 372, 20130276, https://doi.org/10.1098/rsta.2013.0276, 2014.
Düben, P. D., Subramanian, A., Dawson, A., and Palmer T. N.: A study of
reduced numerical precision to make superparametrisation more competitive using a hardware emulator in the
OpenIFS model, J. Adv. Model. Earth Sy., 9, 566–584,
https://doi.org/10.1002/2016MS000862, 2017.
Emanuel, K. A. and Živković-Rothman, M.: Development and evaluation
of a convection scheme for use in climate models, J. Atmos. Sci., 56,
1766–1782, https://doi.org/10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2, 1999.
Flato, G. M.: Earth system models: an overview, WIREs Clim. Change, 2,
783–800, https://doi.org/10.1002/wcc.148, 2011.
Fu, H., Liao, J., Yang, J., Wang, L., Song, Z., Huang, X., Yang, C., Xue,
W., Liu, F., Qiao, F., Zhao, W., Yin, X., Hou, C., Zhang, C., Ge, W., Zhang,
J., Wang, Y., Zhou, C., and Yang, G.: The sunway TaihuLight supercomputer:
system and applications, Sci. China Inf. Sci., 59, 072001,
https://doi.org/10.1007/s11432-016-5588-7, 2016.
Fu, H., Liao, J., Ding, N., Duan, X., Gan, L., Liang, Y., Wang, X., Yang,
J., Zheng, Y., Liu, W., Wang, L., and Yang, G.: Redesigning cam-se for
peta-scale climate modeling performance and ultra-high resolution on sunway
taihulight, In Proceedings of the international conference for high
performance computing, networking, storage and analysis, Association for Computing Machinery, https://doi.org/10.1145/3126908.3126909, 2017a.
Fu, H., Liao, J., Xue, W., Wang, L., Chen, D., Gu, L., Xu, J., Ding, N.,
Wang, X., He, C., Xu, S., Liang, Y., Fang, J., Xu, Y., Zheng, W., Xu, J.,
Zheng, Z., Wei, W., Ji, X., Zhang, H., Chen, B., Li, K., Huang, X., Chen,
W., and Yang, G.: Refactoring and optimizing the community atmosphere model
(CAM) on the sunway taihu-light supercomputer, in: High performance
computing, networking, storage and analysis, International Conference for High Performance Computing, Networking, Storage and Analysis, https://doi.org/10.1109/SC.2016.82, 2017b.
Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapillonne, X., Leutwyler, D., Lüthi, D., Osuna, C., Schär, C., Schulthess, T. C., and Vogt, H.: Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0, Geosci. Model Dev., 11, 1665–1681, https://doi.org/10.5194/gmd-11-1665-2018, 2018.
Goff, J. and Gratch, S: List 1947, Smithsonian Meteorological Tables, Trans.
Am. Soc., 52, 95, 1946.
Kara, A. B., Rochford P. A., and Hurlburt H. E.: An optimal definition for
ocean mixed layer depth, J. Geophys. Res.-Oceans, 105, 16803–16821,
https://doi.org/10.1029/2000JC900072, 2000.
Kelly, R. C.: GPU Computing for Atmospheric Modeling, Comput. Sci. Eng., 12,
26–33, https://doi.org/10.1109/MCSE.2010.26, 2010.
Li, S., Zhang, S., Liu, Z., Yang, X. Rosati, A., Golaz, J. C., and Zhao, M.:
The Role of Large-scale Feedbacks in Cumulus Convection Parameter
Estimation, J. Climate, 29, 4099–4119, https://doi.org/10.1175/JCLI-D-15-0117.1,
2016.
Liao, X., Xiao, L., Yang, C., and Lu, Y.: Milkyway-2 supercomputer: system
and application, Front. Comput. Sci., 8, 345–356,
https://doi.org/10.1007/s11704-014-3501-3, 2014.
Linford, J. C., Michalakes, J., Vachharajani, M., and Sandu, A.: Multi-core
acceleration of chemical kinetics for simulation and prediction, in: High
performance computing networking, storage and analysis, International Conference for High Performance Computing Networking, Storage and Analysis, 1–11, https://doi.org/10.1145/1654059.1654067, 2009.
Mielikainen, J., Huang, B., Wang, J., Huang, H.-L. A., and Goldberg, M. D.:
Compute unified device architecture (CUDA)-based parallelization of WRF
Kessler cloud microphysics scheme, Comput. Geosci.-UK, 52, 292–299,
https://doi.org/10.1016/j.cageo.2012.10.006, 2013.
Milroy, D. J., Baker, A. H., Hammerling, D. M., Dennis, J. M., Mickelson, S.
A., and Jessup, E. R.: Towards Characterizing the Variability of
Statistically Consistent Community Earth System Model Simulations, Pro.
Comput. Sci., 80, 1589–1600, https://doi.org/10.1016/j.procs.2016.05.489,
2016.
Morrison, H. and Gettelman, A.: A new two-moment bulk stratiform cloud
microphysics scheme in the Community Atmosphere Model, version 3 (CAM3).
Part I: Description and numerical tests, J. Climate, 21, 3642–3659,
https://doi.org/10.1175/2008JCLI2105.1, 2008.
Neale, R. B., Richter, J. H., and Jochum, M.: The impact of convection on
ENSO: From a delayed oscillator to a series of events, J. Climate, 21,
5904–5924, https://doi.org/10.1175/2008JCLI2244.1, 2008.
Palem, K. and Lingamneni, A.: Ten Years of Building Broken Chips: The
Physics and Engineering of Inexact Computing, ACM T. Embed.
Comput. S., 12, 1–23, https://doi.org/10.1145/2465787.2465789,
2013.
Park, S., Bretherton, C. S., and Rasch, P. J.: Integrating Cloud Processes
in the Community Atmosphere Model, Version 5, J. Climate, 27, 6821–6856,
https://doi.org/10.1175/JCLI-D-14-00087.1, 2014.
Rosinski, J. M. and Williamson, D. L.: The accumulation of rounding errors
and port validation for global atmospheric models, SIAM J. Sci. Comput., 18,
552–564, https://doi.org/10.1137/S1064827594275534, 1997.
Sansom, P. G., Stephenson, D. B., Ferro, C. A. T., Zappa, G., and Shaffery,
L.: Simple uncertainty frameworks for selecting weighting schemes and
interpreting multimodel ensemble climate change experiments, J. Climate, 26,
4017–4037, https://doi.org/10.1175/JCLI-D-12-00462.1, 2013.
Stephenson, M., Hari, S. K. S., Lee, Y., Ebrahimi, E., Johnson, D. R.,
Nellans, D., O'Connor, M., and Keckler, S. W.: Flexible Software Profiling
of GPU Architectures, ACM SIGARCH Comp. Architecture News, 43, 185–197, 2015.
Sun, W. Y. and Ogura, Y.: Modeling the Evolution of the Convective Planetary
Boundary Layer, J. Atmos. Sci., 37, 1558–1572,
https://doi.org/10.1175/1520-0469(1980)037<1558:MTEOTC>2.0.CO;2, 1980.
Tintó Prims, O., Acosta, M. C., Moore, A. M., Castrillo, M., Serradell, K., Cortés, A., and Doblas-Reyes, F. J.: How to use mixed precision in ocean models: exploring a potential reduction of numerical precision in NEMO 4.0 and ROMS 3.6, Geosci. Model Dev., 12, 3135–3148, https://doi.org/10.5194/gmd-12-3135-2019, 2019.
Vazhkudai, S. S., de Supinski, B. R., Bland, A. S., Geist, A., Sexton, J.,
Kahle, J., Zimmer, C. J., Atchley, S., Oral, S., Maxwell, D. E., Vergara
Larrea, V. G., Bertsch, A., Goldstone, R., Joubert, W., Chambreau, C.,
Appelhans, D., Blackmore, R., Casses, B., Chochia, G., Davison, G., Ezell,
M. A., Gooding, T., Gonsiorowski, E., Grinberg, L., Hanson, B., Hartner, B.,
Karlin, I., Leininger, M. L., Leverman, D., Marroquin, C., Moody, A.,
Ohmacht, M., Pankajakshan, R., Pizzano, F., Rogers, J. H., Rosenburg, B.,
Schmidt, D., Shankar, M., Wang, F., Watson, P., Walkup, B., Weems, L. D.,
and Yin, J.: The design, deployment, and evaluation of the coral
pre-exascale systems, in: International Conference for High Performance Computing, Networking, Storage and Analysis, USA, https://doi.org/10.1109/SC.2018.00055, 2018.
Wang, M. and Zhang, G. J.: Improving the Simulation of Tropical Convective
Cloud-Top Heights in CAM5 with CloudSat Observations, J. Climate, 31, 5189–5204,
https://doi.org/10.1175/JCLI-D-18-0027.1, 2018.
Whitehead, N. and Fit-Florea, A.: Precision & Performance: Floating
Point and IEEE 754 Compliance for NVIDIA GPUs,
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf (last access: 27 August 2022),
2011.
Xiao, H., Sun, J., Bian, X., and Dai, Z.: GPU acceleration of the WSM6 cloud
microphysics scheme in GRAPES model, Comput. Geosci., 59, 156–162,
https://doi.org/10.1016/j.cageo.2013.06.016, 2013.
Xu, S., Huang, X., Oey, L.-Y., Xu, F., Fu, H., Zhang, Y., and Yang, G.: POM.gpu-v1.0: a GPU-based Princeton Ocean Model, Geosci. Model Dev., 8, 2815–2827, https://doi.org/10.5194/gmd-8-2815-2015, 2015.
Yano, J. I.: Subgrid-scale physical parameterization in atmospheric
modeling: How can we make it consistent?, J. Phys. A-Math. Theor., 49, 284001,
https://doi.org/10.1088/1751-8113/49/28/284001, 2016.
Yu, Y., Zhang, S., Fu, H., Wu, L., Chen, D., Gao, Y., Wei, Z., Jia, D., and Lin, X.: Data and Codes of Characterizing Uncertainties of Earth System Modeling with Heterogeneous Many-core Architecture Computing, Zenodo [data set], https://doi.org/10.5281/zenodo.6481868, 2022.
Zhang, G. J. and McFarlane, N. A.: Sensitivity of climate simulations to
the parameterization of cumulus convection in the Canadian climate centre
general circulation model, Atmos. Ocean, 33, 407–446,
https://doi.org/10.1080/07055900.1995.9649539, 1995.
Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X., Wan, W., Wang, L., Zhuang, Y., Meng, H., Xu, K., Xu, P., Gan, L., Liu, Z., Wu, S., Chen, Y., Yu, H., Shi, S., Wang, L., Xu, S., Xue, W., Liu, W., Guo, Q., Zhang, J., Zhu, G., Tu, Y., Edwards, J., Baker, A., Yong, J., Yuan, M., Yu, Y., Zhang, Q., Liu, Z., Li, M., Jia, D., Yang, G., Wei, Z., Pan, J., Chang, P., Danabasoglu, G., Yeager, S., Rosenbloom, N., and Guo, Y.: Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform, Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, 2020.
Short summary
To understand the scientific consequence of perturbations caused by slave cores in heterogeneous computing environments, we examine the influence of perturbation amplitudes on the determination of the cloud bottom and cloud top and compute the probability density function (PDF) of generated clouds. A series of comparisons of the PDFs between homogeneous and heterogeneous systems show consistently acceptable error tolerances when using slave cores in heterogeneous computing environments.
To understand the scientific consequence of perturbations caused by slave cores in heterogeneous...